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This paper gives introduction to 3D reconstruction techniques from multiple
photographs in Computer Vision, a field known as 3D photography. The field
of 3D photography has made dramatic progress in the last five years, and state-
of-the-art techniques can now, for example, download millions of images of a
city from Internet, find clusters of images that see the same parts of a city,
estimate camera parameters, and recover their dense geometry. This paper
gives high-level introduction to multi-view 3D reconstruction approaches and
its three steps: 1) image acquisition; 2) camera parameter estimation; and
3) dense geometry reconstruction. The paper also introduces recent research
projects and their reconstruction examples to illustrate the capabilities of state-
of-the-art techniques.

1. Introduction

Automated acquisition of static 3D geometric information from

images, a field known as 3D photography, has been an impor-

tant problem in Computer Vision for many years. The quality

of reconstruction has made dramatic progress in the last decade

thanks to the developments of digital photography, yielding high-

quality consumer grade cameras with reasonable prices, and the

sophistication of 3D reconstruction algorithms. 3D photography

not only has been a hot topic in the research community18) but

also given great influences to industry. For example, camera pa-

rameter estimation and 3D scene reconstruction is an indispens-

able process for augmented reality applications in an entertain-

†1 Google Inc.

ment industry.22) Photosynth16) is a free online web-based service

by Microsoft, where users upload photos, then the system auto-

matically estimates camera poses, reconstructs scene geometry,

and provides a photo browser that makes use of the 3D geometry

information. Arc3D21) is a similar free web-based service, where

the goal of the system is not a photo browser, but dense 3D

reconstruction and visualization of a scene, which produces im-

pressive results. There exists commercial software, for example,

Photofly2) by Autodesk, which reconstructs dense 3D geometry

and provides nice visualization from a set of user photos.

State-of-the-art research techniques also show impressive re-

sults (See Figure 1). Agarwal et al.1) presented a large-scale

system that downloads millions of images from Internet by us-

ing a search-keyword (e.g., Rome), finds clusters of images that

see the same scenes (e.g., Colosseum or Trevi Fountain), esti-

mates camera parameters, and recovers sparse scene geometry as

a point cloud. Furukawa et al.5) presented a large-scale dense

reconstruction system that takes a set of calibrated photographs

from Agarwal’s system, which is as large as tens of thousands

for a large scene, reconstructs dozens of million 3D points, and

provides nice visualization of densely reconstructed scenes.

This paper provides an introduction to 3D reconstruction tech-

niques that recovers static geometry information from multiple

photographs. Multi-view reconstruction system usually consists

of three steps: 1) image acquisition; 2) camera parameter esti-

mation; and 3) dense geometry reconstruction. In this paper,

we describe each of the three steps at high-level for introductory

purposes, as the focus of the paper is not to describe details of

state-of-the-art algorithms, but to provide basic understanding

of an entire system and introduce latest research examples. The

remaining portion of the paper is organized as follows. Section 2
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Fig. 1 State-of-the-art computer vision techniques can download millions of images from Internet,
estimate camera poses, and recover dense 3D geometry information.

describes several methods and setups to acquire input images. An

image acquisition method/setup restricts feasible camera parame-

ter estimation methods, which are covered in Section 3. Section 4

describes multi-view stereo algorithms for dense reconstruction,

and we conclude the paper in Section 5.

2. Image Acquisition

Image acquisition is the first important step for any image-

based 3D reconstruction system. This section describes the fol-

lowing three typical image acquisition setups (See Figure 2).

The first setup is targeted for scanning a small-scale object in

a lab environment, where a camera is fixed on a tripod and an

object is placed on a turn table.12) Photographs are taken while

rotating an object on a turn table. In this setup, if a turn ta-

ble is repetitive with high accuracy, an object of interests and a

calibration chart can be photographed independently at separate

times but under the same object motion. This makes it possible

to calibrate cameras from images of a calibration chart (See Sec-

tion 3.1 for more details). A similar, but more expensive, solution

is to fix an object, but attach a camera to a robot arm, whose

control information automatically yields camera parameters for

each photo without any post-processing. �1 Although robot arms

are usually very expensive and not easy to come-by, one of its ad-

vantages over the turn-table is that an object is fixed and lighting

condition stays the same with respect to an object, which makes

texture analysis and 3D reconstruction easier.

