
IPSJ SIG Technical Report

HW/SW Cosimulation Framework Based on

Software Component System

Takuya Azumi,†1 Yuko Hara-Azumi,†1,†2

Shinya Honda†2 and Hiroaki Takada†2

As the size and complexity of software applications increase, software com-
ponent systems are getting used due to its reusability, reduced time-to-market,
and hence, reduced software production cost. This paper proposes SysTECS, a
highly automated hardware/software (HW/SW) cosimulation framework which
integrates a system-level design tool, SystemBuilder, and a software component
system for embedded systems, TECS. In existing HW/SW codesign technolo-
gies, designers need to manually add or modify HW/SW communication sources
(e.g., their size, direction, and allocator) in input behavioral descriptions, which
is complex to specify. On the contrary, in SysTECS, the designers can design
the overall system at higher abstraction level and have no need to specify the
HW/SW communication in the input descriptions because TECS specifically
defines the interface between components and the communication sources are
automatically generated. This paper demonstrates the effectiveness of Sys-
TECS through a case study with an SHA application.

1. Introduction

Increasing embedded system complexities and strict time-to-market schedules

are critical issues in the today’s system-level design. To improve the design

productivity, designing the systems at a higher abstraction level is necessary13).

In embedded software domains, meanwhile, software component technolo-

gies have become popular1),2),5),10). It has many advantages such as increased

reusability, reduced time-to-market, reduced software production cost, and hence,

improved productivity9). We, therefore, propose a highly automated hard-

ware/software (HW/SW) cosimulation framework named SysTECS integrating

a system-level design tool, SystemBuilder8), and a software component system,

†1 Colleage of Information Science and Engineering, Ritsumeikan University
†2 Graduate School of Information Science, Nagoya University

TECS (TOPPERS Embedded Component System5)) .

The contribution of this work is to present a system-level design method based

on TECS which provides a higher abstraction level design environment than

existing works such as 6), 8), 12). In the existing HW/SW codesign technologies,

designers need to manually add or modify HW/SW communication sources (e.g.,

their size, direction, and allocator) in input behavioral descriptions, which is

complex to specify. On the contrary, in SysTECS, the designers can design the

overall system at higher abstraction level and have no need to specify the HW/SW

communication in the input descriptions because TECS specifically defines the

interface between components and the communication sources are automatically

generated.

The rest of this paper is organized as follows. Section 2 depicts an overview

of SysTECS. Section 3 describes a case study with an SHA application by using

SysTECS. Section 4 summarizes this paper.

2. Overview of SysTECS

In this section, a design flow of SysTECS, and a problem analysis and ap-

proaches of SysTECS are described in detail.

2.1 Design Flow of SysTECS

Fig. 1 shows the entire design flow using SysTECS. There are three stages until

RTL descriptions are generated: stage 1 (TECS stage), stage 2 (SystemBuilder

stage), and stage 3 (behavioral synthesis stage).

In Fig. 1, at the stage 1, starting form component descriptions and component

sources in TECS5), (1) HW/SW communication sources and (2) mapping and

process definition files are automatically generated by an interface generator. The

HW/SW communication is either non-blocking, blocking, or memory primitive,

all of which are primitive communication channels provided by SystemBuilder.

(3) Each communication primitive defines access functions which can be used as

a function call in C programs. SW and HW components specified with TECS

communicate with each other through the access functions. Software components

are mapped to processes defined in SystemBuilder. A process in SystemBuilder

will be implemented as either a software task or a HW module with an FSM,

depending on the HW/SW partitioning. SysTECS also generates a specific file

1 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

IPSJ SIG Technical Report

Fig. 1 Entire design flow using SysTECS.

named System DeFinition (SDF) file including processes information and the

overall structure, and source code for HW/SW communications. The SDF file is

explained in Section 3.

At the stage 2, based on the generated SDF file and sources, (3) the access func-

tions and (4) RTL descriptions for cosimulation are generated by SystemBuilder.

