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Multi-sized Sphere Packing in Containers:

Optimization Formula for Obtaining

the Highest Density with Two Different Sized Spheres

Shuji Yamada,†1 Jinko Kanno†2 and Miki Miyauchi†3

This article provides a mathematical formula for determining the optimal
sizes of two different sized spheres to maximize the packing density when ran-
domized loose packing is employed in containers with various shapes. The
formula was evaluated with numerous computer simulations involving over a
million of spheres.

1. Introduction

This section introduces the motivation and purposes of this work. Some math-
ematical background is also presented to support later sections, which focus on
building a model that matches the demands of the problem.

Concrete contains numerous pores that allow corrosion when chloride ions seep
through the pores and make contact with the metal reinforcement. To protect
the reinforcement in the concrete from the chlorides we can use an electric current
to force nanoparticles into the pores to block access through them. This is called
electrokinetic nanoparticle (EN) treatment. Also, replacing the air or water
present in the pores in a block of concrete with solid materials or nanoparticles
greatly improves the compressive strength of the concrete.

Two different sizes of nanoparticles are used in EN treatment. The smaller
ones are used to block chloride ions and the larger ones to carry the smaller ones
towards deeper locations in the pores. The larger nanoparticles also provide a
rapid source of strength enhancement and general porosity reduction throughout
the concrete material. This helps slow down the migration of chlorides that come
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from the outside surface of the concrete. In fact, using only small nanoparticles
seems to be inefficient for treatment purposes since their small size makes them
too unstable to exist in anything but very dilute concentrations. EN treatments
with such dilute concentrations require too much time to complete.

From a mathematical point of view, using two different sizes of nanoparticles to
increase the general packing density throughout the pore structure is reasonable
as smaller spheres can fit into spaces left by the packing of mono-sized spheres.
This improves porosity reduction since packing two different sizes of spheres in the
space yields a higher density than packing spheres of the same size. For example,
it is well known that the highest density that can be achieved for identical sphere
packing in unbounded space is π√

18
= 0.74048. This means that 74% of the

volume space is filled with solid material. This is the same as the density for
the Face-Centered Cubic (FCC) crystal structure or the Hexagonal Close-Packed
(HCP) crystal structure. However, if two sizes of sphere are used, theoretically
the density can be increased to 1 − (1 − π√

18
)2 = 0.93265. This is because

minimizing the size of the smaller spheres would increase the density in the
remainder of the space after packing larger spheres.

Unfortunately the upper bound by this theory is much higher than densities
that can be reached in practice since there is a certain limitation as regards the
sizes of nanoparticles, and the nanoparticles must be put into bounded spaces
and the packing must be random. Therefore a natural question to ask is what
combination of large and small nanoparticles sizes will yield the highest density.
We present a formula for the larger size of nanoparticles that will allow us to
obtain the highest density when an arbitrary smaller size of nanoparticles is
given. To accomplish this task, we need a simple model of nanoparticle packing
and an approximate formula for the packing density.

The main purposes of this work are to introduce a simple model that faithfully
represents two-sized nanoparticle packing, and to give a simple and good formula
approximating its packing density.

The following sections present a model for packing two sizes of spheres into a
container. Also, we investigate the most important issue, namely the boundary
evacuation effect, which does not arise in the traditional sphere packing problem.

In Section 2, we propose a new packing model with pits and quasi-pits. This
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model reproduces nanoparticle filling where intermolecular force has a greater
influence than gravity. Section 3 investigates the packing density with mono-sized
spheres in an arbitrary container. The boundary evacuation effect is introduced
and a formula is presented that provides an approximate value for the packing
density. This formula involves only the surface-volume ratio of the container
and the radius of the spheres, nevertheless it gives good approximate values for
containers of various shapes. In Section 4, we investigate the packing density
with two sizes of sphere in an arbitrary container. A formula is presented that
gives an approximate value for the packing density with two sizes of spheres.
This formula provides a solution to the nanoparticle packing problem for the
pair of nanoparticle sizes that yield the highest density. Section 5 presents a
number of numerical experiments and examines the approximation formula of
the packing density for various shapes of containers. In the last section, we apply
the approximation formula to the density of nanoparticles in capillary pores in
concrete.

2. Computational Packing Model for Nanoparticles

In this section, a computational sphere packing model is introduced and its
advantages are explained and it is compared with other existing models. The
model uses both “pits” and “quasi-pits”, which are defined later, to present a
packing model for nanoparticles that is as close as possible to reality.

