
IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011)

Regular Paper

User-level Enforcement of Appropriate

Background Process Execution

Yoshihisa Abe,†1,†2 Hiroshi Yamada†1

and Kenji Kono†1

Idle resources can be exploited not only to run important local tasks such as
data backup and virus checking, but also to make contributions to society by
participating in distributed computing projects. When executing background
processes to utilize such valuable idle resources, we need to control them ex-
plicitly to avoid foreground performance degradation. Otherwise, the user will
be discouraged from exploiting idle resources. In this paper, we show that we
can detect resource contention between foreground and background processes
and properly control background process execution at the user level, without
modifications to the underlying operating system or user applications. We in-
fer resource contention from changes in the approximated resource shares of
background processes. In deriving those resource shares, our approach takes
advantage of dynamically enabled probes. Also, it takes account of different re-
source types and can handle multiple background processes with varied resource
needs. Our experiments show that our system keeps the increase in foreground
execution time due to background processes below 16.9% – often much lower
in most of our experiments.

1. Introduction

There has been increasing attention to idle resource utilization, which exploits
underutilized resources in the system in order to perform valuable tasks. One
popular way of utilizing idle resources is to join open computing projects such
as SETI@home 3) and Folding@home 17). They primarily use computer resources
contributed by users on a voluntary basis in order to perform scientific compu-
tations. Such distributed computing projects turn idle resource utilization into
a new way of social contribution by increasing active resource use. In addition,

†1 Keio University
†2 Carnegie Mellon University

This paper is an improved version of the authors’ previous work 1).

there exists more traditional, local ways of idle resource utilization for improving
performance, robustness, security, and other aspects of the system. Examples
include database reorganization and disk layout reconfiguration for improving
performance, data backup and replication for robustness, and virus checking and
software updating for security.

Although idle resource use provides an opportunity to perform numerous valu-
able tasks, it does not come for free. General-purpose schedulers used by com-
mon operating systems do not sufficiently prevent the interference of background
processes with foreground processes. Background processes for idle resource uti-
lization should consume only otherwise wasted resources and should be assigned
as little computing capacity as possible that could be allocated to foreground
processes. Otherwise, users would not choose to make use of idle resources given
the adverse impact on their foreground processes. General-purpose schedulers
lack the concept of background processes for idle resource utilization, and conse-
quently they can considerably degrade the performance of foreground processes.
Therefore, an explicit mechanism is needed that provides appropriate control
over background process execution.

Furthermore, the growing value of idle resource use introduces a new chal-
lenge for such a mechanism. As mentioned earlier, projects such as SETI@home
and Folding@home rely mainly on computer resources contributed by volunteers.
This fact demands that a mechanism for background process control be easily
deployable; if it required significant modifications to existing systems, it would
not attract users and fail to encourage them to participate in those distributed
computing projects. Also, users need an easily deployable mechanism to execute
background processes for protecting their computers from various troubles. For
example, they should be able to run programs such as those for data backup and
virus checking readily using idle resources.

Our goal is to develop a mechanism for exploiting idle resources in the system
that effectively prevents the throughput degradation of foreground processes and
yet does not require any significant modification to the user’s existing environ-
ment. In this paper, we argue that we can reasonably infer the interference of
background processes with foreground processes at the user level, and properly
control the execution of those background processes without modifying either

94 c© 2011 Information Processing Society of Japan



95 User-level Enforcement of Appropriate Background Process Execution

the operating system kernel or user applications. Our proposed approach takes
advantage of dynamically enabled probes, and takes into account different types
of resources, such as CPUs, disks, and network interfaces, in combination to
judge whether to suspend background processes. Also, it can handle multiple
background processes with varied resource needs.

One limitation of our approach is that it focuses on minimizing foreground
throughput degradation when exploiting idle resources for background process
execution; it does not try to prevent the increase in foreground response time.
Our mechanism aims to allow improving the overall system throughput by execut-
ing beneficial background activities in an unobtrusive manner. Since aggressive
resource utilization conflicts with good response time preservation, we do not
consider the latter in this work.

The remainder of this paper is organized as follows. In Section 2, we describe
the background and related work, along with our motivations. Next, we explain
our approach in Section 3, and practical issues in employing the approach in
Section 4. Section 5 briefly summarizes our implementation and describes the
execution control of background processes. Section 6 presents our experimental
results. Finally, we discuss essential aspects of our approach in Section 7 and
conclude in Section 8.

2. Background and Related Work

In this section, we briefly describe why we need to explicitly control the execu-
tion of background processes to preserve the throughput of foreground processes.
We then explain previous approaches to idle resource utilization, and restate our
motivation examining these related works against our objectives.

2.1 Insufficiency of General-purpose Schedulers
Most common operating systems use general-purpose schedulers, such as

priority-based ones, to prioritize processes. However, such general-purpose sched-
ulers lack the concept of background processes for idle resource utilization and
fail to control their execution properly. The primary reason is that most general-
purpose schedulers take only CPU usage into account, and do not consider other
resources in combination. They thus do not appropriately handle cases in which
foreground and background processes compete for other resources, such as disks

and network interfaces. Even worse, processes usually have a greater impact on
each other when they contend for these types of resources.

In addition, modern process schedulers can exhibit behavior that is intended to
achieve general fairness among processes but is undesirable in terms of controlling
background processes for idle resource utilization. For instance, priority-based
schedulers often change the priorities of processes dynamically for reasons such
as avoiding the starvation of low-priority processes. As a result, the operating
system does not always execute foreground processes with initial high priorities,
and may instead choose to run background processes with dynamically raised
priorities. On some operating systems, such as Solaris 10, processes with the
maximum nice value are basically scheduled only when no other processes are
runnable. Strict prioritization of CPU-intensive processes is thus possible on
these systems. However, there exist cases in which CPU-intensive processes with
dynamically lowered priorities experience performance degradation, as we will
show in Section 6.

For these reasons, background processes for idle resource utilization cannot
be appropriately handled by general-purpose schedulers. There is a need for an
explicit mechanism that prioritizes foreground processes under any circumstances
and allows background processes to be executed only when there exists no active
foreground processes.

2.2 Related Work
Different approaches to exploiting idle resources were proposed previously. Idle-

time scheduling 11) is a kernel-level approach to explicitly prioritizing foreground
requests over background ones. It introduces preemption intervals, during which
no background requests are served even if no foreground requests exist and, as a
result, resources remain idle. A preemption interval amortizes the cost of back-
ground request preemption over a series of foreground requests arriving one af-
ter another within the interval, preventing foreground throughput degradation.
Idletime scheduling can be applied to disk and network scheduling with small
amounts of modification to the operating system.

Freeblock scheduling 20),21) processes background requests to a disk in a way
that has virtually no performance impact on foreground requests. It determines
the positioning time between two successive foreground requests, and schedules

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



96 User-level Enforcement of Appropriate Background Process Execution

and outstanding background request if and only if it can be served during that
positioning time. Using detailed information about the underlying disk, freeblock
scheduling can significantly improve disk bandwidth utilization.

TCP Nice 24) and TCP-LP 16) provide protocol-level mechanisms for back-
ground network data transmission. TCP Nice infers potential network conges-
tion from round-trip packet delays. It reacts to congestion more sensitively and
rapidly than TCP Vegas 6) by multiplicatively decreasing the congestion window
size when more than a certain fraction of packets sent within a round-trip time
frame signifies congestion. Similarly, TCP-LP uses one-way packet delays of a
connection to detect early signs of congestion. When it first observes a packet
delay indicating congestion, it halves the congestion window and starts a timer.
If it catches another sign of congestion before the timer expires it sets the window
to one, thereby minimizing interference with other connections.

MS Manners 8) is a user-level approach to controlling the execution of low-
importance processes. It decides whether to allow the execution of a low-
importance process based on its progress rate. When the progress rate decreases,
it assumes that the progress of high-importance processes also slows down. In
such a situation, therefore, MS Manners suspends the process of low importance
to prevent performance degradation of the more important processes. It uses a
statistical method to properly judge if the progress rate of the low-importance
process has slowed down.

