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The use of public Malware Sandbox Analysis Systems (public MSASs) which
receive online submissions of possibly malicious files or URLs from an arbi-
trary user, analyze their behavior by executing or visiting them by a testing
environment (i.e., a sandbox), and send analysis reports back to the user, has in-
creased in popularity. Consequently, anti-analysis techniques have also evolved
from known technologies like anti-virtualization and anti-debugging to the de-
tection of specific sandboxes by checking their unique characteristics such as
a product ID of their OS and a usage of certain Dynamic Link Library (DLL)
used in a particular sandbox. In this paper, we point out yet another important
characteristic of the sandboxes, namely, their IP addresses. In public MSASs,
the sandbox is often connected to the Internet in order to properly observe
malware behavior as modern malware communicate with remote hosts in the
Internet for various reasons, such as receiving command and control (C&C)
messages and files for updates. We explain and demonstrate that the IP ad-
dress of an Internet-connected sandbox can be easily disclosed by an attacker
who submits a decoy sample dedicated to this purpose. The disclosed address
can then be shared among attackers, blacklisted, and used against the analysis
system, for example, to conceal potential malicious behavior of malware. We
call the method Network-based Sandbox Detection by Decoy Injection (NSDI).
We conducted case studies with 15 representative existing public MSASs, which
were selected from 33 online malware analysis systems with careful screening
processes, and confirmed that a hidden behavior of the malware samples was
successfully concealed from all of the 15 analysis systems by NSDI. In addi-
tion, we found out the risk that a background analysis activity behind these
systems can also be revealed by NSDI if the samples are shared among the sys-
tems without careful considerations. Moreover, about three months after our
first case study it was reported that a real-world NSDI was conducted against
several public MSASs.

†1 Yokohama National University

1. Introduction

As malware, such as computer viruses, worms, bots, Trojan horses and spyware,
have become serious and critical threats that affect our lives significantly, great
efforts have been made to analyze their behavior in detail to develop effective
countermeasures.

Malware sandbox analysis is considered a promising approach for the analysis
of malware which involves the execution of an unknown program in a testing
environment, known as a sandbox, to observe and analyze its behavior. With
the growing popularity of malware sandbox analysis, there are a number of sys-
tems 1)–9) that use a public interface to accept online submissions of samples from
arbitrary users, automatically analyze them using a sandbox, and send analysis
reports back to the user. Similar systems also exist for the analysis of suspicious
web sites 1),10)–20). In this paper, we refer to such a malware analysis system with
a public interface as a public Malware Sandbox Analysis System (public MSAS ).
It was reported that a public MSAS received over 900,000 submissions of unique
samples (based on MD5 hashes) in less than two years 21), demonstrating the
popularity of public MSASs.

The sandbox for public MSASs can be either isolated or Internet-connected. As
the name suggests, the isolated sandbox is not connected to the Internet and in-
stead utilizes emulated network services thus can analyze samples safely 7),22)–25).
However, the drawback is that it cannot fully observe the communications of
samples with remote hosts in the Internet such as command and control (C&C)
and malware download servers, which can provide useful information for their
analysis. In contrast, the Internet-connected sandbox 21),26)–30) can observe such
communications although there is a risk that attacks from the executed sample
may exit the sandbox and cause harm to other hosts in the Internet.

As malware analysis technologies become known, malware authors have be-
gun to utilize anti-analysis techniques, such as anti-virtualization 31)–35) and anti-
debugging 31),32), to detect and disturb the analysis. Moreover, the recent pop-
ularity of the public MSASs has made the anti-analysis techniques evolve to
detecting particular sandboxes by checking their unique characteristics such as
the product ID of their OS and a usage of a certain Dynamic Link Library
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(DLL) 36)–38).
In this paper, we point out yet another important characteristic of the sand-

boxes, namely, their IP addresses. We explain that the IP address of an Internet-
connected sandbox can be easily disclosed by an attacker who submits a decoy
sample dedicated to this purpose. The disclosed address can then be shared
among attackers, blacklisted, and used against the analysis system, for example,
to conceal the potential malicious behavior of malware. In this paper we call
the method Network-based Sandbox Detection by Decoy Injection (NSDI). We
conducted case studies with 15 representative existing public MSASs, which were
selected from 33 online malware analysis systems with careful screening processes,
and confirmed that a hidden behavior of the malware samples was successfully
concealed from all of the 15 analysis systems by NSDI. In addition, we found out
the risk that even background analysis activities of these systems can be revealed
by NSDI if the samples are shared among them without careful considerations.