At the stage 3, based on the C programs for HW which includes communica-

tion sources, eXCite15), a commercial behavioral synthesis tool, generates RTL

descriptions of the HW.

SysTECS supports HW/SW cosimulation at different abstraction levels. Sys-

TECS features cosimulation with (A) functional simulation models of hardware

written in C (at a behavioral level) and (B) cosimulation through HDL simulators

(at an RTL level).

2.2 Problem Analysis and Approaches of SysTECS

TECS adapts a static configuration to estimate the memory consumption of

an entire application and to reduce overhead at runtime. The static configu-

ration implies that both the configuration of the component behavior and the

interconnections between components are static. Moreover, TECS supports a

variety of component granularities, and a diversity of components, such as an

allocator or an RPC channel. TECS adopts a static model that statically instan-

tiates and connects components. The attributes of the components and interface

sources for connecting the components are statically generated by the interface

generator. Furthermore, TECS optimizes the interface sources. Hence, no in-

stantiation overhead is introduced at runtime, and the runtime overhead of the

interface code is minimized4). Therefore, these attributes of TECS are suitable

for system-level designs. Meanwhile, there are problems to be solved for using

SW components without modifying of component sources following: calling com-

ponents between SW and HW, HW modules translated from SW components,

and HW/SW mapping.

SysTECS supports to solve these problems.

• Calling components between SW and HW

It is realized that an RPC mechanism of TECS3) adapts calling components

between SW and HW. The RPC mechanism generates components between

caller and callee components. In particular, a marshaller component for the

caller component is to convert function information into a standard data

type and to send the data, and an unmarshaller component for the callee

component is to receive the data and to reverse the standard data type. To

send or receive the data, access functions are used in the marshaller and the

unmarshaller components.

• HW modules translated from SW components

Since TECS components are implemented for embedded software, it is ness-

esary to translate from these components to HW descriptions. The behav-

ioral synthesis tool synthesizes RTL descriptions from software components

mapped to HW modules.

• HW/SW mapping

As mentioned above, the interface generator also generates HW/SW mapping

2 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

IPSJ SIG Technical Report

Fig. 2 Component diagram.

information for SystemBuilder from component descriptions in TECS. Then,

TECS components are mapped to the processes defined by SystemBuilder.

Furthermore, in system-level design, parallelism and pipeline processing should

be considered. TECS supports parallelism and pipeline processing on a real-time

OS for multi-processors in embedded software. The oneway calling is provided

to support the parallelism. It means that caller component does not need to wait

until a callee component finishes executing. At software level, the parallelism has

been already supported in TECS. Therefore, it is possible to adapt the feature

for system-level design.

Next section mainly explains calling components between SW and HW, HW

modules translated from SW components, and HW/SW mapping.

3. A Case Study: SHA Application

We conducted a case study on SysTECS for an SHA application, which is

one of the CHStone benchmarks7). In this case study, it is assumed that a

componentized SHA application is provided.

Fig. 2 shows a component diagram for the SHA application. Each rectangle

represents a cell which is an instance of a component in TECS. A cell has entry

port and call port interfaces. The right cell (SHA), which is for an SHA calcu-

lation, has an entry port which is an interface to provide services (functions) to

other cells. The left cell (Main) which uses the SHA cell has a call port which is

an interface to use services (functions) to other cells.

There are three type of component descriptions to define components in TECS

as an input of SysTECS: a signature description, a cell type description, and a

build description. In 5), each description is explained in detail.

3.1 Stage 1: Component Description of the Case Stdudy

Fig. 3 shows a signature description for the SHA application. A set of function

1 signature sSHA{
2 void transform(

[in,size is(length)] const int8 t *indata,
[in] int32 t length,
[out,size is(5)] int32 t *messageDigest);

3 /* omission of other functions */
4 };

Fig. 3 SHA signature description.

1 [singleton,active]
2 celltype tTECSMain{
3 call sSHA cSHA;
4 };
5
6 celltype tSHA{
7 entry sSHA eSHA;
8 };

Fig. 4 SHA celltype description.

heads is enumerated in the body of signature keyword in the signature description.