Open computing projects, such as SETI@home 3), Folding@home 17), and others
using the BOINC infrastructure 2) employ a screen saver approach. They start
computations after a certain period of time has passed since the last user input.
This approach is simple and does not require significant modifications to the
underlying operating system or user applications. Also, the user can specify
the fraction of resource capacity these projects can receive through preference
settings.

Golding, et al. 14) propose a general framework for utilizing idle resources. Their
framework consists of three components: predictor, skeptic, and actuator. A
predictor outputs pairs of the start time and duration of predicted idle periods.
A skeptic takes predictions made by one or more predictors, and improves the
accuracy of idle period estimations by eliminating false estimations based on

certain criteria. Finally, the actuator controls the execution of background tasks
according to these idle period estimations. Golding et al. examine a wide variety
of idle time start and duration predictors and skeptics. Although they evaluate
the framework by simulation, it would be possible to implement it at the user
level with the use of dynamically enabled probes, of which our approach takes
advantage.

Idle resource utilization has also been explored at the level of clusters of com-
puters. Condor 19) improves the overall utilization of workstations by placing
tasks on idle workstations in a network. When the user returns to a workstation
that is executing remote jobs, Condor transfers these jobs to other idle worksta-
tions in order to dedicate the workstation to the user. The Stealth Distributed
Scheduler 15) preserves the performance of a workstation executing remote jobs
that its owner receives by explicitly prioritizing system resources. It implements
prioritized virtual memory and file system cache in order to avoid the interfer-
ence of remotely executed jobs with the workstation owner’s local jobs, while
exploiting whatever resources not used by these local jobs.

2.3 Motivation
The approaches described above are limited in some ways and are not user-

friendly enough to encourage active idle resource utilization. Such limitations
can be grouped into four categories.

The first category, significant modification of the user’s existing environment,
poses a primary challenge we address in this paper. Generally, a mechanism at
a low level has access to precise information about the system, and thus can
manage resources in a fine-grained manner. For example, Freeblock scheduling
achieves its best performance when it is implemented inside disk firmware, rather
than at the user level. Idletime scheduling, TCP Nice, TCP-LP, and Stealth are
also low level approaches implemented inside the operating system. Although
these approaches achieve high efficiency, the fact that they need modifications to
the underlying system may discourage users from active idle resource utilization.

Next, some of the approaches do not consider actual usage of resources in
a way that is sufficiently fine-grained. The screen saver approach used by open
computing projects relies on the assumption that resources are idle when the user
is away from the machine, which is often untrue. Also, although the user can

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



97 User-level Enforcement of Appropriate Background Process Execution

specify the amounts of resource capacity BOINC projects receive, this approach
cannot flexibly deal with workload changes. Furthermore, usually it is not obvious
to the user how much capacity these projects should be assigned in order to
maximize idle resource use while avoiding the degradation of foreground activity
performance. Condor performs preemptive transfers of remote jobs and prevents
them from staying at a workstation used by its owner; thus, it would not allow
them to consume unused resources in a fine-grained fashion.

Third, works such as Freeblock scheduling, TCP Nice, and TCP-LP target
particular resource types. They control the usage of specific resources with spe-
cialized mechanisms that are not applicable to other kinds of resources. For a
background process for idle resource utilization to execute without frustrating
the user, however, we need to consider different resources in combination. For
example, a background process may perform intensive computation in one phase
and write the results to a disk in another phase. Analyzing either CPU or disk
contention alone is not enough to sufficiently detect the adverse impact of such
a process on foreground processes.

Finally, an effective approach to idle resource utilization needs to handle varied
foreground and background workloads. MS Manners observes the progress rates
of processes rather than directly considering resource usage. As a result, it has
limitations such as requiring to know the base progress rates of low-importance
processes in advance and allowing the execution of only one low-importance pro-
cess at a time. These limitations prevent MS Manners from dealing flexibly with
diverse workloads. Also, although the framework proposed by Golding et al.
could incorporate other idle period predictors, they suggest resource idleness be
detected using heuristics such as the arrival rate of disk I/O requests and the
time that has passed since the last I/O request. The efficacy of these heuristics
depends on the workload and configuration being considered. Consequently, ap-
propriate metrics for predicting idle periods need to be determined by means of
some off-line procedure, or have to be replaced or modified on-line based on some
learning process, which is likely to limit the ability to adapt to workload changes
flexibly.

In order to encourage users to exploit their underutilized resources, we need to
address those four issues described above. Our motivation is to provide a mecha-

nism for efficiently controlling background processes that (1) is easily deployable,
(2) reflects actual resource usage, (3) is applicable to more than one resource
type, and (4) manages varied background workloads effectively.

3. Approach

To address the issues described in the preceding section, we propose a user-
level approach to controlling background process execution. Specifically, it aims
at providing a system-wide solution that manages background processes specified
by the user. Driven and guided by our system design objectives, we estimate at
the user level the usage of resources using indicative system information, and de-
termine whether to suspend background activities based on the derived resource
usage and a conservative assumption.

Two of our objectives – demanding no significant modification to the user’s
environment and reflecting actual resource usage in a fairly fine-grained manner
– led us to speculate on the resource usage of processes at the user level. At
the user level, it is difficult to obtain the precise knowledge of resource usage.
We instead estimate resource usage by using certain statistical information that
is readily available from outside the operating system (e.g., the number of disk
blocks read by a process). In obtaining such system information, we take ad-
vantage of dynamically enabled probes 7),22),23). Previous works 4),5),12) suggest
the benefits of exposing a certain level of operating system information to the
user level. Dynamic instrumentation of operating systems with probes is an
active area of research, and one of the most widely accepted ways of enabling
such exposition. It allows numerous kinds of system information to be detected
on the fly from running operating systems, while having a negligible impact on
system performance when turned off. Exploiting those probes, which are becom-
ing commonly available on modern operating systems 9),10),18), leads to a more
general approach to our objectives than those proposed in the past that involve
modifications at the operating system level.

The other two goals, accounting for different types of resources and dealing
with varied workloads, resulted in our method of inferring resource contention by
using approximated resource shares of background processes. To judge whether
to suspend background processes under different circumstances, we need a gen-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



98 User-level Enforcement of Appropriate Background Process Execution

eral criterion based on resource usage for determining that they interfere with
foreground activities. Our approach is to use the resource shares of background
processes that are derived from the statistical information mentioned above. If a
background resource share is low, we decide that contention for the correspond-
ing resource exists between foreground and background processes. (For brevity,
we refer to resource contention between foreground and background processes
as “resource contention” or just “contention” throughout this paper.) We then
suspend the background activities, expecting that the foreground processes will
consume the resource capacity reclaimed from them. In other words, we con-
servatively assume that those background processes have “stolen” resources from
foreground processes and caused foreground throughput degradation. To judge if
an approximated background resource share is low enough to suspend background
activities, we use a threshold over the share.

The basic approach described above poses practical questions such as (1) what
statistics we can use to derive approximated resource usage, (2) what processes
we should or should not consider to obtain meaningful resource usage, (3) if we
can always rely solely on relative resource usage of foreground and background
processes, and (4) how we can decide appropriate thresholds over the background
resource shares. We will explore these issues in the next section.

4. Practical Issues

In this section, we review fundamental issues that must be addressed for our
approach to work in practical situations. Discussions in this section are based
on our experience of employing the approach on Solaris 10. We, however, expect
that they are general enough to be applicable to other common platforms.

4.1 Resources and Corresponding Statistics
We need to obtain system information indicative of resource usage at the user

level, where available information is limited compared to the inside of the oper-
ating system. In addition, we have to keep the information to analyze simple as
we need to process it frequently in order to rapidly respond to system workload
changes. In this work, we take into account three types of resources: CPUs,
disks, and network interfaces. To estimate the usage of these resource types, we
use the following statistics.

