
IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011)

Regular Paper

DTS: Broadcast-based Content-aware

TCP Connection Handover

Hajime Fujita†1 and Yutaka Ishikawa†1,†2

In this paper we propose DTS (Distributed TCP Splicing), a new mechanism
for performing content-aware TCP connection switching in a broadcast-based
single IP address cluster. Broadcast-based design enables each cluster node
to continue to provide services to clients even when other nodes in the clus-
ter fail. Each connection request from a client is first distributed among the
cluster using the consistent hashing method, in order to share the request in-
spection workload. Then the connection is transferred to an appropriate node
according to the content of the request. DTS is implemented on the Linux
kernel module and does not require any modification to the main kernel code,
server applications, or client applications. With an 8-node server configura-
tion, a DTS cluster with multiple request inspectors achieves about 3.4 times
higher connection throughput compared to the single inspector configuration.
A SPECweb 2005 Support benchmark is also conducted with a four node clus-
ter, where DTS reduces the total amount of disk accesses with a locality-aware
request distribution and almost halves the number of file downloads that fail
to meet the speed requirement.

1. Introduction

The Internet and servers on the net have never been more important, as many
services have shifted to web services, sometimes on clouds. Needless to say there
has been a consistent demand for servers to be more powerful and reliable.

Single IP address clusters 1) have been widely adopted in servers for several
reasons. One reason is for performance improvement, as server workloads are
nearly independent of each other and easily parallelized to multiple computers.
Another reason is for reliability, to add redundancy to the server system.

Existing single IP address clusters are classified based on several aspects. One

†1 Information Technology Center, the University of Tokyo
†2 Graduate School of Information Science and Technology, the University of Tokyo

aspect is how a cluster distributes the input from clients to member nodes. In
general, there are two types, the dispatcher-based type and the broadcast-based
type. The dispatcher-based type has one special node called a “dispatcher” or
“load balancer”. This node has an IP address that represents the cluster, and
receives all incoming packets from the clients and forwards them to other nodes
in the cluster. Examples of this type of cluster system include Linux Virtual
Server 2),3) and SAPS 4). On the other hand, the broadcast-based type does not
have a special node, but all nodes have the same IP address which represents the
cluster. The front-side switch or router is configured so that all incoming packets
from the client are broadcast to all server nodes. Examples of this type are the
Network Load Balancing feature 5) of Windows Server families and FTCS 6).

Another aspect used to classify single IP address clusters is whether it handles
the content of a client’s request to choose the appropriate node to process the
request. For example, in a Web server there might be a file which is only located
on specific nodes. In this case, requests for this file should be processed at
nodes which have the file in local storage. Another example of the application of
content-aware request distribution is Locality Aware Request Distribution 7),8),
which assigns requests for the same content to the same node to achieve a higher
disk-cache hit rate. This kind of request distribution is called content-aware
request distribution. It is also sometimes called layer-7 request distribution,
since it considers the layer-7 protocols in the OSI reference model.

In order to support content-aware request distribution for TCP-based applica-
tions, a special mechanism is required. This is because a new connection must be
established between a client and one of the cluster nodes in order to receive the
content of the request for inspection, but the final destination of the connection
might be different from the node which inspects the request. To improve the
performance of content-aware request distribution, several kernel-level methods
like TCP splicing 9) or TCP handoff 10) and their variants were proposed, but
most of them are based on dispatcher-based clusters.

In this paper we propose DTS (Distributed TCP Splicing), which is a mech-
anism for constructing broadcast-based single IP address clusters with content-
aware request dispatching. We reported on the TCP connection handover mech-
anism of DTS in Ref. 11). Following on from the previous paper, this paper

59 c© 2011 Information Processing Society of Japan

60 DTS: Broadcast-based Content-aware TCP Connection Handover

Fig. 1 Overview of DTS.

describes a layer-4 load balancing feature for request inspection and performance
evaluation. Incoming connections from clients are first distributed among the
cluster nodes by using a layer-4 load balancing feature based on the consistent
hashing 12). DTS was implemented on the Linux kernel and connection handling
throughput has been measured. With 8-node server nodes, the multiple request
inspector configuration achieves about 3.4 times higher throughput compared to
the single inspector configuration. Additionally, DTS enables employment of a
locality-aware request distribution and reduces disk accesses in the SPECweb2005
Support benchmark.

