
IPSJ SIG Technical Report

Exploiting Efficiency of Redundant Executions on an FU Array

Jun Yao†1 and Yasuhiko Nakashima†1

We introduce an error tolerable processor to perform duplicated executions by
supporting an Explicitly REdundant VLIW Architecture (EReLA). EReLA ex-
tends the conventional VLIW ISA and provides special data sanity check (DSC)
instructions to help compilers insert fail-safe mechanisms into binaries. As the
redundant execution will lengthen the data path, we further study a scheme
to employ a functional unit (FU) array based accelerator to sufficiently cover
the possible performance impact. Our results show that the explicitly denoted
fail-safe mechanisms in EReLA can work best with the FU array to tolerate
both soft and hard errors. By properly mapping extended binaries onto the FU
array, the processor can maintain its loop iteration-based throughput, which
indicates a negligible performance cost.

1. Introduction

Recently, the advancing trend in process technology towards ultimate minia-

turization has lead to a continuously increasing transient and permanent failure

rate in electronic devices including microprocessors. Electronic units which are

vulnerable due to their small size, supply voltage and capacitance becomes un-

reliable to generate correct results. It thereby necessitates the needs for device,

architecture and system level mechanisms to help construct fault tolerable pro-

cessors for a future technology.

In this paper, we propose an architecture to effectively perform fully redundant

executions. The baseline architecture was originally constructed to achieve a

significant execution speed-up by mapping the hottest spot in a program—which

is usually the inner loop—onto a functional unit (FU) array. The data-flow

graph in the kernel of that mapped loop is executed along the depth of the

FU array, which guarantees finishing the loop iterations in continuous cycles.

With minor changes to guarantee error detection and recovery, it is possible to

†1 Nara Institute of Science and Technology

use the FU array to tolerate both transient and permanent failures, and cover

possible performance drawbacks from redundant execution by its high execution

throughput.

For this purpose, we proposed Explicitly REdundant VLIW Architec-

ture (EReLA), extending a conventional VLIW ISA with necessary augmentation

to aid the code replication and the data sanity checking (DSC). Specifically, DSC

instructions have been included in EReLA to explicitly indicate the locations and

sources to perform error checking. The mapping scheme interprets the modified

binaries and maps the lengthened data-flow graph in a highly compacted fashion

onto the FU array. In an FU array with a sufficient depth to hold the replicated

data-flow graphs, parallelism between different loop iterations can still be fully

exploited. This will bring almost no performance impact even with the full re-

dundancy. In addition, EReLA is also expected to cooperate with the scheme

to locate permanent defects effectively. The array structure makes it possible to

perform a very fine grained unit replacement, without lower its original resource

availability.

The paper is organized as follows: Section 2 introduces many architecture level

redundant executions as related technologies. Section 3 gives an FU array based

accelerator—Linear Array Pipeline Processor (LAPP), as our baseline platform.

In Section 4, the proposed EReLA structure and working schemes will be demon-

strated in detail. Section 5 concludes the whole paper.

2. Related Technologies

Essentially, electronic faults in microprocessors can be covered by certain levels

of redundancy1)–5). As an example, IBM z9901) uses a redundant processor core

to perform duplicated instructions on-the-fly. Data check is done before each

committing stage, either to the register file or data cache. AR-SMT2) employs a

multi-threading architecture to work on thread level duplication. Qureshi et al5)

proposes to issue a second execution under the long delay of L2 cache misses,

which can thus largely cover performance losses in memory intensive programs.

These space or time redundancies or their combinations will require extra copy

of hardware or introduce additional execution delay. Although it is possible to

distribute redundant executions onto different cores or time slots in a chip multi

c© 2011 Information Processing Society of Japan1

Vol.2011-ARC-194 No.9
2011/3/11

IPSJ SIG Technical Report

RR MA[0]EX[0]

ID

RegFile cc: n+3

cc: n+2cc: n+1

cc: n+4

cc: n

EX[2]

L0$

L1$

L0$MA[1]

MA[2]

I1$

cc: n+5

L0$MA[3]

IF

L0$

EX[1]

-- Normal Pipeline: IF, ID, RR, EX[0], MA[0]
-- Array Pipeline Stage i (i>=0): EX[i], MA[i]

-- cc: n+k: clock cycle n+k during array execution.

LD
...

ST

LD

(b) in view of FU array

ALU ALU EAGALU

(a) LAPP structure

Configuration DATA (MAP)

EX[3]

Fig. 1 Structure of LAPP.

processor (CMP) to exploit parallelism and efficiency6), the access of shared

checking data will still affect the performance. Moreover, core-level redundancy

will indicate a large granularity of replacement after permanent defects. Disabling

a corrupted unit will sometimes cause a decrease in the core number.