The in and out keywords are used to distinguish whether a parameter is input or

output. A pointer indicates an array or a value in TECS. In this case, the indata

and messageDigest parameters represent an array. It is necessary to describe the

size of an array by using the size is keyword in TECS.

Fig. 4 represents a celltype description for the SHA application. A cell type

is the definition of a cell, which is as well as the Class of an object-oriented

language. A cell is an entity of a cell type. A cell type name, such as tTECSMain

and tSHA, follows a celltype keyword to define cell type. To declare entry port, an

entry keyword is used (Line 7). Two words follow the entry keyword: a signature

name, such as sSHA, and an entry port name, such as eSHA. Likewise, to declare

a call port, a call keyword is used (Line 3).

The left part of Fig. 5 describes a build description for the SHA application

component diagram as shown in Figure 2. The build description is used to declare

3 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

IPSJ SIG Technical Report

1 cell tSHA SHA{
2 };
3
4 cell tTECSMain Main{
5
6 cSHA = SHA.eSHA;
7 };

1 cell tSHA SHA{
2 };
3
4 cell tTECSMain Main{
5 [through(SysTECSPlugin,"")]
6 cSHA = SHA.eSHA;
7 };

Fig. 5 SHA build description.

Software Simulator

User program

Real-time
OS

R
e

ad
/

W
ri

te

Hardware
Access I/F

Hardware
ModelSkyEye

Device Manager

R
e

a
d/

W
ri

te

Shared
Memory

R
e

a
d/

W
ri

te

R
ea

d/
W

rit
e

Read/Write

In
te

rr
up

t

R
ea

d/
W

ri
te

Hardware Simulator

In
te

rr
up

t

R
e

ad
/W

rit
e

Read/Write

R
ea

d/
W

rit
e

Software Hardware

Fig. 6 Cosimulation enviroment in SysTECS.

cells and to connect between the cells for creating an application.

The right part of Fig. 5 represents build descriptions for cosimulation as shown

in the above part of Fig. 6. In this case, the through keyword is described just

before the description (cSHA = SHA.eSHA) of the connection, which includes

“SysTECSPlugin” and “”. “SysTECSPlugin” represents the type of plug-in. “”

gives additional information for the plug-in. In this case, the plug-in is used

to generate an SDF file, component descriptions of tSHACaller including mar-

shaller sources for SW and tSHACallee including unmarshaller sources for HW,

1 SYS NAME = sp hw #Design Name
2 SW = tecs main #Software partition
3 HW = tSysTECSPlugin SHA callee #Hardware partition
4 #Communication primitives
5 SMEM SDRAM, ADDR=0x02100000, DEPTH=0x100000,

READ LATENCY=2, WRITE LATENCY=1
6 BCPRIM SW HW SSHA BC, SIZE = 32
7 BCPRIM HW SW SSHA BC, SIZE = 32
8 MEMPRIM SW HW SSHA MEM, SIZE = 8,

DEPTH = 16384, LOC=SDRAM
9 #Process for software

10 BEGIN FU
11 NAME = tecs main #Process name
12 FILE = "tTECSMain.c", "tTECSMain tecsgen.c",

"tSysTECSPlugin SHACaller.c",
"tSysTECSPlugin SHACaller tecsgen.c"

13 USE CP = SW HW SSHA BC(OUT), HW SW SSHA BC(IN),
SW HW SSHA MEM(OUT)

14 END
15 #Process for hardware
16 BEGIN FU
17 NAME = tSysTECSPlugin SHA callee #Process name
18 FILE = "tSHA.c", "tSHA tecsgen.c",

"tSysTECSPlugin SHACallee.c",
"tSysTECSPlugin SHACallee tecsgen.c"

19 USE CP = SW HW SSHA BC(IN), HW SW SSHA BC(OUT),
SW HW SSHA MEM(IN)

20 END

Fig. 7 Generated SDF file.

and C sources including HW/SW communication sources. The below part of

Fig. 6 shows the cosimulation environment. The SW parts run on SkyeEye14), a

simulator targeted to ARM based embedded systems, and the HW parts run on

Modelsim11), an HDL simulator.