• CPUs: cumulative time for which processes are scheduled on them.
• Disks: the number of blocks read or written synchronously by processes.
• Network interfaces: the number of times processes call write() or send() with

associated descriptors.
Those statistics do not represent the exact resource usage of their corresponding

resource types. However, as confirmed by the effectiveness of our system shown
in our experimental results, they adequately reflect resource usage and serve as
useful information on which our decision on background process execution can be
based. We could use more detailed system information that represents resource
usage more precisely than the simple statistics above, but such information usu-
ally results in larger overheads caused by the required probes. Therefore, we
use fairly simple statistics to represent resource usage sufficiently for our purpose
while still causing a small overhead.

Also, note that we do not consider asynchronous disk I/O and inbound network
traffic. Asynchronous disk requests cannot be associated completely with the pro-
cesses that have issued them. Considering them would thus lead to complicated
and incorrect background disk share estimations. As for inbound network traffic,
we do not know if suspending background traffic truly improves foreground per-
formance. If background traffic does not go through the bottleneck of foreground
traffic, suspending it would only decrease the total inbound throughput without
improving foreground throughput. For these reasons, we exclude asynchronous
disk I/O and inbound network traffic from consideration.

For each resource type, we obtain the approximated resource share of back-
ground processes by calculating the proportion of the statistical values associated
with them to the system total. This calculation is represented as:

BGShare =
BG

SystemTotal
(1)

BGShare is the background resource share, BG the statistics value of the back-
ground processes, and SystemTotal the statistics value of all processes in the
system. BGShare approximates the fraction of the resource capacity allocated
to the background processes.

4.2 Ignoring Certain Processes
Some types of processes obscure the direct relationship between the resource

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



99 User-level Enforcement of Appropriate Background Process Execution

shares of the user’s foreground and background activities. These are the ones that
persistently exist in the system and consume resources but do not specifically
represent the user’s foreground work. If we include their statistics in the system
totals when calculating BGShare, they will consistently make its value lower. To
consider their effect on BGShare, let us rewrite Eq. (1) as follows:

BGShare =
BG

FG + BG + SystemServices
(2)

FG and SystemServices are the statistics values of foreground processes and of
those processes that are neither foreground nor background, respectively. System-
Services in the equation makes smaller and less clear the difference in background
resource shares due to the existence of resource contention. Consequently, it will
be less easy to detect resource contention.

A primary example of those processes categorized as SystemServices is the
swapper process (which is the scheduler process sched on Solaris 10). When a
CPU is not busy, a large part of its cycles is assigned to the swapper, in which
case it often does not perform any beneficial task for the system. Other examples
include the X server and those processes related to dynamically enabled probes.
If an X server is present on the system, it runs while consuming a fraction of
the system resources, whether or not the user’s foreground or background pro-
cesses are executed. Processes related to probes exist while system information
regarding both foreground and background activities is collected. They thus do
not directly represent the user’s activities. We intentionally ignore the statistics
related to these kinds of processes to better estimate the existence of resource
contention.

4.3 Handling CPU Contention
CPUs have different factors to consider, compared to those of disks and net-

work interfaces, at both single- and multiple-instance levels. We employ two
improvements to our basic approach in order to address such aspects and handle
CPU contention effectively.

4.3.1 Considering CPU Idleness
For each resource instance, our approach to inferring resource contention con-

siders the direct relationship between foreground and background resource con-
sumption. It assumes that suspending background processes when their relative

resource usage is low will let foreground processes consume more resource capac-
ity than currently allocated. For disks and network interfaces, this expectation
is justifiable because background requests to these resources can have significant
impacts on concurrent foreground requests. However, CPUs differ from these
peripheral devices; given a particular portion of the CPU capacity assigned to a
background process, we need to know if the allocated resource is all the process
needs or is a result of contention with other processes. A background process with
a low CPU share should be suspended when it really competes with foreground
processes. Otherwise, it should be allowed to run.

To judge if a background process with a low CPU share should really be sus-
pended, we use the approximated CPU share of the swapper process as an indi-
cation of CPU idleness. When BGShare of a CPU is low, we additionally check if
the swapper share is lower than a threshold. If it is, we conclude that background
activity suspension will let foreground processes be assigned more CPU capacity;
otherwise, we allow background process execution.

We have found that considering CPU idleness does improve our approach, and
also that the performance of our method is relatively insensitive to the exact
value of the threshold over the swapper share. Based on this observation, we
currently set the threshold to 25% as it has been shown to work well.

4.3.2 Handling Multiprocessors
When considering multiple instances of the same resource type, CPUs differ

from disks and network interfaces in that processes can basically use any of them.
For disks and network interfaces, processes need to send a request to a specific
device that holds data being accessed or that is connected to an appropriate
network. Thus, we can analyze BGShare per device and suspend only those
background processes that compete for the same devices used by foreground
processes. Although this basic approach can still be used for multiprocessors, we
need to address certain behavior of the underlying scheduler to guarantee strict
process prioritization. Figure 1 illustrates this behavior by showing foreground
and background processes in a multiprocessor environment. The left case of the
figure shows a simple situation with resource contention. In this case, we need to
suspend BG1 to guarantee that FG1 receives as much CPU capacity as possible.
This decision can be made in a straightforward manner by observing BGShare

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



100 User-level Enforcement of Appropriate Background Process Execution

Fig. 1 CPU contention in a multiprocessor environment. “FG” and “BG” indicate foreground
and background processes, respectively, followed by a number for process identification.
Numbers in parentheses distinguish threads of multi-threaded processes. For simplicity
and clarity, only active user processes are depicted in the figure and other insignificant
processes are omitted.

of each CPU.
The right case in Fig. 1 shows an example situation in which the basic approach

alone is not sufficient. In this case, the underlying scheduler prioritizes foreground
process FG1 over background process BG1 by assigning more CPUs to the former
than to the latter. When the scheduler behaves in this manner, we cannot solely
rely on BGShare to infer contention, because BG1’s share of CPU4 does not
decrease due to the existence of FG1. Still, FG1’s performance is affected because
its four threads are run only on three CPUs. We therefore need to regard such
a case as an instance of resource contention caused by background processes. To
address this problem, we conservatively suspend background processes when all
CPUs are actively utilized, because they might be interfering with the foreground
processes’ performance. In other words, only when at least one CPU remains idle
can we conclude that foreground processes have not been forced into running on
a limited set of CPUs and allow background processes to run.

4.4 Detecting Resource Contention
This section describes how we determine the threshold over BGShare of each

resource type, which we use to infer the contention of the corresponding resource.
The data shown in this section were collected on our test machines, each with a
2.4 GHz Pentium 4 processor, 512 MB of memory, and a 40 GB 7200 RPM disk.

For network measurements, a pair of these machines were connected directly
through gigabit Ethernet interfaces.

4.4.1 Methodology
We took an empirical approach to finding an appropriate range of thresholds

over BGShare of each resource type. We used two programs to obtain actual sta-
tistical information in cases with and without resource contention. One program
is for obtaining disk statistics, and the other is for network statistics. The disk
program touches the first byte of contiguous 8 KB regions of a 2 GB file. The net-
work program sends data through a TCP connection to a destination node, which
just discards the received data. It uses TCP because protocols that establish log-
ical circuits are usually preferable for network applications used for background
execution. Depending on given parameters, these two programs spend part of
their CPU time simply consuming it in loops, so that they approximately use a
specified percentage of the maximum available bandwidth of their corresponding
resources. We refer to this percentage as the “resource intensity” of the programs.

To obtain the disk statistics under varied workloads, we ran our disk access
program changing its resource intensity. For the case with resource contention,
we ran one foreground process with a default priority and one or more back-
ground processes with the maximum nice value. These background processes
made the foreground process run longer as they sent requests to the same disk,
which confirms the existence of resource contention. We fixed the number of fore-
ground processes to 1 because when more of them exist, BGShare is usually lower
and thus it is easier to judge resource contention. For the case without resource
contention, we ran only background processes. The resource intensity of both
foreground and background processes was varied from 12.5% to 100% in incre-
ments of 12.5%. To obtain the network statistics, we did the same measurements
using our TCP program.

