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Integer Programming and Dynamic Programming-based

Methods of Optimizing Control Policy in Probabilistic

Boolean Networks with Hard Constraints

Xi Chen ,†1 Tatsuya Akutsu ,†2 Takeyuki Tamura †2

and Wai-Ki Ching †1

Control problems of Boolean Networks (BNs) and Probabilistic Boolean Net-
works (PBNs) are studied in this paper. BN CONTROL is formalized to derive
the network to the desired state within a few time steps by external control.
PBN CONTROL is formalized to find a control sequence such that the network
will terminate in the desired state with a maximum probability. Furthermore,
we propose to minimize the maximum cost of the terminal state to which the
network will enter. For solving the above problems, integer linear programming
and dynamic programming-based methods in conjunction with hard constraints
are developed. A hardness result suggesting that PBN CONTROL is harder
than BN CONTROL is also presented.

1. Introduction

In bioinformatics, it is important to develop efficient algorithms for controlling
genetic regulatory networks. Many formalisms have been developed for modeling
genetic regulation processes, such as Bayesian networks, multivariate Markov
chain model6), Boolean networks and probabilistic Boolean networks10). Boolean
networks (BNs) and their extension probabilistic Boolean networks (PBNs) have
received much attention among all the models since they are able to capture the
switching behavior of the genetic process.

In 1969, Kauffman firstly introduced Boolean network (BN)11). BN is a very
simple model: each gene is quantized to only two levels – on and off (represented
as 1 and 0). Target genes are regulated by several genes called its input genes
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via its Boolean function (predictor function). If all the input genes and Boolean
functions are given, a BN is said to be well defined. But a BN is a deterministic
model. Randomness comes only from the initial state. From this reason, it is
more realistic to extend a BN to a stochastic one, namely, Probabilistic Boolean
Network (PBN). Instead of having only one Boolean function, each gene in a
PBN can have multiple Boolean functions with selecting probabilities assigned
to them. The dynamics of a PBN can be studied and analyzed by the theory of
Markov chain. Moreover, it is possible to control one or more genes in a network
such that the whole network is derived into a desired state or a steady-state
distribution. Then we can develop therapeutic gene intervention or gene control
policy1),2),7).

We propose in this paper to solve the control problem of PBNs by using in-
teger linear programming and dynamic programming in conjunction with hard
constraints. Kobayashi et al. applied an integer programming approach to solve
the control problem of PBN12). We consider adding hard constraints (i.e. adding
an upper bound for the number of controls that can be applied to the network7))
into the problem and propose an integer linear programming based method with
hard constraints to solve the control problem of BN and PBN. Introducing hard
constraints is important for medical applications because the number of treat-
ments such as radiation and chemo-therapy is usually limited7). Furthermore,
given the terminal cost for each state, we want to derive the network into the
state with the minimized maximum cost by applying external control.

Besides development of algorithms, we study the time complexity of control
problems for PBN. We prove both minimizing the maximum cost and minimizing
the average cost are Σp2-hard, where the latter problem corresponds to the original
control problem for PBN8). Note that control of BN is NP-complete?1 and control
of PBN is NP-hard1). Because it is believed that Σp2-hard problems are much
harder than NP-complete problems9), this result suggests that control of PBN
is much harder than control of BN. Moreover, this result suggests that such
methods as integer linear programming cannot be effectively applied to solve the

?1 Control of BN is NP-complete if the number of time steps is polynomially bounded. Other-
wise, it is PSPACE-complete3). However, it is not usual to consider an exponential number
of time steps.
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control problem of PBN because (a decision problem version of) integer linear
programming is known to be NP-complete9). Therefore, integer programming-
based approach can only be applied to control of BN2) and special restricted
variants of control of PBN12).

2. Problems

2.1 Boolean Networks and Probabilistic Boolean Networks
A Boolean network (BN) is represented by a set of nodes (genes) V =
{v1, v2, . . . , vn} and a list of Boolean functions F = {f1, f2, . . . , fn} where a
Boolean function fi(vi1 , . . . , vik) with inputs from specified nodes vi1 , . . . , vik is
assigned to vi. We use IN(vi) to represent the set of input nodes vi1 , . . . , vik to
vi. The number of inputs to vi is called the indegree of vi. We define K as the
maximum indegree of a BN.

We define vi(t) to be the state (0 or 1) of the gene i at time t. The rules of
the regulatory interactions among the genes can then be represented by Boolean
functions: vi(t + 1) = fi(vi1(t), . . . , vik(t)), i = 1, 2, . . . , n. Here we let v(t) =
(v1(t), v2(t), . . . , vn(t))T which is called the Gene Activity Profile (GAP). The
GAP can take any possible states from the set S = {(v1, v2, . . . , vn)T : vi ∈ {0, 1}}
and thus totally there are 2n possible states in the network. We then define
z(t) = 1 +

∑n
i=1 2n−ivi(t). As v1(t)v2(t) . . . vn(t) ranges from 00 . . . 0 to 11 . . . 1,

z(t) will take on all values from 1 to 2n. Clearly, there is a one-to-one map from
x(t) to z(t). Hence instead of the binary representation for the global state, one
can use equivalent decimal representation z(t).