In 1969, identical steel balls were packed randomly and this was called random
close packing (RCP) since the container was shaken after being filled with steel
balls. The experiment for one size of steel sphere RCP yielded a density of about
64% 1) and relied on the fact that the spheres would rearrange themselves into
a more dense structure under the force of gravity combined with the force of
shaking. In the experiments, gravity acts in only one direction from the top to
the bottom and governs the entire experiments except for the shaking.

Packing affected by a one-directional force, such as gravity, results in a higher
density than packing without a specific force direction. This does not apply in
our case since gravity affects nanoparticles much less than the intermolecular
forces that operate between nanoparticles. To emphasize the fact that we do not
apply additional force by shaking the container, we refer to the model described

in this article as the Random Loose Packing Model (RLP).
There is always a dilemma when we attempt to create a computer model to

calculate or simulate the random packing of spheres. The problem is to keep the
randomness as close as possible to reality, and also complete the packing process
in a reasonable amount of time. These factors are indicated by the number of
nanoparticles that a model can handle in a certain period of time.

To meet the two requirements of high speed and closeness to reality, we propose
the new concepts of a pit point and a quasi-pit point, and we define them in
this section. Our model is superior not only because it can handle an enormous
number of nanoparticles but also because it can provide results much more quickly
than previous models, for example those shown in Refs. 2) and 3).

In this section, let r be the radius of the packing spheres.
• We call the center of a sphere of radius r a pit supported by three tangent

points if the sphere is tangential at the three points located on the boundary
of the container or on the previously packed spheres, but is completely disjoint
from the interior of any previously packed spheres.

• When using a uniform distribution, randomly selected points Q inside the
container are called quasi-pits if Q is a distance r away from the surface of
the container.

• The center of a newly packed sphere will be located at one of the pits or
quasi-pits, which will be selected at random.

A pit as defined above is the center of a sphere that is in contact with the
container or other spheres at three points on the surfaces of the container or
previously packed spheres. In other words, pits are the centers of newly packed
spheres that are in contact with the surface of already settled spheres or the
container surface at three points.

Many computerized random sphere packing experiments have been reported,
and they used various concepts and definitions of pits. For example, see Refs. 4)
and 5). pits are conducted.

If the container surface and packed sphere surfaces are completely smooth, and
if special gravitation does not operate between the container surface and the
packed spheres, it is proper to think that the next packed sphere is stabilized
at the position where it comes into contact with three points on the container
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Fig. 1 Packing of 10,000 spheres without quasi-pits.

surface and/or spheres that have been previously packed. However, with a real
container and nanoparticles, it can be considered that the packed sphere may
even be placed in a position where it touches only one point on the container
surface, as a result of the intermolecular force or coulomb force acting on the
container wall surface and particle and surface irregularities.

In the computational experiment that we undertook in this research, to re-
produce the behaviors of nanoparticles by using pits and quasi-pits, we chose
quasi-pits that were uniformly distributed in terms of density on the container
surface. The distribution density of the quasi-pits is represented by the number
ρ of quasi-pits per 4πr2, the surface area of the sphere. This is then used as a
parameter for expressing the strength with which a nanoparticle is drawn across
the inner surface of the container. With the computer experiment, we assumed
that ρ = 1. It means that there is approximately 1 quasi-pit within a circle of
radius 2r on the container surface.

If there were no quasi-pits, for example with a cubic container, packing would
begin with one of the pits around the corners of the container and the randomness
would decrease (Fig. 1). However, if we use quasi-pits, packing starts when a
random particle adheres to the container surface (Fig. 2).

Fig. 2 Packing of 10,000 spheres with quasi-pits.

3. Packing with Mono-sized Spheres

When identical spheres are randomly packed in a limited space or a container,
the packing density is unlikely to be uniform. For example, the packing density
in a region around the center of the space bounded by the container would not be
the same as the density in a region close to the surface of the container. In this
section, we discuss how to handle the difference between the packing densities
for the center and the nearby container surface.

When spheres are packed in a container, it is a reasonable assumption that
the density in a region far from the container surface (by comparison with r, the
radius of the packing spheres) is independent of the shape of the container. This
former density will be called the center part density, and is denoted by Dc. A
number of computational experiments have been performed with various shapes
and sizes of containers and different sizes of spheres, and Dc has been estimated
by Dc = 0.543 ± 0.002.

However, the packing density near the surface of the container does not coin-
cide with Dc, because of the evacuation of the packed spheres at the container
surface and because the number of spheres are tangential to the container surface.
Figure 3 shows the packing density near a container surface (blue colored area)
and Dc (pink colored rectangular area) and a histogram of distances between the
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Fig. 3 Packing density distributions obtained from computational experiments.

centers of the packed spheres and the container surface (green vertical lines). The
y axis of the histogram is normalized to the packing density, that is, the number
of spheres times the sphere volume over the container volume corresponds to the
each bin of the histogram. Here, r on the horizontal axis is the radius of the
packed spheres.