Moreover, on October 22nd, 2009, Vitaly Kamluk from Kaspersky Lab re-
ported that a real-world NSDI attack had been conducted against several public
MSASs 39). The issue date of the article was about 1.5 months after the sub-
mission of our first technical report 40) indicating the possibility of NSDI and
four days before its official publication. This paper is a comprehensive version of
the report 40) covering definitions on the model of public MSAS, its properties,
definition of NSDI, and additional case studies.

The rest of the paper is organized as follows: Section 2 explains the related
works. Section 3 describes the model of public MSASs and their properties. Sec-
tion 4 explains sandbox detection techniques including NSDI. Section 5 describes
the case study with the nine existing public MSASs for evaluating the impact of
NSDI. Section 6 discusses the mitigation of NSDI. Finally, Section 7 gives the
conclusion.

2. Related Works

In recent years, malware sandbox analysis has been studied intensively and can
be categorized into two approaches in terms of Internet connectivity: one involves
a completely isolated sandbox while the other uses a sandbox with an Internet
connection. An example of the former approach is the Norman Sandbox 7),

which emulates a network environment and does not allow any connection to the
Internet. The Norman Sandbox emulates many network services such as HTTP,
FTP, SMTP, DNS, IRC, and P2P. Other works 22)–25) take a similar approach to
provide emulated network services. The limitation of this approach is that it is
difficult to emulate the actual Internet, as malware utilize various forms of com-
munications. When they connect to a server, such as a C&C or file server, for an
update under the attacker’s control, they could use arbitrary or even customized
protocols 41),42) for data transmission and authentication which makes the service
emulation increasingly challenging. The second approach is to carefully connect
the sandbox to the actual Internet. Examples of Internet-connected sandboxes
include the CWSandbox 5),8),29) and Anubis 1),21),27) and other sandbox analysis
systems used in Refs. 26), 28), 30), 43).

With the growing popularity of malware sandbox analysis, a number of public
MSASs exist 1)–20). Although most systems accept a Windows executable, there
are several systems that support the analysis of Javascript 19), Flash files 38),
Dynamic Link Library (DLL) files 6), and Portable Document Format (PDF)
files 6),19). In addition, public MSASs exist that analyze web sites 1),10)–20).
Presently, these services are provided free of charge. A recent paper 21) provides
interesting statistics from the analyses of over 900,000 unique samples (based on
MD5 hashes) which were submitted to their public MSAS in less than two years.

As malware analysis technologies became known, malware authors have be-
gun to utilize anti-analysis techniques, such as anti-virtualization 31)–35) and anti-
debugging 31),32), to detect and disturb the analysis. These techniques focus on,
for instance, the difference in the way certain instructions are handled with the
presence of virtual machines 34), unique configurations in OS and applications
with a specific virtualization solution such as VMware 32), or the difference in
CPU instruction execution time 32),33),44). Moreover, the recent popularity of the
public MSASs has made the anti-analysis techniques evolve to detecting a spe-
cific sandbox by checking their unique characteristics such as a product ID of
their OS 21),36)–38) and a usage of a certain Dynamic Link Library (DLL) 36)–38).
We note that all above techniques are host-based detection methods in the sense
that the detection is indeed carried out in the targeted host.

There are also a number of network-based anti-analysis techniques. One of the
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techniques that has been deployed by real malware in the wild is the Internet
connectivity check. That is, some malware try to connect to certain well-known
sites, such as google.com, to see if it is connected to the Internet so that they can
detect an isolated analysis environment 24). Also, a downloader, which contains
only a piece of code that downloads its real payload from a remote server, also
can blind an isolated sandbox. In Ref. 31), a network-based virtual machine
detection method is proposed that focuses on the values of TCP time stamp of
the packets generated by a targeted remote host. In Ref. 45), a network-based
detection method is proposed in which malware launches a test attack to see if it
is in an analysis environment with the assumption that the analysis environment
will not allow the attack out.

3. Public Malware Sandbox Analysis Systems

3.1 Models
Public MSASs can be classified into two groups; one is for analyzing a submitted

file and the other is for analyzing a web site of a submitted URL. In this paper,
we call the former a public MSAS for Sample Files (public MSAS-F, for short)
and the latter a public MSAS for Web Sites (public MSAS-W, for short).