To extend the concepts of a BN to a stochastic model, for each vertex vi in a
PBN, instead of having only one Boolean function as in BN, there are a multiple
of Boolean functions (predictor functions) f (i)

j (j = 1, 2, . . . , l(i)) to be chosen for
determining the state of gene vi and usually l(i) is not very large. The probability
of choosing f (i)

j as the predictor function is c(i)j , 0 ≤ c(i)j ≤ 1 and
∑l(i)
j=1 c

(i)
j =

1 for i = 1, 2, . . . , n.
We let fj be the jth possible realization, where fj = (f (1)

j1
, f

(2)
j2
, . . . , f

(n)
jn

), 1 ≤
ji ≤ l(i), i = 1, 2, . . . , n. Suppose that the selection of the Boolean function
fji for each gene i is an independent process, then the probability of choosing

the corresponding BN with Boolean functions fj = (f (1)
j1
, f

(2)
j2
, . . . , f

(n)
jn

) is given
by qj1j2···jn =

∏n
i=1 c

(i)
ji

. There are at most N =
∏n
i=1 l(i) different possible

realizations of BNs. Let a and b be any two column vectors in the set S. Then
the transition probability P {v(t + 1) = a | v(t) = b} =

∑N
j=1 P {v(t + 1) =

a | v(t) = b, the jth BN is selected} · qj =
∑
j∈I qj where I is the set of BNs

of which the transition probability from state b to state a is 1. Here we let
qj = qj1j2···jn and j = j1 +

∑n
i=2

(
(ji − 1)(

∏i−1
k=1 l(k))

)
. We can then use

both of them when there is no confusion.
2.2 Control of BN with Hard Constraints
In BN CONTROL, there are two types of nodes: internal nodes and ex-

ternal nodes, where internal nodes correspond to usual nodes in a BN and
external nodes correspond to control nodes. Let a set V of n + m nodes
be V = {v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are internal nodes and
vn+1, . . . , vn+m are control nodes. Then the states of internal nodes at time
t + 1 are represented by vi(t + 1) = fi(vi1(t), . . . , vik(t)), i = 1, 2, . . . , n.
where each vij is either an internal node or a control node. Here we let
v(t) = [v1(t), v2(t), . . . , vn(t)] and u(t) = [vn+1(t), vn+2(t), . . . , vn+m(t)]. If
vn+i(t)− vn+i(t+ 1) 6= 0, for some i ∈ {1, . . . ,m}, then we say that the external
control is applied once to the network. Thus the number of controls applied to
network is equal to

∑M−1
t=0

∑m
i=1 |vn+i(t)−vn+i(t+1)|. Then the control problem

of BN under hard constraints is as follows:
Definition 1: Suppose an initial state of the network is v0 and the desired state
of the network is vM , find a control sequence 〈u(0),u(1), . . . ,u(M)〉 such that
v(0) = v0 and v(M) = vM , and the maximum number of controls applied to the
network during the finite time period M is H.

2.3 Finding the Optimal Path with Hard Constraints
In a PBN, for each time step t, the network will choose one of the possible

BNs (e.g., jt-th possible BN) with the corresponding selecting probability qjt
and enter into the next state v(t + 1) from v(t). Given the initial state v0 and
the desired state vM , we can define the probability of a path with v(0) = v0 and
v(M) = vM as

∏M−1
t=0 qjt . By applying external control to the network, we can

derive the network into desired state vM with different path probabilities. Then

2 c© 2011 Information Processing Society of Japan

Vol.2011-BIO-24 No.5
2011/3/10



IPSJ SIG Technical Report

the problem of maximizing the highest probability of a path with the initial state
v0 and the terminal (desired) state vM can be described as follows:
Definition 2: Suppose an initial state of the network is v0 and the desired state
of the network is vM , find a control sequence 〈u(0), . . . ,u(M)〉 such that the
probability of the path with the initial state v0 and the terminal (desired) state
vM is maximized, and the maximum number of controls applied to the network
during the finite time period M is H.

2.4 Minimizing the Maximum Cost
Suppose that a PBN with n internal nodes v(t) = [v1(t), v2(t), . . . , vn(t)] and

m control nodes u(t) = [vn+1(t), vn+2(t), . . . , vn+m(t)]. Let zt = 1 +
∑n
i=1 2n−ivi

which is the state of network at time step t, and ut = 1+
∑m
i=1 2m−ivn+i which is

the control input of network at time step t. In a PBN, even if the network starts
with the given initial state z(0), the subsequent states will be random since the
PBN is a stochastic model. That is, the terminal state zM could take any possible
values from 1 to 2n. We assign a terminal cost CM (zM ) to each of states zM at
time step M . Note that, depending on the particular PBN and the control input
used in each step, it is possible that the network can not enter some of the states
at time step M . We define Ct(zt) as the maximum cost of which, beginning from
zt at time step t, the network can reach at the terminal time step. The problem
of minimizing the maximum cost can be described as follows:
Definition 3: Given the terminal cost CM (zM ) for each of states zM ∈
{1, 2, . . . , 2n} at time step M , by applying external control, minimize the max-
imum cost C0(z0) beginning from the given initial state z0, and the maximum
number of controls applied to the network is H.