The packing density function f(x) in Fig. 3, where x is the distance from the
container surface, oscillates and converges with the center part density Dc. The
integrated value of f(x) is slightly smaller than that of Dc. We can consider the
difference 1

Dc

∫ ∞
0

(Dc − f(x))dx to be the boundary evacuation effect of the con-
tainer. In Fig. 3, the the pink colored area that represents Dc does not reach the
y-axis and the gap represents the boundary evacuation effect, so the area below
the line coincides with the area below the curve of f(x). The boundary evacua-
tion effect is in proportion to the packed sphere radius r, and the proportional
coefficient

ε =
1

rDc

∫ ∞

0

(Dc − f(x))dx (1)

is called the boundary evaluation coefficient. From a number of numerical exper-
iments, it is estimated that ε = 0.387 (±0.01), which increases with the quasi-pit
distribution density ρ but does not depend on the shape and size of the container.

When spheres of radius r are packed in a container of volume V and surface
area S, the boundary evacuation effect ranges over a region within a distance εr

from the surface of the container, whose volume is approximately εrS. And we
can consider that the remaining volume V − εrS of the container is filled with
spheres with a density Dc. Thus, we obtain the following approximate formula
for the total packing density D

D =
(V − εrS)Dc

V
= (1 − εrS/V ) Dc (2)

The surface-to-volume ratio S/V in this formula is one of the most important
parameters representing the shape and scale of an object. It takes a small value
when the object is roughly spherical and its scale is large. For example, S/V = 3

r

for a sphere of radius r, and S/V = 6
a for a cube of edge length a.

Since the approximation Eq. (2) involves only the surface-to-volume ratio S/V,
we do not have to know exact shapes to optimize the ratio of two different sizes
of spheres. As we see in Section 5, if the containers or the pores in concrete have
a non-convex shape, then S/V is large and spheres of smaller size will optimize
the density.

4. Packing with Two Sizes of Spheres

In this section, we discuss packing spheres of two different sizes in containers.
We employ a sequential rather than simultaneous packing method in that we pack
the larger spheres first and then pack the smaller spheres into the remaining space
inside the container.

Let r1 and r2 be the radii of the two sizes of spheres to be packed and r1 < r2.
Let V and S be the volume and surface area of the container, respectively. We
first pack the spheres of radius r2. From the approximating Eq. (2), we derive
the following approximate density D2 of the packed spheres of radius r2

D2 = (1 − εr2S/V )Dc. (3)
The total volume of the packed spheres is therefore approximately (V − εr2S)Dc

and the total area of the spheres is 3
r2

(V − εrS)Dc.
Next, we fill the remaining space around the already packed larger spheres

inside the container, whose volume is V − (V − εr2S)Dc and whose surface area
is S + 3

r2
(V − εr2S)Dc. By applying the formula for approximating the packing

density (2), the total volume of radius r1 is Dc(V − (V − εr2S)Dc − εr1(S +

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 4 No. 2 23–30 (Mar. 2011) c© 2011 Information Processing Society of Japan



27 Multi-sized Sphere Packing in Containers: Optimization Formula for Obtaining the Highest Density with Two Different Sized Spheres

3
r2

(V − εr2S)Dc)), and its approximate density in the container is

D1 = Dc(1 − Dc − 3εDc
r1

r2

+ (Dcr2 − (1 − 3εDc)r1)εS/V ).
(4)

Then, the total packing density D1,2 of the two sizes of sphere is approximated
by

D1,2 = Dc(2 − Dc − 3εDc
r1

r2

+ ((Dc − 1)r2 − (1 − 3εDc)r1)εS/V )
(5)

If we fix r1 and vary r2, then D1,2 takes the maximum value

D
(max)
1,2 = Dc(2 − Dc − ε(1 − 3εDc)r1

− 2ε
√

3(1 − Dc)r1S/V )
(6)

at

r
(max)
2 =

√
3Dcr1

(1 − Dc)S/V
. (7)

This is a solution for the two sizes of nanoparticle that yield the highest density
when the size of the smaller nanoparticle is given.

5. Numerical Experiments

In this section, we present experimental results for packing spheres of two
different sizes into containers of several shapes. In each experiment, the radius
r1 of the smaller spheres was fixed at r1 = 0.01 and the radius r2 of larger
spheres was varied by 0.01 < r2 < 0.3. The actual measured values of the
numerical experiments are shown by dots and the value of the approximating
formulae for the densities D1,D2 of the two sizes of sphere and the total density
D1 +D2 = D1,2 are shown by the curved lines. The vertical line shows the radius
r
(max)
2 of the larger spheres, which increases the total density at D

(max)
1,2 .