At first, we explain the model of public MSAS-F. Figures 1 and 2 depict the
models of a public MSAS-F with an isolated sandbox and that with an Internet-
connected sandbox, respectively. In both systems, the submitter is the user of
the analysis system who submits a sample file (e.g., Windows executable) to
the system. The reception is the publicly known interface of the system, which
is typically realized by a web site to accept sample submissions. The sandbox
represents the testing environment where the submitted sample is executed and
analyzed. As explained in the previous section, an isolated sandbox does not con-
nect to the real Internet and instead connects to the emulated Internet, which
consists of various dummy servers as depicted in Fig. 1. On the other hand, the
Internet-connected sandbox connects to the Internet as in Fig. 2. The outbound
traffic from an Internet-connected sandbox is checked carefully in order to miti-
gate the risks of infections outside the sandbox 28),30). The sandbox implements
various means, such as API hooking, to monitor the internal behavior of the ex-
ecuted sample. Finally, the analysis report that describes the detailed malware

Fig. 1 A model of public malware sandbox analysis system for sample files (public MSAS-F)
with an isolated sandbox.

Fig. 2 A model of public MSAS for sample files (public MSAS-F) with an internet-
connected Sandbox.
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Fig. 3 A model of public MSAS for web sites (public MSAS-W).

behavior such as API calls, file access, registry access, process creation, network
activities, is provided to the submitter via reception or other electronic means,
such as an email.

Second, we explain the model of a public MSAS-W. As depicted in Fig. 3,
the analysis of a web site works similarly as a public MSAS-F. The submitter
first submits a to-be-tested URL to the system. Then, the sandbox actually
accesses the web site to obtain the web contents for analysis. In order to analyze
a web site which refers to other web sites, the sandbox also connects to them
to obtain the referred content. Therefore, the sandbox for a public MSAS-W is
Internet-connected by nature.

3.2 Properties
We consider three important properties of public MSASs, namely, observability,

containment, and efficiency.
Observability is the property for providing sufficient information regarding the

behavior of the submitted file or web site. In general, the purpose of malware
sandbox analysis is to learn how tested malware would behave in real production

systems so that effective countermeasures can be developed to protect the pro-
duction systems. The isolated sandboxes suffer from the fact that they are not
connected to the Internet while real production systems are likely to be connected
to it. Also, the sandbox detection techniques described in this paper significantly
affect the observability of a public MSAS as some malware would not behave the
same as in production systems if they detect that they are being analyzed in
a sandbox. We note that observability of a public MSAS for its provider and
that for its submitter are usually not equal as the submitter only obtains an
analysis report of the submitted sample, which is normally a digest of all the
monitoring results obtained by the analysis system during the execution of the
sample.

Containment represents two sub-properties. One is the property for preventing
the executed sample from attacking or infecting a remote host outside the sand-
box. We term it as containment of outgoing attacks. The other is the property
for suppressing a leakage of important information of the analysis system itself
as they can be used against the system (i.e., sandbox detection). We term it as
containment of system information.

Efficiency is the property for constantly providing analysis results with suffi-
cient information in a reasonable amount of time.

There are trade-offs between these properties. For example, one extreme policy
to achieve the highest level of containment of outgoing attacks is to completely
isolate the sandbox from the outside networks, however, this strategy will greatly
reduce observability. Likewise, providing no analysis report to the submitter will
achieve the highest level of containment of system information although it will
provide no observability to the submitter. Another example of a trade-off is that
executing the same malware sample multiple times can increase the observabil-
ity as it may reveal malware’s probabilistic behavior although the efficiency is
decreased.

4. Sandbox Detection by Decoy Injection

In this section, we explain several sandbox detection methods that can be
conducted against public MSASs. The detection methods consist of two phases.
In the first phase, termed Decoy Injection (DI), the attacker submits a decoy to
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Fig. 4 Decoy injection against public MSAS-F.

the targeted public MSAS in order to disclose its system information. Then, in
the second phase, the disclosed information is utilized by the attacker to detect
the sandbox. In Section 4.1, we explain the first phase, namely, DI. In Section 4.2,
we explain host-based sandbox detection methods that have been observed in the
wild. Then, in Section 4.3, we explain a novel network-based sandbox detection
method, namely NSDI.

4.1 Decoy Injection
Since public MSASs are available to arbitrary users, even an attacker can use

them as a submitter to learn the systems. The basic idea of DI is to submit
a decoy sample that collects and discloses information of the targeted public
MSAS. Typically, unique characteristics of the sandbox such as a product ID of
its OS or the existence of certain files, registry keys, and processes can be utilized
for sandbox detection.

Figure 4 depicts the overview of DI against a public MSAS-F. In order to
disclose the system information from a public MSAS-F, the attacker simply sub-
mits a decoy sample to the targeted system. The decoy sample is eventually
executed in the system and discloses the system information it has collected.
It should be noted that there are two possible channels over which the system

information can be disclosed. The first channel is communication between an
Internet-connected sandbox and remote hosts. Namely, the decoy sample can
simply send the collected information over the network to a designated remote
host under the attacker’s control, called a colluding server, outside the sandbox.
Obviously, this channel does not exist in a public MSAS using an isolated sand-
box. The second channel is the analysis report. Namely, the attacker submits
a decoy sample that “embeds” the obtained system information into the analysis
report. For example, a decoy sample can encode a Windows’ product ID and
use it as the name of a file it creates. Since the name of the files created by the
sample is likely to be mentioned in the analysis report, the attacker can obtain
the product ID via the report. This channel exists even in a public MSAS using
an isolated sandbox.