The second setup is more flexible and can be used outside a

lab environment, where you carry a camera, move around and

take photos of an object or a scene. This is suitable for capturing

outdoor scenes (e.g., buildings), however it is usually difficult to

use calibration chart for such large scenes, and camera parame-

ters need to be directly estimated from the input images with a

Computer Vision algorithm (See Section 3.1 for more details).

The last setup, or an option, is to download images from In-

�1 This setup has been used to acquire datasets for a multi-view stereo
evaluation project.18)
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Fig. 2 Typical image acquisition setups. Left: Camera locations are fixed
and an object is placed on a turn-table. Right: A scene or an object
is fixed outdoors and you move around with a camera and take
photos.

ternet by using, for example, community photo sharing websites

such as Flickr (http://www.flickr.com). You need not even use

a camera for this option, on the other hand, has no control over

captured objects or scenes. Therefore, camera parameter esti-

mation must be done through a Computer Vision system. Note

that online community photos tend to have varying illuminations,

viewpoints, image qualities and etc., which pose challenges to 3D

reconstruction algorithms.1),10)

3. Camera Parameter Estimation

Given a set of images, the next important step is to estimate

camera parameters for each image, which consist of extrinsic,

intrinsic and distortion parameters. Extrinsic parameters con-

tain rotational and translational pose information of the camera

and change when you physically move a camera body. Intrin-

sic parameters contain information such as a pixel censor size, a

principal point, and magnification factors. Intrinsic parameters

are determined at the manufacturing stage, except for the mag-

Fig. 3 Camera parameters can be estimated by feature correspondences
across multiple images. Suppose we identify the projected location
of a vertex X1 (resp. X2) in every image, and establish their cor-
respondence. Each set of matched feature points poses a constraint
on the camera parameters in that optic rays passing through the
projected image locations (e.g., three red rays) must intersect at a
single 3D point.

nification factors that change when a focus changes. Distortion

parameters capture higher-order (non-linear) effects that come

from lens. Detailed explanation of the camera parameters is out-

side the scope of the paper and interested readers are referred to

a computer vision text book by Hartley and Zisserman.11)

While there are various camera calibration methods, a common

essential task is to extract image features (e.g., corners and blobs)

and establish their correspondences across images. Figure 3 il-

lustrates a toy example where a tetrahedron is visible in three

images {Ij}. Suppose we identify and extract image locations

of the vertices and match them across the images. Then, each

vertex imposes a constraint on the camera parameters in that
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optic rays that pass through its extracted image locations must

intersect at a single 3D point. For example, in Figure 3, the three

red rays (resp. the three orange rays), corresponding to a vertex

X1 (resp. X2), must intersect at a single 3D point. Therefore,

the estimation process is to extract and match image features as

many as possible and solve for camera parameters that satisfy the

above intersection constraint for all the matched feature points.

In the following, we describe two different camera calibration

methods, calibration chart-based system and Structure from Mo-

tion, whose main difference is the way image features are detected

and matched. We again refer interested readers to a text book11)

for algorithmic details.

3.1 Calibration chart based system

For image acquisition in a lab environment, an access to a pho-

tographed scene is allowed. In such a scenario, a calibration chart

can be used to help calibrate cameras: We know the geometry

and texture of a calibration chart, and feature extraction and

correspondence computation becomes easy.

A typical experimental setup is to use a turn table that can

repeat its motion with high accuracy. We take photos of an ob-

ject and a calibration chart on a turn table separately but under

the same motion. Then, we calibrate cameras with photos of a

calibration chart by exploiting its known geometry and texture

information. Jean-Yves Bouguet distributes matlab calibration

software with friendly GUI interface for a planar checker-board

calibration chart.3) �1 A user needs to simply click three corners

of the checker-board pattern in each photo, where the system au-

tomatically detects and establish correspondences of all the grid

corners and estimate the camera parameters.