3.2 Stage2: SystemBuilder Stage and Generated Sources

Fig. 7 depicts a generated SDF file. The overall structure of application spec-

ification is described in the SDF file. The application consists of two processes

and three communication primitives. Lines 6-7 define blocking communication

primitives. Line 8 defines a memory primitive. The tecs main process is mapped

4 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

IPSJ SIG Technical Report

1 void
2 eThroughEntry transform(CELLIDX idx, const int8 t* indata, int32 t length,

int32 t* messageDigest)
3 {
4 int32 t tmp retval;
5 tSysTECSPlugin SHACaller CB *p cellcb;
6 if(VALID IDX(idx)){
7 p cellcb = tSysTECSPlugin SHACaller GET CELLCB(idx);
8 }
9 /* send function ID */
10 SW HW SSHA BC WRITE(FUNC TRANSFORM);
11 /* send arguments */
12 SW HW SSHA BC WRITE(length);
13 { /* indata */
14 int32 t i 0;
15 for(i 0 = 0; i 0 < length; i 0+=1){
16 SW HW SSHA MEM WRITE(i 0, indata[i 0]);
17 } /* for (i 0) */
18 /* blocking communication */
19 SW HW SSHA BC WRITE(1);
20 }
21 /* receive arguments */
22 { /* messageDigest */
23 int32 t i 0;
24 for(i 0 = 0; i 0 < 5; i 0+=1){
25 HW SW SSHA BC READ(&messageDigest[i 0]);
26 } /* for (i 0) */
27 }
28 /* blocking communication */
29 HW SW SSHA BC READ(&tmp retval);
30 }

Fig. 8 A part of generated component sources for tSHACaller.

to SW (Line 2) and the tSysTECSPlugin SHA callee process is mapped to a HW

module (Line 3), respectively. The file lines from BEGIN FU to END define

each process. The tecs main process is written in four files and uses three com-

munication primitives. For each communication primitive, the direction of the

communication is specified.

HW/SW communication sources are described in Figs. 8 and 9. Based on

communication primitives in the SDF file, HW/SW communication sources in-

1 void tSysTECSPlugin SHA callee(){
2 /* omit declaration of variables */
3 while(1){
4 /* receive function ID */
5 SW HW SSHA BC READ(&func id);
6 switch(func id){
7 case FUNC TRANSFORM:/* transform */{
8 /* receive arguments */
9 SW HW SSHA BC READ(&length);

10 SW HW SSHA BC READ(&tmp indata);
11 SW HW SSHA MEM GET POINTER(0 ,&indata);
12 /* calling component function */
13 cCall transform(indata, length, messageDigest);
14 /* send results */
15 { /* messageDigest */
16 int32 t i 0;
17 for(i 0 = 0; i 0 < 5; i 0+=1){
18 HW SW SSHA BC WRITE(messageDigest[i 0]);
19 } /* for (i 0) */
20 }
21 HW SW SSHA BC WRITE(1);
22 break;
23 } /* case */
24 /* omission of other functions */
25 } /* switch */
26 } /* while */
27 }

Fig. 9 A part of generated component sources of tSHACallee.

clude the access functions generated by SystemBuilder.

Two types of access functions for blocking communication primitive are gen-

erated: XXX READ and XXX WRITE, where XXX denotes a unique name

given to the communication primitive such as SW HW SSHA BC. For example,

SW HW SSHA BC WRITE (Line 10 in Fig. 8) and SW HW SSHA BC READ

(Line 5 in Fig. 9) are used to send and receive the function ID, respectively.

Three types of access functions for memory primitive are generated: XXX READ,

XXX WRITE, and XXX GET POINTER.