We applied different thresholds over the obtained statistics in order to examine
how accurately these thresholds infer the existence of resource contention. We
define the accuracy of a set of thresholds (each over a different resource type)
as the product of two figures. One is the fraction of the statistics samples for
which we can correctly judge that contention exists based on the set of thresholds.
The other is the fraction of the samples for which we can correctly decide that

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



101 User-level Enforcement of Appropriate Background Process Execution

Disk: 1 BG process Disk: 2 BG processes Disk: 4 BG processes

TCP: 1 BG process TCP: 2 BG processes TCP: 4 BG processes

Fig. 2 Accuracy of different thresholds. The top row shows the accuracy of detecting competing processes of our disk access
program for different CPU and disk thresholds. Similarly, the bottom row shows the accuracy of detecting competing
processes of our TCP program for different CPU and network thresholds. The interval used for aggregating statistics is
1.25 seconds.

contention does not exist. For example, if a certain set of thresholds correctly
detects resource contention 80% of the time and correctly concludes the non-
exisitence of contention 90% of the time from those samples, its accuracy is 0.72.
The intuition behind this definition is the geometric mean of the two numbers
squared to make differences easier to observe.

4.4.2 Determining Thresholds
Figure 2 shows the accuracy of different thresholds for varied number of back-

ground processes, with dark regions representing low accuracy and light regions

high accuracy. For clarity, we show the results of detecting disk and network
contention separately. The effect of varied thresholds over the background CPU
share is shown for both of the disk and network cases. The figure indicates that
wide ranges of thresholds result in very high accuracy. For disk contention, the
threshold over the background disk share primarily affects the accuracy, and the
threshold over the CPU share has minor effects when the disk threshold is low.
For network contention, the CPU threshold has some impact on the accuracy.
Specifically, the graphs show that CPU thresholds close to 100% react to fluctua-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



102 User-level Enforcement of Appropriate Background Process Execution

tions in BGShare too sensitively, resulting in lower accuracies. Overall, the large
regions of high accuracy indicate that the effectiveness of our approach is fairly
insensitive to the exact values of the thresholds, as long as they exist within these
regions.

Within the ranges of thresholds with the best accuracy, we selected higher val-
ues in order to prevent foreground performance degradation strictly. The thresh-
olds chosen roughly fall into a range between 80% and 90% for CPUs, and are
just below 100% for disks and network interfaces. We selected thresholds using
combinations of up to 6 different background processes to perform our sample
statistics analysis. For larger number of background processes, we simply chose
the same thresholds we used for 6 background processes since the appropriate
threshold values based on our analysis were fairly stable.

Note that we regard BGShare being zero as an indication of no resource con-
tention. Strictly speaking, when BGShare is zero, it may be because background
processes do not need the corresponding resource, or because contention has
prevented them from consuming the resource. However, in the latter case, back-
ground processes have not taken away any resource capacity from foreground
processes. Thus, keeping these background processes executed is a sound ap-
proach. Always assuming the existence of contention given zero BGShare, on the
other hand, would not work because it unnecessarily prevents the execution of
background processes that do not need the corresponding resource. Also, this
issue of time periods with no background resource allocation under contention is
further addressed by appropriate statistics aggregation, as described below.

The data shown in Fig. 2 were obtained using the sample statistics aggregated
for 1.25 seconds. This interval for aggregating statistical information, as well as
the thresholds, affects the accuracy of detecting resource contention. Figure 3
shows the accuracy of detecting contention with the best set of thresholds for
varied aggregation intervals. Basically, a short interval is preferred because it
allows rapid reaction to workload changes. However, if the interval is too short,
fluctuations in BGShare are caught too sensitively. In particular, a BGShare of
zero can be observed frequently under resource contention, due to the underlying
scheduler prioritizing foreground processes over background ones. The aggrega-
tion interval must be long enough to absorb such fluctuations and appropriately

Fig. 3 Interval for aggregating system statistics. The figure shows the accuracy of inferring
resource contention for different lengths of statistics aggregation intervals and number
of background processes. The x-axis indicates the length of the interval, and the y-
axis shows the accuracy of inferring resource contention. Accuracy reported in the
figure is the product of the accuracy of detecting disk contention and that of network
contention.

judge whether to allow background execution. Figure 3 shows that the interval
length of 1.25 seconds is long enough to achieve very high accuracies, regardless
of the number of background processes. We selected the interval length based on
this observation.

5. System Details

In this section, we first describe our implementation. Next, we explain how our
system controls the execution of background processes upon detecting resource
contention.

5.1 Implementation
We implemented a daemon on Solaris 10 that observes and controls background

processes using the approach described in previous sections, as illustrated in
Fig. 4. The user executes an application as background work for idle resource
utilization by passing the command as arguments to our client program. The
client first notifies the daemon of its process ID, sets its own nice value to the
maximum defined by the system, and then replaces its own process image with
that of the specified application. The daemon controls the execution of back-
ground processes by sending signals.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



103 User-level Enforcement of Appropriate Background Process Execution

Fig. 4 System implementation. The figure shows the structure of our system. Our client
program (not shown in the figure) replaces its process image with that of the specified
background application after notifying the daemon of its process ID.

We used DTrace 7) in order to obtain the statistics indicative of resource usage.
The number of disk blocks a process reads or writes synchronously is obtained
with io:::wait-done probe. The time during which a process is scheduled on a
CPU is obtained by reading and saving timestamp values �1 inside sched:::on-cpu
and sched:::off-cpu probes. Finally, the number of times a process calls write() or
send() is counted using syscall::write:entry and syscall::send:entry probes. These
statistics are sent to the daemon periodically with associated information such as
process IDs and file descriptors. The daemon processes these statistics to obtain
the background resource shares.

5.2 Background Process Execution
Our system suspends background processes when BGShare of any of the three

resource types falls below the corresponding threshold, indicating the existence
of contention for the resource. When the background processes are suspended,
the system needs to determine when those processes can be resumed. We de-
veloped two algorithms for this purpose, the Exponentially Increasing Interval
(EII) algorithm, which borrows ideas from MS Manners 8), and the Idle Period
Detection (IPD) algorithm.

�1 We used the timestamp variable for the simplicity and ease of implementation. Alternatively
we could have used the vtimestamp variable, which provides the virtual CPU time while
excluding system overheads and thus could be more appropriate.

5.2.1 The Exponentially Increasing Interval Algorithm
The first algorithm we implemented, called the EII algorithm, repeatedly ex-

ecutes background processes for a short period in order to find out if resuming
them causes resource contention with foreground processes. The top part of
Fig. 5 illustrates how the algorithm works. Once background processes have
been suspended, the EII algorithm first re-runs them after a small amount of
time. It keeps them executed temporarily until enough statistics are collected
to judge the existence of resource contention. Then, if the background processes
are still contending with foreground activities, the algorithm suspends them for
an interval twice as long as the previous one. In this way, the suspension interval
grows exponentially until it reaches a pre-defined maximum length, as long as re-
source contention exists. When resource contention disappears, the background
processes are allowed to run continuously and the suspension interval is reset to
the initial length.

The initial short suspension interval seeks to react rapidly to the incorrect de-
tection of contention due to fluctuations in BGShare. By checking it again shortly
after the first suspension of background processes, the algorithm tries to mini-
mize periods of unnecessary suspension. The exponential growth of the interval,
on the other hand, aims to reduce the interference with foreground activities. It
rapidly results in a long suspension interval, soon making background processes
executed infrequently.

Because the EII algorithm actually executes background processes in order to
check their contention with foreground activities, the daemon can precisely know
whether it is appropriate to resume those background processes. Another ad-
vantage of this algorithm is that the daemon does not need to analyze statistics
reported by probes when the background processes are suspended. A disadvan-
tage of the algorithm, on the other hand, is that there exists some time after
active foreground work completes during which resources are not efficiently uti-
lized. Only when the current suspension interval has elapsed can background
processes be resumed, and thus most resources remain idle until that time.