3. Algorithms

3.1 ILP with Hard Constraints for BN CONTROL
Let xi,t represent the Boolean value vi(t). Define

σb(x) =

{
x, if b = 1.

x̄, otherwise.
(1)

Then any Boolean function fi(xi1,t, . . . , xik,t) is equivalent to fi(xi1,t, . . . , xik,t) =∨
bi1 ...bik∈{0,1}k{fi(bi1 , . . . , bik)∧σb1(xi1,t)∧· · ·∧σbk(xik,t)}. Then we define binary

variable hi,t ∈ {0, 1} (i = n+1, . . . , n+m) as the node control variable. If hi,t = 1,
we say the node i changes its value at time step t. Since the maximum number
of controls applied to the network during the finite time period is H, we have∑M−1
t=0

∑n+m
i=n+1 hi,t ≤ H. Also, we define τb(x) as

τb(x) =

{
x, if b = 1.

1− x, otherwise.
(2)

Then the ILP-Formulation for the BN CONTROL based on the method of2) is
to maximize

∑N
i=1 xi,M . Methods of representing constraints are shown in Chen

et al.5).
3.2 ILP with Hard Constraints for PBN CONTROL
To extend the above ILP formulation for PBN CONTROL, we define yr,t as

the selection variable. If yr,t = 1, we say the rth BN is selected at time step t.
Otherwise, we say it is not selected at time step t. Then we have

∑R
r=1 yr,t =

1, for t = 1, 2, . . . ,M − 1. Here R is the total number of possible realizations
for the PBN. Define fi,r as the Boolean function for node vi when the r-th BN
is selected. Let P = (p1, p2, . . . , pR) be the selecting probabilities for the R

possible realizations. Then the objective function for the PBN control with hard
constraints is to maximize

∑M−1
t=0

∑R
r=1− log(pr) ·yr,t. Details are shown in Chen

et al.5).
3.3 Minimizing the Maximum Cost
Define J(zt, ht) as the minimized maximum terminal cost CM (zM ) when the

state is zt, and the remaining number of external controls is ht, at time step t.
Define u(zt, ht) as the control function when the state is zt and the remaining
number of external controls is ht at time step t. Let F (zt, ut) be the set of states
at time step t + 1 that can be reached from zt with control ut. Then dynamic
programming for the PBN control with hard constraints is as follows:
Step 0: Set t = M ; J(zM , hM ) = CM (zM ) for all hM = {0, . . . , H}.
Step 1: t := t− 1.
Step 2: For any zt ∈ {1, . . . , 2n} and ht ∈ {0, . . . , H}, compute

J(zt, ht) = min
ut∈{1,...,2m}





max
zt+1∈F (zt,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

max
zt+1∈F (zt,ut)

J(zt+1, ht − 1), otherwise.
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and

u(zt, ht) = argminut∈{1,...,2m}





max
zt+1∈F (zt,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

max
zt+1∈F (zt,ut)

J(zt+1, ht − 1), otherwise.

Step 3: If t > 0, go back to step 1; Otherwise, stop.
In the above, ut 6= ut+1 is counted as one control where we need to modify the

algorithm for the case that the number of controls is defined as before. Finally,
we take minh0∈{0,...,H} J(z0, h0) for computing the minimized maximum cost.?1

4. Complexity analysis

We give some analysis on the complexity of minimizing the maximum cost and
minimizing the average cost in this section. We assume that a PBN is not given
in the matrix form but in the form of f (i)

j s and c
(i)
j s because A is of exponential

size and thus it is almost meaningless to discuss the time complexity if we use A.
Furthermore, we assume that it is only required to output u(0) for given z0 and
PBN (otherwise, we should output u(t)s for an exponential number of GAPs).
Then, we can keep both the sizes of input and output polynomial of n and thus
can discuss the time complexity with respect to the network size. Moreover, we
assume that the number of time steps (i.e., M) is polynomially bounded. Oth-
erwise, both BN CONTROL and PBN CONTROL would be PSPACE-hard3),4).
Because it is not realistic to consider an exponential number of time steps, this
is a reasonable assumption. Although details are omitted, we obtained following
theoretical results5).

Theorem 1 Minimizing the maximum cost in control of PBN is
∑p

2-hard.
Theorem 2 Minimizing the average cost in control of PBN is

∑p
2-hard.

5. Conclusion

ILP-based methods for control of BN and for finding an optimal path for PBN
are presented both with hard constraints. We have also presented a DP-based
method for finding a control policy that minimizes the maximum cost for PBN un-
der hard constraints, where it uses exponential size tables. The hardness results

?1 We need to modify the algorithm if there exist multiple uts giving the minimum cost.

suggest that ILP cannot be effectively applied to minimization of the maximum
or average cost for PBN.
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