Figure 5 depicts an overview of DI against a public MSAS-W. First, the
attacker prepares a web server, called a colluding web server. The colluding web
server contains an attack script that exploits a vulnerability of the web browser
used by the sandbox in order to get a decoy sample downloaded and executed
in the sandbox. Then, the attacker submits a decoy URL, which is indeed the
URL of the colluding web server, to the target public MSAS-W. The sandbox
of the system eventually accesses the colluding web server to obtain the web
contents. Since the web contents contain the exploit, the sample is downloaded
and executed in the sandbox. The executed decoy sample then works the same
as in the case for a public MSAS-F.

4.2 Host-based Sandbox Detection
As the second phase, the attacker utilizes the disclosed system information

to detect a sandbox. Recently, it has been reported that some malware started
enhancing a mechanism to detect a sandbox of specific public MSASs 36)–38). One
of the detection methods is to get a snapshot of the loaded modules to see if it
contains a certain module used only in a specific public MSAS. Another method
is to get a product ID of the Windows OS by checking the registry key “HKLM�
Software�Microsoft�Windows�CurrentVersion.” Since these sandbox detection
methods are carried out by the sample in the sandbox itself, we call them host-
based sandbox detection.
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Fig. 5 Decoy injection against public MSAS-W.

4.3 Network-based Sandbox Detection by Decoy Injection
In this subsection, we explain NSDI. That is, we show that the IP address of

an Internet-connected sandbox can also be leveraged by an attacker to detect the
sandbox with cooperation between the decoy sample and the colluding server.

Figure 6 depicts the first phase of NSDI for obtaining the IP address of the
sandbox. We first explain NSDI against a public MSAS-F. At the beginning,
the attacker creates a decoy sample that connects to the colluding server upon
its execution. When connecting to the colluding server, the sample uses a hidden
identifier in order for the attacker to distinguish its connection from other traffic
at the colluding server side. The identifier can be in any form as long as it is
recognizable by the attacker at the colluding server. For example, the identifier
can be hidden in a typical malware communication, such as a file request or
connection to an IRC channel (e.g., a file name in HTTP GET request, nick

Fig. 6 First Phase of Network-based Sandbox Detection by Decoy Injection.

name or channel name of IRC). After preparing the decoy sample, the attacker
submits it to the targeted public MSAS. Eventually, the sample is executed in
the sandbox and connects to the colluding server with the hidden identifier. As
the submitted sample is the only possibility that would connect to the server
using the identifier, the attacker can learn the IP address of the sandbox.

In the second phase of NSDI, the attacker leverages the disclosed IP address.
A typical scenario, depicted in Fig. 7, is that the attacker who maintains a bot-
net with a C&C server uses the disclosed IP address to distinguish a bot being
analyzed in the sandbox from those really infected a production system.

Next, we explain NSDI against a public MSAS-W. The attacker first generates
a decoy URL. The decoy URL consists of the domain name of the colluding web
server and a name of the requested file as an identifier. For example, if the domain
name of the colluding web server is “col.com” and the identifier is “abc001”, then
the decoy URL becomes “http://col.com/abc001.html.” After generating a decoy
URL, the attacker submits it to the target public MSAS-W. The sandbox in the
system then accesses the colluding web server and requests the file abc001.html.
The attacker knows that the sandbox is the only possibility of connecting the
server using the identifier and therefore considers the IP address used for the
connection as that of the sandbox. Note that NSDI for a public MSAS-W is
simpler for an attacker to conduct than the regular DI explained in Fig. 5 since
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Fig. 7 Second Phase of Network-based Sandbox Detection by Decoy Injection.

the only system information necessary for the detection is the IP address of the
sandbox. Therefore, the attacker does not have to prepare any attack script on
his colluding web server nor have the decoy sample downloaded and executed at
the sandbox, unlike the case explained in Fig. 5.

After learning the IP address of the sandbox, the attacker can distinguish the
sandbox trying to examine his malicious web site from real victims. For example,
he could selectively send benign web contents back to the sandbox while providing
malicious contents to other regular clients.