Our current implementation sets the initial length of background process sus-
pension to 1 second, and the maximum suspension length to 16 seconds.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



104 User-level Enforcement of Appropriate Background Process Execution

Fig. 5 Background execution control. The figure shows how background process execution is
controlled by the EII and IPD algorithms. “AI” stands for the aggregation interval of
system statistics. Notice the difference between the two algorithms when the daemon
is actively analyzing system statistics, and when and how long the resource is idle.

5.2.2 The Idle Period Detection Algorithm
Our second algorithm, called the IPD algorithm, analyzes the statistics of pro-

cesses other than background processes, instead of actually executing them, to
determine when to resume background process execution. The bottom part of
Fig. 5 depicts how this algorithm works. During background process suspension,

the algorithm seeks a point at which no foreground processes actively consume
resources, so that background processes can be executed.

The algorithm uses certain conditions to detect idleness of each resource type.
For CPUs, we obtain the approximated CPU share of the swapper process. A
high swapper share implies that only a fraction of the CPU capacity is used
for foreground processes, and thus background activities may be restarted. We
performed a 30-minute trace of CPU statistics in a situation where no active
foreground processes exist and only system services are running. During this
trace, the approximated swapper share never fell below 62% with the interval for
aggregating statistics set to 1 second. We used this value as the threshold to infer
CPU idleness. For disks and network interfaces, we simply observe whether any
requests to these resources existed during the last statistics aggregation interval.
If the swapper resource share is not lower than the threshold and both disks and
network interfaces stay idle, the algorithm concludes that background processes
can be resumed.

The primary advantage of the IPD algorithm is that it continuously observes
system statistics and resumes background processes as soon as it judges resources
are idle. With this algorithm, background processes do not suffer unnecessary
suspension as in the case of the EII algorithm. On the other hand, a disadvantage
of the algorithm is that the daemon always needs to analyze reported statistics
as long as background processes exist, whether or not they are suspended. Also,
the algorithm is conservative in that it allows resuming background activities
only when no requests to disks and network interfaces exist in the system. In
practice, this conservative approach works well because our target environments
are those in which resources are underutilized and are serving no requests.

5.2.3 Comparison of the Two Algorithms
The EII and IPD algorithms differ from each other in two main aspects: when

they observe system statistics and when they execute background processes. This
section describes what workloads the two algorithms are expected to handle well,
as a result of these differences.

The EII algorithm is intended to perform well when CPUs in the system are
busy or fairly loaded, and disk or network contention is not significant. While the
IPD algorithm keeps analyzing system statistics throughout the lifetime of back-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



105 User-level Enforcement of Appropriate Background Process Execution

Table 1 Results of TCP microbenchmarks with a 100% resource intensity. The table shows
the increase in foreground execution time for different number of background pro-
cesses and different background execution control.

EII IPD Low Prio.
1 BG Process 8.5% 0.9% 87.6%

2 BG Processes 11.0% 0.8% 188.3%
4 BG Processes 13.2% 0.8% 388.8%

ground processes, the EII algorithm does not, resulting in lighter CPU resource
requirements. However, it needs to execute those background processes when
they may compete with foreground processes. The impact of this background
process execution on foreground throughput is far less when resource contention
is primarily for CPUs than when it is mainly for disks or networks. We present
examples where the EII algorithm performs better than the IPD algorithm in
our case study with SETI@home, which is shown in Section 6.2.1.

The IPD algorithm, on the other hand, generally works well when foreground
and background processes compete severely for disk or network resources. In
such a situation, consistent CPU consumption by the algorithm matters little
since disk or network performance accounts largely for foreground throughput.
Background process execution by the EII algorithm in this case causes disk or
network contention, often resulting in a non-negligible impact on the throughput.
A good example of this case is our microbenchmarks with intensive network
resource consumption, which is explained with Table 1 in Section 6.1.2.

6. Experiments

We performed experiments to examine the effectiveness of our approach. The
experiments described in this section were conducted on the same test machines
mentioned in Section 4.4, except for multiprocessor microbenchmarks presented
in Section 6.1.3. These measurements were performed on a machine with two
2.33 GHz Dual-Core Intel Xeon processors, with 2 GB of memory and a 250 GB
7200 RPM disk.

6.1 Microbenchmarks
We ran disk and TCP microbenchmarks to show that our daemon appropri-

ately handles different workloads. We used the same programs as the ones for

obtaining the sample disk and network statistics, and varied their resource in-
tensity; we selected 100%, 50%, and 12.5%. For different number of background
processes, we tried all possible combinations of their resource intensity. The
number of foreground processes was fixed to 1, and its resource intensity was
also varied. In addition, we ran simple multiprocessor microbenchmarks to show
that the enhancement to our basic approach described in Section 4.3.2 guarantees
appropriate CPU allocation in multiprocessor environments.

6.1.1 Disk Microbenchmarks
The top row of Fig. 6 shows the results of our disk microbenchmarks. The top

left graph indicates that our system effectively preserves good foreground per-
formance. With the EII algorithm, it keeps the increase in foreground execution
time in a range between 6.4% and 12.5%. Because the algorithm executes ex-
isting background processes from time to time, foreground performance declines
slightly as their number increases. The IPD algorithm outperforms the EII algo-
rithm consistently, sustaining increases of about 1% in foreground execution time
across the different number of background processes. Without our system’s ex-
plicit control over the background processes, foreground performance is severely
degraded due to excessive disk seek induced by the multiple running processes.

The top right graph in Fig. 6 shows that our system even improves background
execution time. Because it suspends the background processes explicitly while
the foreground process exists, their execution time is in general expected to be
made longer by our system. However, our system reduces the number of processes
running simultaneously, and thus the number of files accessed by these processes,
resulting in less disk seek time in total. Comparison of our two algorithms shows
that the EII algorithm results in better background execution time as the number
of background processes increases. With the IPD algorithm, more disk requests
by the background processes remain to be issued when the foreground process
completes, and they induce a longer period of inefficient disk seek during which
the underlying scheduler keeps switching among the remaining processes. The
normalized execution time of 1, 2, or 4 background processes would ideally be 2.0,
3.0, or 5.0, respectively; the foreground process would execute exclusively and
then the background processes run concurrently, finishing roughly at the same
time. The difference from those numbers in the cases with 2 and 4 background

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



106 User-level Enforcement of Appropriate Background Process Execution

FG execution time BG execution time

(1) Disk microbenchmarks

FG execution time BG execution time

(2) TCP microbenchmarks

Fig. 6 Results of our disk and TCP microbenchmarks. The figure shows normalized execu-
tion times of our disk and TCP microbenchmarks for different number of background
processes. The graphs in the top row are disk results and those in the bottom row
are TCP results. Bars labeled “Alone” and “Low Prio.” indicate the execution time
of processes when they are executed alone and when background processes are simply
executed with the maximum nice value without explicit control, respectively. In cases
with multiple background processes, their average execution time is reported.

processes is due to disk contention.
6.1.2 TCP Microbenchmarks
The results of our TCP microbenchmarks are shown in the bottom row of

Fig. 6. Compared to disk access, packet transmission requires much less service
time. Thus, the interference of the background processes with the foreground

process is avoided relatively well by the underlying scheduler, especially when
the resource intensity of processes is 50% or 12.5%. As a result, when seen as the
average over all of the measurement results as reported in the figure, the benefit
of our system in our TCP microbenchmarks is less dramatic than in our disk
microbenchmarks. Still, our system reduces the increase in foreground execution
time by over 10% when the number of background processes is 1, and by over 45%
when their number is 4. At a closer look, the EII algorithm keeps the increase
between 3.9% and 5.7%, and the IPD algorithm between 5.8% and 6.1%. Also,
because of the relatively light effect of contention, the background execution time
with 1, 2, or 4 background processes approximately follows the expected value
of 2.0, 3.0, or 5.0, respectively. Note that in some cases the actual execution
time is shorter than the expected value, because concurrent execution in these
cases leads to efficient utilization of resources with multiple processes available
for exploiting them.