�1 C++ implementation of the software is also available from open source
computer vision library OpenCV.9)

3.2 Structure from Motion

When a user does not have an access to photographed scenes

or it is difficult to place calibration chart, Structure from Motion

(SfM) is a popular alternative. SfM is a process of recovering 3D

structure of a scene and camera parameters11) automatically from

a set of images. SfM system can be used to process an image se-

quence (e.g., movie shots)14),22) as well as photo collections.2),16)

When an image sequence is the input, feature detection and track-

ing method is used to establish feature correspondence.14),22) For

a separated photo collection, feature points are first detected by

feature detectors (e.g., corner or blob detectors), processed by

feature descriptors such as SIFT15) to make them robust against

viewpoint and illumination changes, and matched across images.

SfM system often works as a black box, where users need to just

provide an image sequence or photos as input, and is very easy

to use especially for non-experts. On the other hand, input data

must be acquired with certain considerations for robust and suc-

cessful reconstructions. For an image sequence, motion blur, and

hence fast motion, should be avoided for image quality. For an

image set, there must be enough image overlap with sufficient but

not too large viewpoint changes. Furthermore, in comparison to

calibration chart, scene geometry and appearance are unknown,

which poses additional challenges to SfM algorithms.

Nonetheless, successful SfM system for an image sequence has

been developed and become an indispensable process in an enter-

tainment industry (e.g., movie production). In a research com-

munity, SfM on a photo collection has been a very popular and

successful field1),4),20) thanks to emerging internet photo collec-

tions such as Flickr (http://www.flickr.com).

Bundler19) is a state-of-the-art SfM software by Noah Snavely,

which originates from Photo Tourism project at University of
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Fig. 4 An SfM reconstruction of Colosseum in Rome from internet commu-
nity photo collections by Noah Snavely’s SfM software Bundler.19)

Washington.20) Photo Tourism was the first successful SfM sys-

tem on internet photo collections (See Figure 4), and became the

basis for Photosynth from Microsoft Live Labs.16) The software

is unfortunately not scalable and can process at most hundreds

of photos. Large-scale SfM algorithms have been recently pre-

sented in the research community. Agarwal et al. presented a

system1) that downloads millions of images from an online com-

munity photo-sharing website Flickr (http://www.flickr.com)

by using a search keyword such as Rome or Venice, finds clus-

ters of images that see the same scenes such as Colosseum or

Trevi Fountain in Rome and San Marco Square or Grand Canal

in Venice, estimates camera pose, and reconstructs 3D points

corresponding to matched image feature points (See Figure 5).

The system produced, for example, a cluster of 2,097 images and

819,242 points of Colosseum in Rome, a cluster of 13,699 images

and 4,515,157 points for San Marco Square in Venice, and 4,585

images and 2,662,981 points for a city of Dubrovnik in Croa-

tia. The system runs less than a day for each city with a PC

cluster with 500 compute cores. Frahm et al. also presented a

large-scale SfM system that can process a couple million Internet

photos within a day on a single PC, while achieving significant

speed-ups with GPU-based implementation.4)

4. Dense Geometry Reconstruction

In addition to estimating camera parameters, camera calibra-

tion process recovers a set of 3D points. However, these points

are usually very sparse corresponding to only distinctive features

in the images, and noisy. Reconstructing dense and clean 3D

points or mesh models from calibrated photographs is addressed

by multi-view stereo (MVS) algorithms.

MVS algorithms have made dramatic progress in the last few

years, and state-of-the-art algorithms can now rival laser range

scanners in accuracy. �1 In the following, we first explain a basic

MVS principal, namely photometric consistency function, then

introduce notable research work in the field.

4.1 Photometric consistency function

MVS algorithms use a photometric consistency function as a

fundamental tool for 3D reconstruction. Given a 3D point Xi,

a photometric consistency function can be evaluated as follows.

We first project Xi to each input image, collect a pixel color at

its image projection, then check the consistency of sampled pixel

colors by taking their standard-deviation, for example. If a point

lies on the surface of an object or a scene, collected pixel colors

come from the same physical 3D point and should be consistent

(e.g., X2 in Figure 6). If not, sampled pixel colors should come

from different parts of a scene and be inconsistent (e.g., X1 in

Figure 6).