5. Case Studies

In this section, we describe our case studies to evaluate the impact of NSDI
on 15 existing public MSAS, consisting of eight public MSAS-F and seven public
MSAS-W. An important observation regarding NSDI is that the longer the
targeted public MSAS uses the same IP address for its sandbox, the more effective
the detection becomes. The summary of our findings is as follows: (1) NSDI was
successful against all 15 public MSASs, 11 of which appeared to have utilized an
Internet-connected sandbox with nearly unchanged IP addresses and the other
four utilized an isolated sandbox, and (2) Background activities of the MSASs,
such as automated surveillance of the remote servers and forwarding of samples
from one system to another, were made visible by NSDI.

5.1 Preparation
5.1.1 Selecting Target public MSASs
In order to decide the target public MSASs for our case studies, we first searched

for online malware analysis systems in the WWW as well as a series of aca-
demic literatures to find the candidates. We tried to cover as many sectors as
possible from academic institutes and universities, security vendors, non-profit
research groups to individual researchers. Also, we tried to cover as many coun-
tries/regions as possible for the location of the providers of the target systems.
We found 33 online malware analysis systems as a result of our search. Since it
relates to the vulnerability of real systems in operation, we will not disclose their
actual names in this paper. Then, we performed a screening with the following
three conditions to decide the target systems for our case studies:
1. A target system should describe itself as a sandbox analysis system (or at

least its analysis report implies a utilization of sandbox/dynamic analysis
method that involves actual execution of samples).

2. A target system should provide a detailed analysis report that is specific
enough for us to check the effectiveness of NSDI.

3. A target system should be operated stably so that an analysis report can
be obtained from each decoy submission for fair evaluation.

We have set the first condition since there are a number of online malware analysis
systems that do not actually execute the submitted sample but instead statically
scan it (e.g., using signature-based pattern matching and other heuristic-based
detection). Also, there are many website-check systems that do not actually ac-
cess the to-be-tested website but instead use blacklist and accumulated database
for deciding its maliciousness (i.e., web reputation). These systems are clearly
not public MSAS by definition and not in our scope.

We have set the second condition because some online analysis systems do not
provide a detailed analysis report but only their final decision as to whether the
submitted file/URL is malicious or not. However, in order to strictly confirm the
effectiveness of NSDI, we needed to look at the detailed analysis report to check
whether the hidden behavior (or the hidden web page HTMLM) was successfully
concealed by NSDI. Therefore, we included only systems that provide a detailed
analysis report as the targets of our experiments.
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Finally, we set the third condition because some online analysis systems were
not operated stably at the time of our case studies. We were occasionally not
able to submit a sample to these unstable systems because of system failure
(e.g., reception web server was down, etc.) or obtained no analysis reports from
them. In order to avoid inconsistency in the experimental results, we omitted
such unstable systems from our evaluations.

As the results of the screening of the 33 existing online malware analysis sys-
tems, 15 systems, consisting of eight public MSAS-F and seven public MSAS-W,
were determined to satisfy all three conditions and selected as the target sys-
tems. The target systems include most well-known public MSASs and are also
rich in diversity, provided by academic institutes and universities, security ven-
dors, or even individual security researchers in 9 different countries. Please see
the appendix for the concrete result of our screening of the 33 systems.

5.1.2 Decoy Samples and Colluding Server for Evaluation of public
MSAS-F

For evaluating the eight public MSAS-F, we first prepared a decoy sample that
behaved as follows:
1. It attempts to connect to the colluding server. If the domain name of the

server is not resolved or there is no reply from the colluding server, the
sample simply halts.

2. When connected to the colluding server, it issues an HTTP GET request.
The name of the requested file represents the unique identifier of the sample.
It halts if a TCP session is not established after a certain period of time.

3. If it receives the requested file from the server, the sample checks whether
the file contains a keyword ASCII string.

4. If a keyword string is found in the file, the sample proceeds with its hidden
behavior. Namely, it creates a file on the infected system and tries to
connect to another server. If a keyword string is not found, the sample
halts.

There are two main features of the decoy sample:
• Connecting to the colluding server with a unique identifier to disclose the IP

address of the sandbox, and
• Showing its hidden behavior by the trigger from the colluding server (i.e.,

receiving a file with a keyword string).
Next, we prepared a colluding server which maintains two types of lists. The

first is a blacklist of the IP addresses used by the sandboxes of the targeted
analysis systems, while the second is a list of valid identifiers, which includes the
names of files that the decoy samples would request when executed. The server
works as follows:
1. It waits for an incoming TCP connection request from a client.
2. If an HTTP GET request arrives from a client, the server checks whether

the name of the requested file is in the list of valid identifiers.
3. If the identifier is valid, the server includes the IP address of the client into

a blacklist. It also sends a file with the keyword string back to the client if
configured to do so.