Table 1 shows comparison of lines of code excluding comment and empty

lines after each stage in the case study. The second column represents input of

5 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

IPSJ SIG Technical Report

Table 1 Comparison of lines of code.

input stage 1 stage 2

of source code 232 673 866

of other description 20 (com) 20 (sdf) 0

Total 252 693 866

SysTECS which includes component descriptions and component sources for the

SHA application. The third column describes the SDF file and communication

sources generated by SysTECS. The fourth column depicts access functions and

C source code for HW modules generated by SystemBuilder. The designers only

add a through mechanism to realize the HW/SW communication. An important

advantage of using the through mechanism is that it is not necessary to modify

the legacy components. Therefore, it is possible to maintain the reusability of

components.

4. Conclusion

This paper proposed SysTECS, a highly automated HW/SW cosimulation

framework. The advantage of SysTECS is to use software components for system-

level design without modifying of input C sources (component sources). More-

over, since TECS supports applications of a real-time OS for multi-processors and

SystemBuilder assumes MPSoC as target architecture, SysTECS can deal with

more complicated applications. Currently, we are working on adapting a mem-

ory allocator in TECS 3) without copying input/output data for more efficient

HW/SW communications.

Acknowledgments This research was partially supported by the Ministry

of Education, Science, Sports and Culture, Grant-in-Aid for Research Activity

Start-up 2010-2012(22800071).

References

1) Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller,
A., Pettersson, P. and Tivoli, M.: The SAVE approach to component-based devel-
opment of vehicular systems, Journal of Systems and Software, Vol.80, No.5, pp.
655–667 (2007).

2) AUTOSAR: AUTOSAR Specification, http://www.autosar.org/.
3) Azumi, T., Oyama, H. and Takada, H.: Memory Allocator for Efficient Task Com-
munications by Using RPC Channels in an Embedded Component System, Proc.
the 12th IASTED International Conference on Software Engineering and Applica-
tions, pp.204–209 (2008).

4) Azumi, T., Oyama, H. and Takada, H.: Optimization of Component Connections
for an Embedded Component System, Proc. IEEE/IFIP 7th International Confer-
ence on Embedded and Uniquitous Computing, pp.182–188 (2009).

5) Azumi, T., Yamamoto, M., Kominami, Y., Takagi, N., Oyama, H. and Takada, H.:
A New Specification of Software Components for Embedded Systems, Proc. 10th
IEEE International Symposium on Object/component/service-Oriented Real-Time
Distributed Computing, pp.46–50 (2007).

6) Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S. and Gajski,
D.D.: System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous
MPSoC Design, EURASIP Journal on Embedded Systems, Vol.2008, pp.1–3 (2008).

7) Hara, Y., Tomiyama, H., Honda, S. and Takada, H.: Proposal and Quantitative
Analysis of the CHStone Benchmark Program Suite for Practical C-based High-
level Synthesis, Journal of Information Processing, Vol.17, pp..242–254 (2009).

8) Honda, S., Tomiyama, H. and Takada, H.: RTOS and Codesign Toolkit for Multi-
processor Systems-on-Chip, Proc.In 12th Asia and South Pacific Design Automa-
tion Conference, pp..336–341 (2007).

9) Lau, K.-K. and Wang, Z.: Software Component Models, IEEE Transactions on
Software Engineering, Vol.33, No.10, pp.709–724 (2007).

10) Loiret, F., Navas, J., Babau, J.-P. and Lobry, O.: Component-Based Real-Time
Operating System for Embedded Applications, Proc. 12th InternationalSymposium
on Component-Based Software Engineering, pp.209–226 (2009).

11) Mentor Graphics: . http://model.com/.
12) Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A.D., Polstra, S., Bose, R.,

Zissulescu, C. and Deprettere, E.F.: Daedalus: toward composable multimedia MP-
SoC design., Proc. International 45th Design Automation Conference, pp.574–579
(2008).

13) Sangiovanni-Vincentelli, A.: Quo vadis, SLD? reasoning about the trends and chal-
lenges of system level design, PROCEEDINGS-IEEE, Vol.95, No.3, p.467 (2007).

14) SkyEye: . http://www.skyeye.org/index.shtml.
15) Y Explorations: . http://www.yxi.com/.

6 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.44
Vol.2011-EMB-20 No.44

2011/3/19