2. Design

In this section the design of DTS is described. DTS is a content-aware request
dispatching scheme for TCP-based server applications on broadcast-based single
IP address clusters.

Figure 1 shows a typical configuration of a DTS-based four-node cluster. The
cluster is configured as a broadcast-based cluster, that is, all incoming packets
are sprayed across all server nodes. Each server node has two IP addresses. One
is for communicating with remote clients, and all the nodes in the cluster share

this address. The other one is for communicating with other server nodes, which
is unique to each node.

Each server has the same software stack configuration also shown in Fig. 1. Two
software components, “DTS Kernel Module” and “Request Inspector” are
DTS-specific components added into commodity operating systems. Inside the
kernel module there is a packet filter which captures and modifies the packet
coming in to or going out from a server node. As its name suggests, the request
inspector is a helper application program which receives a request from a client
and decides which server node should take care of the request.

The key point of the DTS design is that the new features are realized by just
adding those two components into existing operating systems, like Linux. Not
even the TCP/IP stack needs to be modified.

2.1 Accepting Requests
When a client attempts to make a new TCP connection with a DTS-based clus-

ter, the connection is accepted by only one node in the cluster, called the request
inspecting node (the node at the left side of Fig. 2 (a)). Actually in DTS, any
server node can be a request inspecting node, because all nodes are equivalent in
terms of network topology and all nodes have the same software configuration.
For each incoming connection, the request inspecting node is chosen by a hash-
based layer-4 load balancing scheme described later, in Section 2.3. Packets from
the client also flow to other nodes, but they are blocked by the packet filter.

On the request inspecting node, the connection is first handled by the request
inspector to analyze the contents of the request. Figure 3 shows the pseudo-code
of the request inspector. It is almost the same as a socket-based server program,
except that it issues a DTS-specific system call called request handover to re-
quest the kernel module to transfer the connection to another node.

Upon receiving the request, the inspector determines the most appropriate
node to handle it, which is called the request processing node, and issues
the request handover system call to transfer the connection to the chosen node
(Fig. 2 (b)). In the system call routine, the kernel module on the request inspect-
ing node first creates a new TCP connection to the server application on the
request processing node, then transmits the request passed from the inspector.
This new connection is adjusted by the packet filter in the kernel module so that

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

61 DTS: Broadcast-based Content-aware TCP Connection Handover

(a)

(b)

(c)

Fig. 2 Overview of the Handover procedure.

the request processing node sees the connection as if it came from the client
directly. After receiving the request from the inspecting node, the processing
node begins to communicate with the client (Fig. 2 (c)). At this moment two
connections, one is the connection between the client and the server, the other is
between the sender and the receiver, are spliced and can be seen as a single TCP
connection. This handover process is completely carried out in the server side
kernel module, so clients and server applications do not need to be modified.

After the handover process is completed, the client and the request processing
node communicate with each other directly. In other words, the request inspect-
ing node is no longer involved in this communication. This is because incoming

while (1) {

int s;

char buf[BUFSIZ];

ssize_t ret;

s = accept(...);

ret = read(s, buf, sizeof(buf));

/* parse the request and determine the target node */

...;

request_handover(s, target, buff, ret);

}

Fig. 3 The pseudo-code of the request inspector.

packets from clients are delivered to each node without being forwarded by an-
other node.

2.2 Packet Sequence of the Handover Process
A more precise example of connection handover procedure is shown in Fig. 4.

One client and two server nodes are drawn in the figure.
First, the client sends a SYN segment to the server (Segment 1 in Fig. 4).

Suppose that server node 1 is the request inspection node for this connection, so
the connection is accepted by node 1. Actually the same packet reaches node 2
and is eventually dropped by the packet filter, but it is omitted in the figure for
simplicity. At node 1, the destination port number in the packet is modified so
that it is delivered to the request inspector, not to the server application. On the
other hand, when the packet is transmitted from node 1, the source port number
is set to that of the server application.