There are two main features of the colluding server:
• Verifying an incoming HTTP GET request to confirm they are from the decoy

samples and updating the blacklist, and
• Triggering hidden behavior of the decoy samples by sending a file with a key-

word string. The trigger can be switched on or off as desired.
Figure 8 depicts how the decoy sample and colluding server work together.

After being submitted to the target public MSAS-F, the decoy sample is executed
in the sandbox and sends an HTTP GET request with its associated identifier to
the colluding server. The colluding server then examines whether each incoming
HTTP GET request is from the submitted decoy sample or not by checking the
identifier. If the identifier is valid, it considers that the request is indeed from
the submitted sample and includes the IP address of this client to the blacklist.
After the address is blacklisted, the server has a choice of whether or not to send
a file with a keyword string back to the decoy sample. This file works as a trigger
for the decoy sample to proceed with its hidden behavior. We intend to test if
malware behavior can be controlled at the attackers’ will by checking whether
the hidden behavior is reported by the targeted MSAS in its analysis report.

5.1.3 Decoy URLs and Colluding Web Server for Evaluation of
public MSAS-W

We prepared a colluding web server and a set of decoy URLs for the evaluation
of the seven public MSAS-W. The decoy URLs were generated as described
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Fig. 8 Flow chart of the process by decoy sample and colluding server for case study.

in Section 4.3. The colluding web server maintains two types of lists as in the
evaluation of public MSAS-F. The first is a blacklist of the IP addresses used by
the sandboxes of the targeted analysis systems, while the second is a list of valid
identifiers, which includes the names of files that are used in the decoy URLs.
The server contains two HTML files: HTMLM and HTMLB that redirect to two
different sites: SiteM and SiteB. We assumed that SiteM is malicious and SiteB

benign and then test if the attacker can indeed hide the “malicious” redirection
by selectively sending HTMLB back to the targeted public MSAS-W. Note that it
was good enough for us to check which redirected site was visited by the sandbox
for this evaluation and therefore we did not have to make SiteM really malicious.
The server works as follows:
1. It waits for an incoming TCP connection request from a client.
2. If an HTTP GET request arrives from a client, the server checks whether

the name of the requested file is in the list of valid identifiers.
3. If the identifier is valid, the server includes the IP address of the client into

the blacklist and sends either one of the two HTML files back to the client.
There are two main features of the colluding web server:
• Verifying an incoming HTTP GET request to confirm they are from the

sandbox and updating the blacklist, and
• Selectively sending back either one of the HTML files to confirm that the

“malicious” redirection can be hidden from the targeted public MSAS-W.
5.2 Procedures
The actual case studies were carried out in two different time periods.
The first case study was performed during a one-week period in July, 2009 with

nine target public MSASs. We refer to the i-th system as System i for i = 1, 2, .., 9.
Note that Systems 1 to 7 are public MSAS-F and Systems 8 and 9 are public
MSAS-W. Five decoy samples/URLs per day per system were submitted to the
nine target systems. All submitted samples/URLs contained a distinct identifier.
We prepared a colluding server to which all the submitted decoy samples could
be connected. We configured the colluding server to send a trigger to the sample
to proceed with its hidden behavior only if the IP address appeared for the first
time in the experimental period. Likewise, we prepared a colluding web server for
all decoy URLs. Then, we configured the colluding web server to send HTMLM

only if the IP address appeared for the first time in the experimental period.
In September, 2010, in order to increase the coverage of our case study, we

performed the second case study with six other public MSASs in the same manner
as the first case study. Note that these six systems were completely different
from the previously evaluated nine systems, Systems 1 to 9. We refer to them as
System 10, System 11, to System 15. Note that System 10 is a public MSAS-F
and Systems 11, 12, 13, 14, 15 are public MSAS-W. The second case study was
done during a one-week period in September, 2010.

5.3 Results
Summary The results of the case studies are summarized in Table 1. In short,
NSDI was successful against all evaluated public MSASs. Note that we consider
that NSDI against a public MSAS-F was successful only if the hidden behavior
of all submitted decoy samples was indeed successfully hidden from the system.
In other words, no hidden behavior was reported in the analysis report except
when the trigger was intentionally sent. Likewise, we considered that NSDI

Journal of Information Processing Vol. 19 153–168 (Mar. 2011) c© 2011 Information Processing Society of Japan



162 Your Sandbox is Blinded: Impact of Decoy Injection to Public Malware Analysis Systems

Table 1 Summary of Experiments.