Suppose a photometric consistency function is evaluated at ev-

ery 3D point in a 3D volume. In a toy example illustrated at the

right of Figure 6, a photometric consistency function is expected

�1 Seitz et al. gives a good survey on MVS algorithms.18)
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Fig. 5 Reconstruction results of large-scale SfM system.1) Top: A city of Dubrovnik in Croatia with
4,585 images and 2,662,981 3D points. Bottom: San Marco Square in Venice with 13,699 images
and 4,515,157 3D points. In the figure, each estimated camera pose is represented by a frustum
(line-drawing), while reconstructed points are rendered as colored 3D points in the background.

to be high (black in the figure) near the surface of an object.

MVS reconstruction is a problem to identify a 2D surface in the

volume where the consistency score is high. Note that the above

is a description of a very simple photometric consistency function,

and numerous variants have been proposed in the past. Refer to

a survey paper by Seitz et al.18) for more details.

4.2 State-of-the-art Algorithms

Esteban et al. presented the first successful MVS approach

that produces high-quality mesh models six years ago (See Fig-

ure 7).12) As in Esteban’s work, most MVS algorithms aim at

reconstructing scenes as polygonal mesh models, while many al-

gorithms also use different surface representations in intermedi-

ate steps. Multiple-depthmap is a popular surface representation,

where a depthmap is reconstructed for each image,8),23) which are

then merged into a single 3D model (See Figure 8). An oriented

point cloud is another representation,7) which in fact suffices for
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Fig. 6 Photometric consistency function evaluates if a 3D point is likely
to be on the surface of an object or a scene. Given a 3D point,
we project the point into each image and collect a pixel color at its
projected image location. Collected pixel colors in multiple images
should be consistent if the point is on the surface. MVS recon-
struction problem is to identify a 2D surface where the photometric
consistency score is high, illustrated as black region at the right of
the figure.

Fig. 7 High quality MVS mesh models reconstructed by Esteban et al.12)

in 2004. A couple dozen high resolution photographs are acquired
by a turn table-based setup (left). All the figures are courtesy of
Carlos H. Esteban.

visualization purposes5) via point-based rendering techniques,17)

but can also be converted into a mesh model (See Figure 9). �1

�1 Patch-based Multi-View Stereo (PMVS) by Furukawa et al.6) is a popular
MVS software that produces oriented point clouds, and Poisson Surface

Fig. 8 Real time MVS system based on multiple depthmap surface repre-
sentation by Gallup et al.8) The figure is courtesy of David Gallup.

Fig. 9 Oriented point clouds reconstructed from patch-based multi-view
stereo algorithm by Furukawa et al.7) (top), which are then con-
verted into mesh models (bottom).

Most multi-view stereo researches have focused on small-scale

object or scene reconstruction involving in a couple hundred pho-

tographs at most. Furukawa et al. presented a large-scale MVS

reconstruction software by Kazhdan et al.13) converts oriented points
into a polygonal mesh model. Both software are open-source and publicly
available online.
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system5) that was built on Agarwal’s SfM system described in

Section 3.2. The core challenge is in the view clustering, namely

process to decompose an input image set into smaller image clus-

ters, for which a standard MVS algorithm is used to reconstruct

a scene independently. Figure 10 shows two reconstructions from

the system. The top of the figure shows 14,051,331 3D points for

an old city of Dubrovnik from 6,304 input images. The bottom

shows reconstructed 27,707,825 3D points for San Marco Square

in Venice from 13,709 images. The system runs in a few hours via

parallel execution on distributed system. In both examples, the

system succeeded in reconstructing wider areas, while achieving

high fidelity at popular locations where images are abundant.

5. Conclusion

In this paper, we gave an end-to-end introduction to 3D photog-

raphy techniques and system in Computer Vision. With recent

advancements and maturity in the research field, more vision-

based 3D reconstruction system have been deployed in indus-

try, and more 3D reconstruction tools have become available for

non-experts. Not so far distant in the future, there may come a

day when an entire world can be reconstructed from everybody’s

photo collections.
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