When the inspector receives the request and determines the request processing
node, it issues the request handover system call to transfer the connection.
Suppose that the chosen node is server node 2 in this example. In the system call,
the kernel module opens a new TCP connection to the request processing node
(Segment 4). Since the initial sequence number (ISN) of each TCP connection
is generated randomly, the ISN of this new connection is different from that of
segment 1. The packet filter in the DTS kernel module hooks the packet and

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

62 DTS: Broadcast-based Content-aware TCP Connection Handover

Fig. 4 Packet sequence.

modifies the sequence number so that it is equal to that of segment 1. When
this segment arrives at node 2, the packet filter rewrites the source IP address
and the source port number to those of the client. From node 2’s TCP stack, it
seems as if segment 1 came from the client directly. When node 2 replies to the
client with segment 5, the sequence number, addresses, and port numbers are
also modified so that the sequence number becomes equal to that of segment 2

and also the segment goes back to node 1 instead of the client. Upon receiving
segment 2, the filter at node 1 rewrites the acknowledgment number so that the
segment can be accepted by the TCP stack.

When node 2 is about to receive segment 4, the filter in node 2 must know the
client’s address, port number, and the original ISN. This information is stored in
a DTS-specific TCP option at the head of segment 4.

After the reception of the request from node 1 is completed, node 2 begins to
send packets to / receive packets from the client. Since the sequence numbers
have been adjusted, the TCP protocol stacks of both the client and node 2 do
not recognize that the actual communicating peer has been changed. Also from
this point node 2 is able to communicate with the client, in other words, it no
longer depends on node 1.

When node 2 begins to communicate with the client, the connection between
node 1 and node 2 which was created for the handover is no longer needed.
Therefore the packet filter in node 2 transmits a FIN segment to clean up the
connection. It is important to send a FIN from the request processing node
side, otherwise there would be many TIME-WAIT connections in the request
inspection side if connection handovers were done at a very high rate. This
would make the handover unavailable, because eventually all ephemeral ports
would be consumed.

2.3 Layer-4 Load Balancing
In order to achieve content-aware request dispatching, requests from clients

should first be inspected by an inspector. This is a somewhat heavy task com-
pared to content-blind connection dispatching, i.e., layer-4 dispatching. In DTS,
the request inspecting node is determined by a layer-4 load balancing method
using the consistent hashing 12) scheme.

Each node has a unique hash value based on a unique ID like an IP address for
intra-cluster communications. Also each incoming connection has a hash value
based on a remote address and a port number. These hash values are mapped
to a conceptual ring which represents the range of the hash function (Fig. 5).
The ring is separated into several areas by the hash values of the nodes. Each
connection falls into one of the areas. A connection is accepted by a node i when
the following condition is met for any node j �= i,

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

63 DTS: Broadcast-based Content-aware TCP Connection Handover

Fig. 5 Hash value space.

h(ni) ≤ h(a, p) < h(nj)
where ni and nj are unique IDs for nodes i and j, a is a remote address, p is a
remote port number, and h is a hash function. While it is shown that a hash-
based static connection distribution is not sufficient for load balancing 6), we do
not need to concern ourselves with it because in DTS we have another chance to
distribute the workload among cluster nodes with a connection handover.

Just using a single ID for each node does not ensure that the distance between
each hash value is equal. This leads to a load imbalance for request inspection.
Therefore we use a virtual node technique like the one used in Amazon’s Dy-
namo 13). With this technique, each (physical) node has multiple hash values on
the hash space ring. This is just as if each physical node hosts multiple “virtual
nodes” on the ring.

We assume that every node in the cluster has a knowledge of what nodes are
currently in the cluster and what hash values they have.

2.4 Connection Tracking
As described above, DTS handles several TCP connections simultaneously es-

pecially during the handover process. For example, at the request processing
node there are two TCP connections, one is between the inspecting node and the
processing node and the other is between the processing node and the client.

To track the state of each connection, DTS has its own connection table. When
the packet filter sees a packet, it first looks it up in the connection table by using
a quadruple of remote address, remote port number, local address, and local port

number as a key. If an entry is not found the packet is regarded as being handled
by another node and just ignored.

2.5 Server Failures
The design of DTS assumes that a server node may fail without any symptoms.

We do not provide full fault-tolerance. Our goal is to keep the cluster available
even when some of the nodes die. If a node crashes, connections served by that
node are lost. Clients that lose connections must reconnect to the server.