against a public MSAS-W was successful only if all hidden redirection to SiteM

was indeed successfully hidden from the system. In other words, the redirection
to SiteM was never reported in the analysis report except when we intentionally
reveal it.
Systems with Fixed IP Address We observed HTTP GET requests at our
colluding server immediately after each decoy submission to 11 target systems,
Systems 1, 3, 5, 7, 8, 9, 11, 12, 13, 14, and 15. Thus, we consider that they utilize
an Internet-connected sandbox. Among them, 6 systems, namely Systems 1, 7,
9, 11, 13, and 15, used a single IP address respectively for the entire experimental
period of one week. It implies that these systems are extremely vulnerable to
NSDI since an attacker could have detected their sandboxes for one week by
submitting just a single decoy. System 3 is slightly better than the other systems
as it actually changed the IP address of its sandbox during the experiment.
However, an attacker could still have easily followed the change of the IP address
by submitting a few decoys per week. Consequently, the analysis reports obtained
from these systems during the experiment never revealed the hidden behavior of
the submitted decoy.

Systems with Fixed IP Address Range Systems 5, 8, 12, and 14 used more
IP addresses than the others. However, these addresses belonged to certain fixed
subnets such as /24 and /29. We can reasonably assume that the systems had
assigned these IP address ranges for their sandboxes. In fact, some of the subnets
were assigned to the organizations of the system owners and anyone could have
confirmed that with public database such as whois. An attacker would have
needed to submit a few decoys to figure out that the target systems utilize such
an address block. However, once the address block is known to the attacker, it
can be blacklisted and the attacker can detect the sandbox with very low risk of
falsely blacklisting the real infected machines.
Systems utilizing Isolated Sandbox There were no connection attempts to
our colluding servers using identifiers for the four target systems, Systems 2, 4,
6, and 10. We consider these systems utilize an isolated sandbox. As expected,
these systems never revealed the hidden behavior of the submitted decoys since
the decoys never received a trigger from our colluding servers. These systems are
incompetent against NSDI and other network-based sandbox detection 24),25).

We now explain our additional findings. We observed a number of interesting
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Table 2 Revealed Background Activities of Evaluated Public MSASs.

background activities of the evaluated systems, which are summarized in
Table 2.
Automated Background Surveillance from System 3 Approximately 1.5
hours after each submission of a decoy sample to System 3, we observed an HTTP
GET request using the same identifier (Case 1). The format of the HTTP GET
requests differed from that of the decoy samples. Thus, we consider that these
requests did not originate from the executed samples but were generated by
a type of automated background surveillance tool deployed by the system. The
IP address used by this possible surveillance was fixed, which implies a high risk
of detection by the attacker.
Automated Background Surveillance from System 2 We observed two
patterns of automated accesses using identifiers for System 2. Concerning the
first pattern, following each submission of a decoy sample to System 2, we ob-
served an HTTP GET request using the same identifier (Case 2). The format
of the requests differed from that of the decoy samples. Therefore, we consider
that these requests were generated by an automated surveillance tool. As only
a single IP address was used for this surveillance, it could have also been detected
by an attacker. In the second pattern of automated access, we observed contin-
uous HTTP GET requests after every submission of a decoy sample (Case 3)
to System 2. Nearly every 1.5 hours, we received an HTTP GET request that
appeared to be issued by WGET 46), a tool for file acquisition. These requests
continued for three days after each submission. Again, only one IP address was
used for this possible surveillance.
Possible Manual/Automated Surveillance from System 5 We observed

several, distinct HTTP GET requests using identifiers for System 5 (Case 4)
which may represent manual/automated surveillance by the system. Three dif-
ferent IP addresses were used for these access attempts.
Sample Passed from One System to Another In Case 5, we observed an
HTTP GET request using an identifier for System 5. However, the IP address
used for this access was the address of System 7 which indicates that the sample
submitted to System 5 was somehow input into System 7. Likewise, in Case 6,
we observed HTTP GET requests using an identifier for System 5 but with the
IP addresses used in Cases 2 and 3. This indicates that samples submitted
to System 5 were somehow submitted to System 2 and then eventually to the
surveillance system of System 2.
Probing from Other Attackers In addition to the cases described above, we
observed a few attempts to connect to colluding servers without the use of an
identifier. However, it is unclear whether these access attempts were initiated
from the analysis systems or unrelated attacker, such as an in-the-wild malware
trying to locate a server to infect.

An overview of the background activities of the seven public MSAS-F is sum-
marized in Fig. 9. From the figure, it can be seen that System 5 is working
as a dispatcher of samples to other public MSAS-F. Also, several systems were
deploying background surveillance tools in order to continuously monitor the re-
mote servers. In particular, System 2 itself utilizes an isolated sandbox that does
not connect to the Internet, while it utilizes two background surveillance tools
that monitor the colluding server.
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Fig. 9 Revealed background activities of evaluated public MSAS-F.