Figure 4 shows a packing experiment in cubic container with dimensions of
2×2×2, whose surface-volume ratio is 3. Figure 5 shows a packing experiment
in a spherical container with a radius of 1, whose surface-volume ratio is 3.
Note that, since these two containers have the same surface-volume ratio, their

Fig. 4 Cubic container (S/V = 3).

D1,2 = 0.7888 − 0.003423
r2

− 0.2881r2,

r1 = 0.01, r
(max)
2 = 0.109, D

(max)
1,2 = 0.726

Fig. 5 Spherical container (S/V = 3).

D1,2 = 0.7888 − 0.003423
r2

− 0.2881r2,

r1 = 0.01, r
(max)
2 = 0.109, D

(max)
1,2 = 0.726

approximating formulae coincide. Figure 6 shows a packing experiment in a
prism container with a right triangular base whose dimensions are 2 × 4 and
height 2, and whose surface-volume ratio is 3.62. Figure 7 shows a packing
experiment in a dented spherical container where the ball of radius 1 is dented at
the north and south poles with a radius of 1. Since the surface-volume ratio of 8
of the dented spherical container is much larger than that of previously reported
containers, r

(max)
2 and D

(max)
1,2 are smaller than with previous containers.
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In each experiment, the actual measured values of the densities differ from
the approximation when r2 becomes as large as one-severalth of the container
diameter, nevertheless the formula provides a good approximation. The root
mean square ErrRMS of the difference between the actual measurement and the
approximation in the entire range of r2 is 0.014, whereas ErrRMS = 0.0045 if
the r2 range is restricted to the neighborhood of r

(max)
2 , 1

2r
(max)
2 < r2 < 2r

(max)
2 .

Fig. 6 Prism container (S/V = 3.62).

D1,2 = 0.7883 − 0.003423
r2

− 0.3475r2,

r1 = 0.01, r
(max)
2 = 0.099, D

(max)
1,2 = 0.7191

Fig. 7 Dented spherical container (S/V = 8).

D1,2 = 0.7849 − 0.003423
r2

− 0.7683r2,

r1 = 0.01, r
(max)
2 = 0.068, D

(max)
1,2 = 0.6824

6. Application to EN Treatment and Summary

This section presents an application to electrokinetic nanoparticle treatment
and a summary.

Capillary pores in concrete interconnect to form a capillary pore system that
allows both water flow and ionic diffusion. Figure 8 shows the distribution of
the diameter of capillary pores in concrete 6).

A long cylinder of radius r has a surface-volume ratio S/V = 2
r , nevertheless

a capillary pore of radius r in concrete appears to have a much larger surface-
volume, because its surface is rough and uneven as shown in Fig. 9. Therefore, we
assume that the surface-volume ratio of capillary pores of radius r is 10

r . Under
this assumption, by applying the approximation formula, the packing density of
radius r1 and r2 spheres into capillary pores that are distributed as in Fig. 8 is

D1,2 = 0.791 − 4.06r1 − 0.342
r1

r2
− 5.02r2,

where the unit of length is μm. Actually, nanoparticles of radius r1 = 0.001μm
and r2 = 0.01μm are used for the electrokinetic nanoparticle treatment, and in
this actual case D1,2 = 0.703. If the radius of the smaller nanoparticles is fixed
at r1 = 0.001μm, D1,2 takes a maximum value of 0.704 when the radius of the
larger nanoparticles is r2 = 0.00826. Therefore, the pair of nanoparticles that is
actually used is close to the most suitable case.

The approximation Eqs. (2) and (5) involve only the surface-volume ratio S/V

of the container and the radii of the packing spheres, nevertheless those formulae

Fig. 8 Distribution of capillary pore diameters in concrete 6).
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Fig. 9 Photograph of pore surface in concrete 6).

give very good approximations of the packing density. To yield these formulae,
the volume of the region within distance εr is approximated by εrS. If the degree
of this approximation is increased using the mean curvature and the Gaussian
curvature of the container surface, the formulae become complicated but do not
provide appreciably better approximations.

One of the next goals is to investigate what will happen if we pack spheres of two
different sizes simultaneously, instead of packing larger spheres first and smaller
ones later. Also we want to know what will happen if we pack spheres of more
than two different sizes into containers. To our knowledge, using quasi-pits to
model forces among molecules is new. We will seek other models and simulations
to fit the behaviors of nanoparticles since many potential medical applications
have already been investigated, but nanoparticles are still too expensive to waste
on random experiments.
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