As in broadcast-based clusters, a server node in DTS is not affected by other
node failures, because each node is able to exchange packets with clients without
depending on any other node. While it is possible to make a redundant con-
figuration for dispatchers in the dispatcher-based type clusters, there would be
a downtime after a dispatcher’s crash until a backup dispatcher starts working.
During this period, all clients have to wait for the new dispatcher to send packets
to server nodes behind the dispatcher. On the other hand, with broadcast-based
clusters, including DTS, most clients do not observe this kind of downtime except
for the clients that were connected to the crashed node.

Having multiple request inspectors in a cluster also improves user experiences
under server failures. When a client tries to establish a new TCP connection with
a server, a server node might crash, but the crashed node might not be removed
from the consistent hash space. In such a situation, if we assume the ideal case
that consistent hashing chooses one of the server nodes in a perfectly random
manner, the probability of a client trying to connect to the crashed node goes
down as the number of request inspecting nodes increases.

Consistent hashing is also favorable in its handling of server failures. If a server
node fails, the adjacent node in the hash space takes over the area covered by
the crashed node. This does not affect a node whose area is not adjacent to that
of the crashed node. Existing broadcast-based clusters use a hash function that
depends on the total number of cluster nodes, therefore every node should move
in the hash value space.

DTS itself does not solve the cluster membership problem. It can be imple-
mented using existing cluster management software like Heartbeat 14).

2.6 Applicability
Since DTS is designed to interact with application-level information, it includes

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

64 DTS: Broadcast-based Content-aware TCP Connection Handover

some assumptions on application-level protocols. The current design assumes
that a client first sends a request to a server, as in HTTP 15). This assumption
may be relaxed for protocols in which a server sends messages before a client
sends a request, given that the messages sent by the server are predictable. For
some protocols where messages are not predictable, for example, protocols that
perform challenge and response authentications, DTS can never be applicable.

3. Implementation

We implement DTS on the Linux kernel. DTS is implemented as a packet filter
using the Netfilter 16) mechanism. DTS is wholly implemented as a loadable
kernel module, therefore no modification (patching) to the main kernel source
code is needed.

3.1 Consistent Hashing
The current implementation of the consistent hashing algorithm uses the MD5

digest function to calculate hash values. Each server node has its own IP address
(for intra-cluster communications) and a set of small integer numbers. A hash
value for a virtual node is calculated by just concatenating the IP address and
an integer number and applying MD5 to it. Also connections from clients are
handled in a similar way. The IP address and the port number of a client is
concatenated and passed to the hash function.

3.2 Implementation Limitations
The current implementation of DTS has several limitations related to advanced

features of TCP. For example, Selective ACK, TCP timestamp, and Window
scaling are not supported. These features must be disabled at the server side.
Since these features are used only when both peers of the connection are willing
to use them, we can safely ignore them. the current implementation does not
consider IP fragmentation either. However this is not a fatal issue because many
TCP implementations set the DF (don’t fragment) bit to IP packets mainly for
performance reasons.

These limitations are just implementation limitations, not design limitations.
The authors believe that it is possible for DTS to support these features. When
DTS is used in a real Internet environment, these features should be supported
because these TCP options improve the throughput in long-latency networks.

Table 1 Machines used for the experiments.

Server
CPU Intel Xeon L5520 (2.26 GHz, 4 cores)

(Hyper-Threading and Turbo Boost enabled)
Memory 3 GB
NIC Broadcom NetXtreme II BCM5716 x 2
OS Ubuntu Linux 10.04 amd64
OS Kernel Linux 2.6.32-23-generic (x86 64)
Web/JSP server Tomcat 6.0.24
Java Runtime OpenJDK 1.6.0 18
Client A × 5
CPU AMD Opteron 175 (2.2 GHz, 2 cores)
Memory 2 GB
NIC Broadcom NetXtreme BCM5721
OS Ubuntu Linux 8.04 i686
OS Kernel Linux 2.6.24-28-generic (i686)
Client B × 1
CPU Intel Xeon X5520 (2.67 GHz, 4 cores × 2)

(Hyper-Threading and Turbo Boost disabled)
Memory 12 GB
NIC Broadcom NetXtreme II BCM5716
OS Ubuntu Linux 10.04 amd64
OS Kernel Linux 2.6.32-23-generic (x86 64)
Switch
Model DELL PowerConnect 6248

4. Evaluation

In this section, the basic performance of DTS is shown first, then the results
of a web application benchmark are shown.