When TCP microbenchmark processes send packets intensively, their mutual
interference is far greater than the averaged results shown in Fig. 6. Table 1 shows
a subset of the TCP microbenchmark results where the resource intensity of all
processes is 100%. Without our system, the foreground process incurs significant
increases in its execution time. Our system, in this case, provides remarkable
performance improvements.

6.1.3 Multiprocessor Microbenchmarks
In order to show that the improvement technique described in Section 4.3.2

handles multiprocessor allocation appropriately, we implemented and tested a
prototype that uses an improved version of the IPD algorithm. As described in
that section, the enhanced algorithm basically analyzes BGShare per CPU, and
suspends those background processes that are consuming a contended CPU. It
guarantees that at least one CPU is idle when background processes are executed.
Also, it judges if there exists idle CPUs and, if so, launches a set of background
processes whose total number of active threads does not exceed the number of
available CPUs. The algorithm resumes all outstanding background processes
if no CPUs are actively used by foreground processes. The prototype uses an
interval of 0.25 seconds for aggregating system statistics. Since the aim is to
show the capability to handle simple multiprocessor cases with CPU-intensive

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



107 User-level Enforcement of Appropriate Background Process Execution

(1) One idle CPU (2) No idle CPU (3) Low-priority BG processes

Fig. 7 Results of multiprocessor microbenchmarks. The figure shows execution time of foreground and background processes in
a multiprocessor environment for three different cases: (1) the system ensures at least one CPU is idle while executing
background processes, (2) the system considers each CPU independently without keeping a CPU idle during background
process execution, and (3) background processes are executed simply with low priorities. The top and bottom rows show
foreground and background performance, respectively. In each graph, the x-axis indicates the number of active foreground
threads and the y-axis shows normalized execution time of processes.

processes, this short interval suffices for our purposes.
In this experiment, we used a simple benchmark program whose threads con-

sume a certain amount of CPU time in loops. We ran this program in three
different cases: (1) the system ensures at least one CPU is idle while executing
background processes, (2) the system considers each CPU independently without
keeping a CPU idle during background process execution, and (3) background
processes are executed simply with low priorities. In each case, we executed
one foreground and one background processes, varying the number of threads
they launch, and measured their execution time. The foreground process started
execution 10 seconds after the start of the background process.

The results are summarized in Fig. 7. The leftmost column of the figure shows
that our prototype strictly prioritizes the foreground process and preserves fore-

ground performance in all cases. When the total number of foreground and
background threads equals or exceeds 4, it suspends the background process and
therefore its execution time stays close to 2.0. The middle column shows the
case in which our prototype considers each CPU separately and does not guar-
antee that one or more CPUs are idle when executing the background process.
The results indicate that when the number of foreground threads is 3 or 4, the
underlying scheduler can choose to prioritize the foreground threads by using
more CPUs for them than for the background threads. As a result, foreground
execution time grows and the corresponding background execution time drops.
(Notice when the number of foreground threads is 3, background execution time
can be below 2.0 despite all the CPUs being utilized, slightly affecting foreground
execution time.) Note that the scheduler’s CPU allocation pattern varied across

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



108 User-level Enforcement of Appropriate Background Process Execution

the measurements. Even with the same number of foreground and background
threads, the scheduler may decide to differentiate the number of CPUs assigned
to foreground and background threads or to allocate a fraction of each CPU’s ca-
pacity to background threads. Finally, the rightmost column of the figure shows
the case in which the background process is executed without control by our
prototype. The performance of the foreground process in this case is still worse
than the case of the middle column. Foreground execution time is remarkably
increased when the number of foreground threads is 4.

6.2 Case Studies
To examine the effectiveness of our system in practical situations, we conducted

experiments with three kinds of background applications: scientific computing,
disk error checking, and network file transfer.

6.2.1 Scientific Computing
In our first case study, we executed SETI@home as a background activity and

measured the execution time of different foreground programs. As the foreground
processes, we ran fftw-wisdom 13), make, and pcregrep. fftw-wisdom is a CPU-
intensive program that generates information regarding optimal computation of
the Fourier transform. We used make to perform compilation of Apache 2.2.2
and pcregrep, a variant of grep, to search for a certain word under a direc-
tory containing Linux 2.6.16 source code. The file system containing the Apache
and Linux source code was remounted before each measurement to clear cached
data. Also, because the priority of a CPU-intensive process can change consid-
erably on Solaris 10, we rebooted the test machine before each measurement of
fftw-wisdom’s execution time in order to obtain results in a steady condition.
We report only the results of foreground performance for this case study, as we
were not able to measure the execution time of a reproducible computation using
SETI@home.

As shown in Fig. 8, a CPU-intensive process with a low priority like
SETI@home is kept from interfering with other processes strictly on Solaris 10.
Still, when the foreground process is fftw-wisdom, which is also CPU-intensive,
its execution time is increased by over 12%. We attribute this increase to the fact
that the priority of fftw-wisdom kept decreasing during its execution and became
lower than other processes, approaching that of SETI@home. This phenomenon

Fig. 8 Results of background SETI@home measurements. The figure shows foreground ex-
ecution time of fftw-wisdom, make, and pcregrep running with SETI@home in the
background.

indicates that the performance of a CPU-intensive process can be affected con-
siderably by other low-priority processes even if it is initially assigned a default
priority. On the other hand, both of our algorithms preserve good performance
of fftw-wisdom by suspending SETI@home, and hardly induce any increase on
its execution time.

When the foreground process is make or pcregrep, the underlying scheduler
preserves fairly good foreground execution time. Because make, including its
child processes, and pcregrep issue disk requests, their priorities tend to stay
high and thus their execution time incurs only a small increase even without
our system. In addition, make requires our system to process more information
reported by probes, such as the creation and completion of processes, than the
other two foreground programs. Our system thus does not improve the fore-
ground performance. Still, the increases in foreground execution time with our
two algorithms differ from the increase in the low-priority case, which is 3.1%,
by only 1.2% or less. In the pcregrep case, our system slightly improves the
foreground execution time of the low-priority case, lowering the increase from
6.3% to 2.4% and to 3.7% using the EII and IPD algorithms, respectively.

6.2.2 Disk Error Checking
Our second study is disk error checking with fsck. We executed fsck as a

background process, and the same foreground processes we used for the case
study with SETI@home. The files accessed by the foreground processes and

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



109 User-level Enforcement of Appropriate Background Process Execution

FG execution time Increase in BG execution time

Fig. 9 Results of background fsck measurements. The figure shows foreground execution time
of fftw-wisdom, make, and pcregrep running with fsck in the background, and the
corresponding increases in fsck’s execution time.

disk slices checked by fsck reside on the same disk, resulting in contention when
accessed simultaneously.

The results of the measurements are shown Fig. 9. The left graph in the figure
shows the execution time of the three foreground programs, and the right graph
shows the increases in fsck’s execution time normalized by the execution time of
the foreground processes. Notice that we report the increases in the right graph,
not the execution time itself, as the execution time of the foreground processes
is not directly comparable to that of fsck.

When the foreground process is fftw-wisdom or make, the impact of resource
contention is fairly small and so is foreground performance degradation. Still,
fftw-wisdom incurs a 14.6% increase in its execution time without background
execution control. The EII and IPD algorithms reduce the increase to 7.1% and
11.9%, respectively. As in our SETI@home case study, we observed dynamic
decreases in the priority of fftw-wisdom resulting in fluctuations in its execu-
tion time. These fluctuations caused increases in the average execution time
reported in Fig. 9. When the foreground process is make, the original increase in
its execution time is 6.1% and our two algorithms improve it slightly.