6. Discussion

In our case study, it was revealed that NSDI can be effectively conducted
against existing public MSASs. In this section, we discuss several issues in favor
of the mitigation of NSDI.

6.1 Using Time-Shared IP Addresses with Production Systems
It is obvious that the longer a public MSAS uses the same IP address for its

sandbox, the more effective NSDI becomes. Therefore, the IP address of the
sandbox should be frequently changed. However, since the operation cost of
NSDI is so low, it is assumable that an attacker conducts it frequently enough to
disclose and blacklist all used IP addresses. For preventing such a straightforward
blacklisting by the attacker, we can deploy a time-sharing of IP addresses with
real production systems. If an attacker mistakenly blacklists an IP address of
a production system that is infected by malware, he will lose an opportunity to
control the production system. As depicted in Fig. 7, the attacker’s interest is
effectively blocking only the sandbox while properly controlling the real infected
systems. Therefore, time-sharing of the IP addresses with production systems
will decrease the effectiveness of NSDI. The more production systems we time-
share the addresses with, the more ineffective NSDI becomes.

A possible realization of the above idea is leveraging a dynamic IP address

Fig. 10 Number of distinct IP addresses assigned to single subscriber of FTTH line from
major Japanese ISP versus number of PPPoE sessions.

assignment by a commercial Internet Service Provider (ISP). Since many com-
mercial ISPs hold a large number of IP addresses to be shared among the ser-
vice subscribers, we can leverage this property for public MSASs. Figure 10
shows the number of distinct IP addresses assigned to a single subscriber of
a Fiber-to-the-Home (FTTH) line provided by a major Japanese ISP versus the
number of PPPoE (Point-to-Point Protocol over Ethernet) sessions initiated by
the subscriber. The figure shows that the ISP assigned a new IP address for
approximately every two PPPoE sessions.

However, there are drawbacks in the usage of the ISP-provided addresses. First
of all, ISPs may also filter specific traffic and we can not control how the filtering
is done and therefore the analysis results may not be as reliable. Moreover, ISPs
might ban the analysis service. However, since many victims of malware indeed
use a commercial ISP, it is worth considering setting up an analysis system with
the same network environment as the victims.

6.2 Using Anonymity Networks and/or Proxies
Another possibility for mitigating NSDI is the usage of anonymity networks

like The Onion Router (TOR) 47). TOR relays a multi-layered encrypted mes-
sage among its Onion Routers for sender/receiver anonymity. Sender anonymity
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allows a client to hide its identity from the server. Namely, by using TOR,
a sandbox can connect to the colluding server without revealing its IP address.
While this seems to be a perfect solution for NSDI, we need to consider care-
fully from the viewpoint of attackers. Although TOR reasonably provides sender
anonymity, there are several techniques for the receiver to determine if the sender
is using TOR 48),49). If a normal malware victim hardly uses TOR, the very usage
of TOR can raise an attacker’s suspicion. A similar discussion applies in the case
of an anonymous proxy 50).

6.3 Service Provider’s Awareness
Our case study demonstrated that even background analysis activities behind

public MSASs can be revealed by NSDI. Also, we have seen several decoy samples
passed from one system to another. This implies the risk in information sharing
among the malware analysis community. A public MSAS has been a useful tool
for the community to collect malware samples efficiently. However, we should all
be aware that there is always the possibility that the submitted sample is a decoy
and can disclose important information of our analysis system and our coopera-
tor’s system with whom we share the samples. This applies to any other online
services that accept malware samples for analysis purpose such as virustotal 51)

and offensivecomputing 52).
6.4 User’s Awareness
Users of public MSASs should also be aware of anti-analysis techniques includ-

ing NSDI and recall the fact that the behavior in the analysis report is what
has been observed in a particular sandbox and does not always represent how
the sample would behave in a real production system. Being aware of the fact
and its limitation, public MSASs can still be a useful tool that instantly provides
various information about the submitted samples.

7. Conclusion

We considered the possibility of a novel anti-analysis technique, called NSDI,
which may be conducted against public MSASs. We conducted case studies with
15 representative existing public MSASs, which were selected from 33 online
malware analysis systems with careful screening processes, and confirmed that
a hidden behavior of the malware samples was successfully concealed from all of

the 15 analysis systems by NSDI. The case study also showed the risk that even
a background analysis activity can be revealed by the method. Our future works
include the discussion on an effective mitigation of NSDI.
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Appendix

Table 3 Screening result of 33 candidate online malware analysis systems. Systems 1 to 15 were selected as target systems for
our case studies and Systems 16 to 33 were not selected because of the reason described in each column.
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