4.1 Environment
In the experiments below, the machines shown in Table 1 are used. All the

server nodes and the client machines are connected to the same switch. Two
VLANs are configured, one is for client-server communication and the other is
for intra-cluster communication.

4.2 Scalability
The scalability of DTS is measured. In this experiment a simple ping-pong

echo server and client are used as a workload.
The server cluster is configured in two ways. One configuration is a single

request inspector (single RI) configuration, where only one server node hosts

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

65 DTS: Broadcast-based Content-aware TCP Connection Handover

a request inspector. This configuration does not use layer-4 load balancing with
consistent hashing. The other configuration is a multiple request inspectors
(multiple RIs) configuration, where each node hosts a request inspector and
new connections from clients are first distributed among nodes by layer-4 load
balancing. Each server node has 63 virtual nodes in the hash space.

In this experiment, the inspector virtually does nothing; it just receives a pre-
defined size of data from the client and immediately requests a handover of the
connection to one of the nodes in the cluster, chosen in a round-robin manner,
including the node on which the inspector runs. This inspector setting shows the
minimum overhead when using DTS.

As a server application, a simple echo back server is used. A client first sends
data, then a request inspector receives the entire segment of data and passes it
for handover. After that, the server program receives the data and sends it back
to the client.

Two data sizes, 4 bytes and 1024 bytes, are used. 1024 bytes of data is close
to the typical size of HTTP headers which include cookies. For example, nine
requests were observed when displaying www.google.com with Firefox 3.5.9 and
the average of the length of each HTTP request was 883 bytes.

Six client machines try to connect to the server simultaneously for 30 seconds
and the total number of processed requests is measured.

Figures 6 and 7 show the results. Generally, multiple request inspector config-
urations achieve a higher performance. With a single inspector, the throughput
does not improve, even when the total number of server nodes increases. From
this result, we see the single inspector is a bottleneck in this case. By using mul-
tiple inspectors we can scale up the cluster. In Fig. 7, the multiple inspector case
saturates at around 85,000 connection/s. In this case each connection transmits
1 KB of data, so 85,000 connections per second means 85 MB/s. In this case, it
is likely that the network bandwidth (1 Gbps) is almost saturated.

4.3 Virtual Nodes
The number of virtual nodes affects the load balance among request inspecting

nodes, so the throughput measurement, as described above, is conducted while
changing the number of virtual nodes. The configuration is the same as the
“8-node cluster with multiple request inspectors” setting above, except that the

Fig. 6 Throughput scaling (4 bytes).

Fig. 7 Throughput scaling (1,024 bytes).

number of virtual nodes per each server node is altered.
Figure 8 shows the results. In the figure, “min” represents the percentage

of the connections processed by the node with the minimum load. Also, “max”
represents the percentage of the connections processed by the most loaded node.
If the difference between “min” and “max” is greater, the load is imbalanced.
From the figure, with at least 31 virtual nodes per physical node, a total of 248
virtual nodes are required to balance the request inspection workload almost
equally.

4.4 Web Application Benchmark
A Web application benchmark test is conducted in order to show that context-

aware request dispatching is useful for real applications.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

66 DTS: Broadcast-based Content-aware TCP Connection Handover

Fig. 8 Number of virtual nodes and overall performance.

Table 2 Parameters changed from the default in the support benchmark.

Parameter Value used Default
Simultaneous Sessions 1,800 N/A
Benchmark Run Seconds 900 1,800
Benchmark Iterations 1 3
Download Speed (bytes/s) 1,000,000 100,000

for “Good” QoS 990,000 99,000
for “Tolerable” QoS 950,000 95,000

The “Support” application which comes with the SPECweb2005 benchmark
suite 17) is used as a benchmark. This benchmark simulates a user support web
site where users search and download device drivers or software updates for var-
ious products. The web site consists of dynamic pages generated by JSP (Java
Server Pages), and a huge set of static download files.

Four server nodes and five client nodes (client A in Table 1) are used for the
experiment. Every server node has the same file set so that each node can handle
any request. Apache Tomcat 18) is used as both the Web server and the JSP
server. This means both dynamic JSP pages and static contents are processed by
Tomcat. Tomcat is configured so as not to use persistent connections, because
currently DTS does not support inspecting multiple requests on a single TCP
connection.