Unlike fftw-wisdom and make, pcregrep competes significantly for disk access
with fsck, suffering severe performance degradation. Without our background
execution control, fsck causes the execution time of pcregrep to be almost 6

times longer than its original execution time. Our system significantly improves
foreground execution time for this combination of foreground and background
processes, and reduces the increase in execution time to 13.5% with the EII
algorithm and to 3.3% with the IPD algorithm.

The right graph in Fig. 9 indicates that our system keeps the suspension time
of background processes close to the foreground execution time. When the fore-
ground process is fftw-wisdom or make, in which case resource contention is
moderate, the increase in background execution time is slightly smaller with the
EII algorithm than with the IPD algorithm. The EII algorithm executes back-
ground fsck from time to time, and thus it makes small progress. This progress
outweighs the benefit of using the IPD algorithm, which avoids periods of ex-
cess background process suspension present with the EII algorithm. In the low-
priority cases, the scheduler does not strictly suspend background fsck, and the
normalized increases in its execution time are less than 1.0. Note that in these
cases, total resource utilization is more efficient than in the EII and IPD cases;
the background process completes earlier while foreground performance degra-
dation is insignificant because of the moderate level of contention. Our system
conservatively suspends background process execution, eliminating the possibil-
ity of sacrificing foreground performance. Therefore, in such cases low-priority
execution of background processes may yield higher efficiency of resource use.
When the foreground process is pcregrep, the IPD algorithm results in slightly
more efficient execution of fsck than the EII algorithm since the foreground and
background processes suffer significant resource contention when executed simul-
taneously. Without explicit background execution control, this contention leads
to a large increase in fsck’s execution time, as well as pcregrep’s execution time.

6.2.3 Network File Transfer
Our third case study examines the effectiveness of our system in controlling

background network data transmission. As foreground and background processes,
we executed scp that copied the same Linux 2.6.16 source directory on a source
node to different locations on a destination node. Because both foreground and
background processes access the same files on the source node, most of the time
only the first process accessing the files reads them from the disk and the other
processes read cached data. Thus, there exists little disk contention at the source

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



110 User-level Enforcement of Appropriate Background Process Execution

FG execution time BG execution time

Fig. 10 Results of scp measurements. The figure shows normalized execution time of fore-
ground and background scp for different number of background scp processes.

node. In addition, the source directory was accessed before measurements were
performed so that part of the data resided in the cache on the source node.

Figure 10 summarizes the results. When background scp processes are exe-
cuted simply with low priorities, without external control, they cause significant
degradation of foreground scp throughput. This degradation deteriorates as the
number of background processes increases. With 4 background scp’s, foreground
execution time grows to as much as 489%. Even with only 1 background scp, the
execution time rises to 148%. Also, the fact that the foreground execution time
in these cases is similar to the corresponding background execution time empha-
sizes the ineffective prioritization of processes by the underlying scheduler. There
is a good chance that these overheads discourage users from actively performing
background data backup or replication over a network.

With the EII algorithm, the increases in foreground scp’s execution time are
kept between 6.9% and 16.9%. As observed in other experiments, the foreground
execution time grows moderately as the number of background processes in-
creases. With the IPD algorithm, foreground scp incurs less interference of the
background processes and the increases in its execution time are kept between
5.3% and 6.7%. Without explicit control of background processes, their execu-
tion time grows as their number increases, along with the foreground execution
time. When there are 4 of them, the average execution time exceeds that of the

EII and IPD cases. Compared to the other two cases, there are more processes in
the low-priority case that compete simultaneously for network data transmission
on the source node and for disk I/O on the destination node.

7. Discussion

In this section, we discuss essential issues about our approach. We first describe
how our system affects the response time of foreground processes. We then
examine the necessity of adjusting thresholds for detecting resource contention
for different system environments, and discuss the impact of using our system on
the progress of background network activity.

7.1 Response Time of Foreground Processes
As mentioned in Section 1, our approach focuses on improving overall sys-

tem throughput without foreground throughput degradation, and does not ad-
dress the response time of foreground processes. As a result, the response time
is affected if background processes are running at the time when foreground
processes start execution. Specifically, for applications whose response time is
shorter than the statistics aggregation interval, their foreground response time
would be the same whether or not our system is used to control background pro-
cesses. Because our implementation checks aggregated resource statistics every
0.25 seconds, in some cases background processes may be suspended sooner than
a whole aggregation interval elapses after the emergence of resource contention.
As soon as BGShare of any resource decreases below the corresponding thresh-
old, those background processes are stopped. Still, if foreground response time
is well shorter than the aggregation interval, there would be little benefit.

Foreground applications with longer response times are affected differently by
our two algorithms for background execution control. With the EII algorithm, the
increase in the response time depends on how many periods of temporary back-
ground execution exist during foreground processing. Because the suspension
interval is short at the beginning of foreground process execution, the increase
may be non-negligible. With the IPD algorithm, the duration of interference
between foreground and background processes is expected to be no longer than
the statistics aggregation interval. With the cost of probes ignored, only this
interference affects foreground response time, as the background processes are

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



111 User-level Enforcement of Appropriate Background Process Execution

suspended completely until the completion of foreground execution.
The fact that our approach does affect foreground response time is due to its

reactive nature. We primarily seek to help improve overall system throughput
while keeping foreground throughput unaffected. We thus would like to exploit
whatever resources are idle. Only when background processes cause resource
contention and their suspension does not result in wasted resources, do we actu-
ally suspend them. On the other hand, if we were to avoid degrading foreground
response time, we would need to ensure that resources are immediately and fully
available to foreground processes when they request those resources. Achieving
this would generally require keeping resources idle in advance when resource re-
quests by foreground processes are expected. However, doing so is against our
objective of keeping resources as busy as possible.

7.2 Adapting to Diverse System Configurations
We expect that our method of detecting resource contention based on thresh-

olds can be applied easily and effectively to systems with diverse workload charac-
teristics. As shown in Fig. 2, our system can detect resource contention accurately
with a wide range of thresholds for each resource type, and the efficacy of our ap-
proach is thus insensitive to the actual values of these thresholds. Consequently,
although a certain set of threshold values may not be ideal for any possible
workloads, our system would work as mostly intended under diverse workloads
without being specifically customized. Such easiness and accuracy in detecting
resource contention make our approach general and broaden its applicability.

Furthermore, estimating appropriate values for the thresholds is straightfor-
ward in general as our approach is based on the resource usage of background pro-
cesses relative to that of foreground processes. For the disk workloads shown in
Fig. 2, for instance, when there are one foreground and one background processes,
the accuracy of detecting resource contention drops around the disk threshold of
50%. When there are two or four background processes, the accuracy decreases
with the threshold of approximately 66% and lower, or 80% and lower, respec-
tively. These points at which the accuracy starts to drop reflect the number of
background processes divided by that of both foreground and background pro-
cesses. Also, because CPU and network resource shares of background processes
decrease more dramatically than their disk resource share under the existence

of resource contention, estimating proper thresholds over these shares would be
even easier. If we used a metric for inferring resource contention based on some
absolute value about resource usage, such as the number of bytes transferred to
and from disks by background processes, the value of such a metric corresponding
to resource contention would be application- and workload-specific.

For these reasons, it would not be crucial to customize the thresholds upon
installation of our system in order for it to detect resource contention. Still, if
necessary, determining appropriate thresholds in an automated way would be a
simple process. We could execute a set of processes with varied resource needs,
such as a subset of those described in Section 4.4.1, and decide a proper range of
thresholds over each resource type based on gathered system statistics. As the set
of measurements shown in Section 4.4 was intended to be exhaustive, simplifying
the calibration process for determining thresholds would be an interesting area
for our future work.