Table 2 shows adjusted parameters. By default, the download speed per each

uri = read_http_request_uri();

A: if (!contains(uri, "/downloads/")

B: || contains(uri, "dir000000000")) {

target = myself;

}

else {

hash = md5(uri);

C: target = node_from_consistent_hash(hash);

}

request_handover(target);

Fig. 9 The pseudo-code of the L7 request dispatching algorithm.

client is limited to 100 KB/s. This is changed to 1 MB/s to put more pressure on
disks and to simulate modern clients over the Internet. QoS criteria for download
speeds are also changed. According to the rules of the SPEC benchmark, these
values other than Simultaneous Sessions, are not allowed to be modified, therefore
results shown here are not valid SPEC scores and thus not comparable to other
published results. However, it is enough to see performance characteristics under
different server configurations.

4.4.1 Request Dispatching Method
In the experiment, we use two server configurations, L4 (layer-4) load balanc-

ing and L7 (layer-7; content-aware) load balancing. In both configurations, a
new connection from a client is accepted by one of the server nodes, chosen by
consistent hashing. Each server node has 63 virtual nodes in a hash space. In the
L7 configuration, a request inspector first accepts the connection to determine
a request processing node. On the other hand, in the L4 configuration, Tomcat
accepts the connection directly instead of the request inspector. This means that
in the L4 configuration, a request processing node is determined only by the use
of consistent hashing.

The L7 configuration is almost the same as the L4 configuration for most
files, but it also takes file locality into consideration for some files. In the L7
configuration, the request inspector uses the algorithm shown in Fig. 9. This
algorithm is aimed at effectively using the disk cache of each server node when

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

67 DTS: Broadcast-based Content-aware TCP Connection Handover

Table 3 Results of the SPECweb2005 support benchmark tests.

Method File Total QoS QoS QoS
Type Requests Good Tolerable Fail

L7 Download 21,040 20,879 109 52
JSP 288,493 288,112 378 3

L4 Download 20,859 20,643 116 100
JSP 286,878 284,938 1,935 5

downloading large files, which are stored under the “downloads” directory. A
basic purpose of this algorithm is to determine a request processing node for a
large download file so that the same file is fetched from the same node. The
condition in line A is used to handle dynamic scripts and small images on the
same node as that chosen by the layer-4 load balancing. Line C determines a
request processing node. First an MD5 digest of the requested URI is calculated,
and the request processing node is chosen by consistent hashing using the digest.
As in the hash space for layer-4 balancing, each server node has 63 virtual nodes
in this space.

The condition in line B includes a trick for improving performance. In the
Support benchmark, the probability of each file being requested is not equal.
Download files are separated in directories “dir0000000001”, “dir0000000002”,
and so on. Files are more likely to be requested if the number in the directory
name is small. By exploiting this knowledge, the algorithm lets each node handle
requests for files in “dir0000000001” – “dir0000000009”, which is likely to be
stored in the disk cache of each node.

The request inspector used here is written in the C language and uses the
RFC1321-based MD5 library 19).

4.4.2 Results
Table 3 shows the results of the Support benchmark tests. For both server con-

figurations, results for download files are important here because we treat these
files specially in the L7 configuration. QoS has different meanings for downloads
and JSPs. For download files, QoS stands for download speed described in Ta-
ble 2. On the other hand, QoS for JSPs is a response time for each request.
Responses in less than 3 seconds are classified as “Good” and ones in less than 5
seconds are classified as “Tolerable”. For both file types, “Fail” means the num-

Table 4 Disk I/O statistics during benchmark run.

Method Average Number of Threads Average Disk Reads
Waiting Disk I/O (KB/s)

L7 0.028/0.011/0.061/0.22 2,839/ 3,196/ 7,330/10,169
L4 0.20/0.12/0.21/0.12 11,038/10,294/11,970/11,513

ber of requests that failed the criteria for “Tolerable”. From the overall result,
the L7 method achieved better results in terms of both total number of requests
and QoS. In particular, with the L7 configuration about 1.1% more files were
downloaded within the “Tolerable” QoS range, while the number of “Failed”
requests is about half of that of the L4 configuration.

Table 4 shows disk I/O statistics measured during the benchmark run. The
four numbers in each cell show the values for each server node, node 0, 1, 2,
and 3, respectively. It can clearly be seen that in the L7 configuration, the total
amount of disk I/O is far less than that of the L4 configuration. From this result,
it can be said that the locality-aware request distribution employed in the L7
configuration increases the disk cache hit rate.

From Table 3 it can also be seen that the L7 configuration achieved a better
result for JSPs. This might be a result of reducing disk accesses, because JSP re-
quests and download requests are sent simultaneously to the server, but currently
the authors do not have any evidence to clearly explain this result.

5. Related Work

TCP splicing 9) uses a mechanism similar to DTS to splice two TCP connec-
tions inside the kernel of the dispatcher node. Sequence numbers and acknowledge
numbers are adjusted so that a packet from an endpoint of one connection can be
accepted by an endpoint of another connection. TCP handoff 10) modifies some
parameters in a TCP control block, like the sequence number to be transmitted
(SND.NXT). This makes it unnecessary to rewrite packets in the dispatcher. How-
ever, this design requires the modification of the core network protocol stack of
the kernel, which is sometimes difficult or impossible.

Some other parties already proposed the idea that request inspection for
content-aware connection dispatching should be done on each server node to
increase scalability. Kerdlapanan, et al., proposed 20) the use of TCP-handoff for

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

68 DTS: Broadcast-based Content-aware TCP Connection Handover

multicast-based single IP address cluster systems, which is very similar to DTS.
However in the paper they just introduced the idea but did not show an imple-
mentation or performance evaluation. KNITS 21) is a dispatcher-based single IP
address cluster, but request inspection is done by a proxy program (equivalent
to the request inspector in DTS) on each node. The main difference between
DTS and KNITS is that in KNITS, each server node depends on the dispatcher
for forwarding packets from the client. Also the sequence number manipulation
is done at the dispatcher. This makes the dispatcher a single point of failure for
the cluster. Reference 10) also proposed a system similar to KNITS but uses
TCP-handoff. This system also requires a single layer-4 switch at the front of
the cluster so this could be a single point of failure.

Marwah, et al., 22) addressed the scalability and fault tolerance of TCP splicing.
Connection state information in the proxy is replicated on other proxy nodes.
With this replication, any proxy node is able to handle any connection, resulting
in improved performance and availability. In contrast, DTS does not need to
replicate state information to achieve the same goal, as DTS is broadcast-based,
and does not need packet forwarding inside a cluster.

6. Conclusions

In this paper we have proposed DTS, a mechanism for constructing a broadcast-
based single IP address cluster with content-aware request distribution. The
request inspection workload is distributed among all the member nodes by the
consistent hashing method to prevent a request inspector from becoming a bot-
tleneck. After request inspection, the connection is transferred to the request
processing node. This process is transparent to the client, the server application,
and even the TCP protocol implementation inside the server’s kernel.

Experimental results show that DTS improves the scalability of the request
inspection workload. Results also show that with the SPECweb2005 Support
benchmark, content-aware request distribution reduces disk accesses and de-
creases the number of file downloads that failed to meet the bandwidth require-
ment by 48%.

Future work is to support multiple handovers 8), which allows a connection
to move across server nodes multiple times. The current implementation only

handles the content of the first request in a connection.
Acknowledgments The authors would like to thank Kazuki Ohta and Bal-

azs Gerofi for useful discussions about the consistent hashing algorithm, and Taku
Shimosawa for helping us with setting up one of the machines used in our ex-
periments. This work has been supported by the CREST project of JST (Japan
Science and Technology Agency).

References

1) Cardellini, V., Casalicchio, E., Colajanni, M. and Yu, P.S.: The State of the Art in
Locally Distributed Web-Server Systems, ACM Computing Surveys, Vol.34, No.2,
pp.263–311 (2002).

2) Zhang, W.: Linux Virtual Servers for Scalable Network Services, Linux Symposium
(2000).

3) O’Rourke, P. and Keefe, M.: Performance Evaluation of Linux Virtual Server,
LISA 2001 15th Systems Administration Conference, pp.79–92 (2001).

4) Matsuba, H. and Ishikawa, Y.: Single IP address cluster for internet servers,
Proc. 21st IEEE International Parallel and Distributed Processing Symposium
(IPDPS2007) (2007).