7.3 TCP Timeout
If our system suspends a background process with a TCP connection for a long

period of time, that connection’s timeout may occur. If such timeout happens
frequently, it will lead to lowered background throughput and inefficient use of
idle resources. With the EII algorithm for background execution control, this
problem is avoided by limiting the maximum length of the suspension interval.
Since our current implementation of the algorithm uses the maximum interval
of 16 seconds and background processes are run temporarily after each interval,
it practically avoids TCP timeout. On the other hand, timeout is more likely
with the IPD algorithm. It suspends background processes completely for the
duration of foreground process execution for the sake of less interference between
foreground and background processes than that caused by the EII algorithm.
Therefore, TCP timeout occurs if a foreground process continues running longer
than the timeout limit. One solution would be adding a simple enhancement to
the algorithm that allows occasional execution of background processes to avoid
this problem.

8. Conclusion

In this paper, we proposed an effective user-level approach to controlling back-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



112 User-level Enforcement of Appropriate Background Process Execution

ground processes for idle resource utilization. We showed that we can reasonably
infer the interference of background processes with foreground processes from
outside the underlying operating system, by using system statistics readily avail-
able at the user level. We obtain approximated resource shares of background
processes derived from such statistics, and suspend them when these shares be-
come low as a result of resource contention. Our system implemented on So-
laris 10 appropriately suspends background processes and avoids the throughput
degradation of foreground processes.

Our approach is characterized by the following advantages. First, it requires
no considerable modification to existing systems, encouraging users to actively
make use of idle resources. We believe this aspect of our approach is partic-
ularly beneficial, given the increasing value of idle resource utilization. Next,
our method reflects actual resource usage, and takes different resources into ac-
count in examining the existence of resource contention. Finally, it can manage
multiple background processes simultaneously. This property allows aggressive
exploitation of idle resources by executing background processes with different
resource needs.

In obtaining statistics indicative of resource usage, we take advantage of dy-
namically enabled probes. Probes are a promising approach to exposing valuable
system information at the user level, and are becoming widely accepted. As there
exists dynamic probes available on common platforms besides Solaris 10, we be-
lieve that our method of controlling background processes can be easily applied
to them as well.

References

1) Abe, Y., Yamada, H. and Kono, K.: Enforcing Appropriate Process Execution
for Exploiting Idle Resources from Outside Operating Systems, Proc. 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008 (EuroSys ’08 ),
pp.27–40 (2008).

2) Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage,
Proc. 5th IEEE/ACM International Workshop on Grid Computing (2004).

3) Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M. and Werthimer, D.:
SETI@home: An Experiment in Public-Resource Computing, Comm. ACM, Vol.45,
No.11, pp.56–61 (2002).

4) Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Burnett, N.C., Denehy, T.E., Engle,

T.J., Gunawi, H.S., Nugent, J.A. and Popovici, F.I.: Transforming Policies into
Mechanisms with Infokernel, Proc. 19th ACM Symposium on Operating Systems
Principles (SOSP ’03 ), pp.90–105 (2003).

5) Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M.E., Becker, D.,
Chambers, C. and Eggers, S.: Extensibility, Safety and Performance in the SPIN
Operating System, Proc. 15th ACM Symposium on Operating Systems Principles
(SOSP ’95 ), pp.267–283 (1995).

6) Brakmo, L.S., O’Malley, S.W. and Peterson, L.L.: TCP Vegas: New Techniques for
Congestion Detection and Avoidance, Proc. ACM SIGCOMM ’94, pp.24–35 (1994).

7) Cantrill, B.M., Shapiro, M.W. and Leventhal, A.H.: Dynamic Instrumentation of
Production Systems, Proc. USENIX 2004 Annual Technical Conference (USENIX
’04 ), pp.15–28 (2004).

8) Douceur, J.R. and Bolosky, W.J.: Progress-based regulation of low-importance
processes, Proc. 17th ACM Symposium on Operating Systems Principles (SOSP
’99 ), pp.247–260 (1999).

9) DTrace - FreeBSD Wiki. http://wiki.freebsd.org/DTrace
10) dtrace(1) Mac OS X Manual Page. http://developer.apple.com/mac/library/

documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
11) Eggert, L. and Touch, J.D.: Idletime Scheduling with Preemption Intervals, Proc.

20th ACM Symposium on Operating Systems Principles (SOSP ’05 ), pp.249–262
(2005).

12) Engler, D.R., Kaashoek, M.F. and James O’Toole, J.: Exokernel: An Operating
System Architecture for Application-Level Resource Management, Proc. 15th ACM
Symposium on Operating Systems Principles (SOSP ’95 ), pp.251–266 (1995).

13) FFTW Home Page. http://www.fftw.org
14) Golding, R., Bosch, P., Staelin, C., Sullivan, T. and Wilkes, J.: Idleness is not

sloth, Proc. USENIX 1995 Technical Conference, pp.201–212 (1995).
15) Kureger, P. and Chawla, R.: The Stealth Distributed Scheduler, Proc. 11th Inter-

national Conference on Distributed Computing Systems (ICDCS ’91 ), pp.336–343
(1991).

16) Kuzmanovic, A. and Knightly, E.W.: TCP-LP: A Distributed Algorithm for Low
Priority Data Transfer, Proc. IEEE INFOCOM, pp.1691–1701 (2003).

17) Larson, S.M., Snow, C.D., Shirts, M. and Pande, V.S.: Folding@Home and
Genome@Home: Using distributed computing to tackle previously intractable prob-
lems in computational biology, Computational Genomics (2002).

18) Linux Technology Center: Welcome. http://sourceware.org/systemtap/kprobes
19) Litzkow, M.J., Livny, M. and Mutka, M.W.: Condor - A Hunter of Idle Work-

stations, Proc. 8th International Conference on Distributed Computing Systems
(ICDCS ’88 ), pp.104–111 (1988).

20) Lumb, C.R., Schindler, J. and Ganger, G.R.: Freeblock Scheduling Outside of Disk
Firmware, Proc. 1st USENIX Conference on File and Storage Technologies (FAST

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan



113 User-level Enforcement of Appropriate Background Process Execution

’02 ), pp.275–288 (2002).
21) Lumb, C.R., Schindler, J., Ganger, G.R., Nagle, D.F. and Riedel, E.: Towards

Higher Disk Head Utilization: Extracting Free Bandwidth From Busy Disk Drives,
Proc. 4th Symposium on Operating Systems Design and Implementation (OSDI
’00 ), pp.87–102 (2000).

22) Moore, R.J.: A Universal Dynamic Trace for Linux and Other Operating Systems,
Proc. FREENIX Track: 2001 USENIX Annual Technical Conference (USENIX
’01 ), pp.297–308 (2001).

23) Tamches, A. and Miller, B.P.: Fine-Grained Dynamic Instrumentation of Com-
modity Operating System Kernels, Proc. 3rd Symposium on Operating Systems
Design and Implementation (OSDI ’99 ), pp.117–130 (1999).

24) Venkataramani, A., Kokku, R. and Dahlin, M.: TCP Nice: A Mechanism for Back-
ground Transfers, Proc. 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’02 ), pp.329–344 (2002).

(Received July 26, 2010)
(Accepted November 12, 2010)

Yoshihisa Abe is a Ph.D. student in the Computer Science
Department at Carnegie Mellon University. He received his M.S.
degree in Computer Science from New York University in 2009,
and his B.E. degree in Information and Computer Science from
Keio University in 2007. His research interests lie in the areas of
operating systems, virtualization, and resource management. He
is a member of ACM.

Hiroshi Yamada was born in 1981. He received his B.E. and
M.E. degrees from the University of Electro-communications in
2004 and 2006, respectively. He received his Ph.D. degree from
Keio University in 2009. He is currently a research associate of
the Faculty of Science and Technology at Keio University. His
research interests include operating systems, virtualization, and
system software. He is a member of ACM, USENIX and IEEE/CS.

Kenji Kono received his B.Sc. degree in 1993, M.Sc. degree in
1995, and Ph.D. degree in 2000, all in Computer Science from the
University of Tokyo. He is an associate professor of the Depart-
ment of Information and Computer Science at Keio University.
His research interests include operating systems, system software,
dependable systems, and Internet security. He is a member of
IEEE/CS, ACM and USENIX.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 94–113 (Mar. 2011) c© 2011 Information Processing Society of Japan