5) Microsoft Corporation: Network Load Balancing Technical Overview.
http://technet.microsoft.com/en-us/library/bb742455.aspx

6) Fujita, H., Matsuba, H. and Ishikawa, Y.: TCP Connection Scheduler in Single IP
Cluster, 8th IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’08), pp.366–375 (2008).

7) Pai, V.S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W. and
Nahum, E.: Locality-Aware Request Distribution in Cluster-based Network Servers,
Proc. 8th ACM Conference on Architectural Support for Programming Languages
and Operating Systems (1998).

8) Aron, M., Druschel, P. and Zwaenepoel, W.: Efficient Support for P-HTTP in
Cluster-based Web Servers, Proc. USENIX 1999 Annual Technical Conference
(1999).

9) Spatscheck, O., Hansen, J.S., Hartman, J.H. and Peterson, L.L.: Optimizing TCP
forwarder performance, IEEE/ACM Transactions on Networking, Vol.8, pp.146–
157 (2000).

10) Aron, M., Sanders, D., Druschel, P. and Zwaenepoel, W.: Scalable Content-aware
Request Distribution in Cluster-based Network Servers, Proc. USENIX 2000 An-
nual Technical Conference (2000).

11) Fujita, H. and Ishikawa, Y.: TCP Connection Handover Mechanism for Layer-7
Load Balancing, IPSJ SIG Notes, Vol.2009-OS-111, No.1 (2009).

12) Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M. and Lewin, D.:

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

69 DTS: Broadcast-based Content-aware TCP Connection Handover

Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web, STOC ’97: Proc. 29th Annual ACM Symposium
on Theory of Computing, New York, NY, USA, ACM, pp.654–663 (1997).

13) DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P. and Vogels, W.: Dynamo: Amazon’s highly
available key-value store, SOSP ’07: Proc. 21st ACM SIGOPS Symposium on Op-
erating Systems Principles, pp.205–220 (2007).

14) Robertson, A.: Linux-HA heartbeat system design, ALS’00: Proc. 4th Confer-
ence on 4th Annual Linux Show case & Conference, Atlanta, Berkeley, CA, USA,
USENIX Association, pp.305–316 (2000).

15) Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and Berners-Lee, T.: Hypertext
Transfer Protocol – HTTP/1.1, RFC 2068 (1997).

16) The Netfilter.org project: netfilter/iptables project homepage.
http://www.netfilter.org/

17) Standard Performance Evaluation Corporation: SPECweb2005.
http://www.spec.org/web2005/

18) The Apache Software Foundation: Apache Tomcat. http://tomcat.apache.org/
19) Aladdin Enterprises: RFC1321-based (RSA-free) MD5 library.

http://sourceforge.net/projects/libmd5-rfc/
20) Kerdlapanan, D. and Khunkitti, A.: Content-based load balancing with multicast

and TCP-handoff, Proc. 2003 International Symposium on Circuits and Systems,
2003. ISCAS ’03., Vol.2, pp.II–348–II–351 (2003).

21) Papathanasiou, A. and Van Hensbergen, E.: KNITS: Switch-based Connection
Hand-off, INFOCOM 2002. 21st Annual Joint Conference of the IEEE Computer
and Communications Societies. Proc. IEEE, Vol.1, pp.332–341 (2002).

22) Marwah, M., Mishra, S. and Fetzer, C.: Fault-tolerant and scalable TCP splice

and web server architecture, IEEE Symposium on Reliable Distributed Systems,
pp.301–310 (2006).

(Received July 26, 2010)
(Accepted November 24, 2010)

Hajime Fujita is a Project Research Associate at Information
Technology Center of the University of Tokyo. He received his
Master of Computer Science degree in 2008 from the University
of Tokyo. His research interests include systems software for com-
puter clusters and dependable systems.

Yutaka Ishikawa is a professor of the University of Tokyo,
Japan. He received his B.S., M.S., and Ph.D. degrees in electri-
cal engineering from Keio University. From 1987 to 2001, he was
a member of AIST (former Electrotechnical Laboratory), METI.
From 1993 to 2001, he was the chief of Parallel and Distributed
System Software Laboratory at Real World Computing Partner-
ship. His interests include dependable parallel and distributed

systems and the next generation supercomputer.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 2 59–69 (Mar. 2011) c© 2011 Information Processing Society of Japan