Compared to many core or thread level redundancies, current reconfigurable ar-

chitecture is expected to have potentials in duplicated executions. Reconfigurable

architecture is originally designed for better power/performance. It usually con-

tains a large functional unit (FU) array. By properly setting the connections

and operations in these FUs, it is possible to work on a certain data-path with

a high speed. Accordingly, the large FU pool provides an effective option to

exploit parallelism in fully redundant codes. Moreover, after permanent defects,

only certain blocks in the large FU array will be disabled by simple isolation,

which indicates a very fine granularity replacement. Taking all these features

into account, this research is focused on finding an effective working scheme of

redundant executions in an FU array based architecture.

3. Linear Array Pipeline Processor

In this section, the structure of Linear Array Pipeline Processor (LAPP) will be

introduced. LAPP is a specific accelerator implementation of a reconfigurable FU

array based processor for high-speed execution. Besides its high performance fea-

gr1 #4 gr3 #1

Add Sub

gr6 gr4 gr1 #4

Eag

gr1gr6 gr3z end gr4 #4 gr4 #4

Bz Eag

gr6 gr4

Add Ld

gr2

gr6

Ld

gr5

Sll

#16

gr2

gr6 #4

Or

gr5

Add

gr6

Eag

#0

St

Bra

loop

Self-updating by using
bypasses between current
and next loop iterations.

Reg File

int A[N],B[N],C[N];
/* init A,B,C */
for (i=0;i<N;i++)
 C[i]=(A[i]<<16])|B[i];

 loop:
I0:gr1+=4 ;gr3-- ;gr2=@(gr1,0);
I1:gr4+=4 ;Bz end ;gr5=@(gr4,0);
I2:gr2<<=16; ; ;
I3:gr5|=gr2; ; ;
I4:gr6+=4 ;Bra loop;@(gr6,0)=gr5;
 end:

(a) C program block.

(b) VLIW code block.

(c) LAPP mapping.

Fig. 2 Mapping a loop kernel onto LAPP.

ture, LAPP maintains backward compatibility by supporting conventional VLIW

which is usually unavailable in a reconfigurable architecture. According to these

features, it is selected as the baseline platform for the redundant execution in

this research.

Fig. 1 shows the basic structure of LAPP. Basically, LAPP contains a normal

VLIW pipeline, shown as IF, ID, RR, EX[0], and MA[0] in Fig. 1(a). Additionally,

LAPP extends its EX and MA stages into extra working stages, as EX[i] and

MA[i] (i > 0). The combination of these EX[j]s and MA[j]s (j ≥ 0) take an FU

array format, as depicted in Fig. 1(b). The FU array can be regarded as a series

of array pipeline stages, in which each array pipeline stage represents EX[i] and

MA[i] in Fig. 1(a).

By properly setting the configuration data, which is the mapping information

in each array pipeline stage, it is possible to use LAPP to accelerate the hottest

loop (Fig. 2(a)) inside the program. Specifically, the program block in Fig. 2(b)

can fit into the FU array, taking the mapping of Fig. 2(c).

c© 2011 Information Processing Society of Japan2

Vol.2011-ARC-194 No.9
2011/3/11

IPSJ SIG Technical Report

As shown in Fig. 2(c), the loop kernel can be mapped onto 5 array pipeline

stages. The FU array can overlap the executions of different loop iterations,

following a pipeline concept. After the first 6 cycles, one loop iteration can be

finished per cycle?1, which indicates a significant speed-up by exploiting sufficient

parallelism between iterations.

4. Fault Toleration Scheme in EReLA

4.1 Explicit Redundancy by software/hardware approaches

As described in Section 2, electric faults can be tolerated by duplicating original

executions either with multiple resources or along the time line. In this research,

we use LAPP’s large FU resource and its high throughput to aid the redundant

execution.

The basic idea of redundant execution in this research works in the following

way. Taking the calculation of S=A+B+C; as an example, the redundant execution

can be achieve by explicitly assuming a new series of program codes as S1=A+B+C;

S2=A+B+C; S=(S1==S2)?S1:recover();, where S2 is the secondary calculation.

If the calculation of S1 and S2 can be distributed to different hardware resources,

the comparison after the calculation can help detect the erroneous state in either

of the summaries. The procedure of recover() can perform re-execution to tol-

erate transient errors or use a higher dependable architecture like triple modular

redundancy (TMR) with voting logic to locate the permanently defected units.

The new program will extend the length of data-flow graph. However, with

LAPP, an extended data-flow graph only means that the mapping will require

more array pipeline stages. Usually, LAPP prepares a large depth of array

pipeline to be ready for mapping loops with a very long data path. Furthermore,

some augmentations can be added to re-use mapped array stages in different time

slots, which virtually extends the depth of LAPP’s array pipeline.

Many different approaches can be employed to translate VLIW codes according

to the basic idea above, either by the extended compiler or by dynamic duplica-

tion during the LAPP mapping scheme. In this research, we use a compiler-aided

?1 There are some restrictions such as no data dependences between different loop iterations
except loop counters, and so on. Paper 7) has a clear definition of LAPP working situation.

approach to explicitly help LAPP better understand the locations and sources of

data sanity checks. The extended VLIW code is listed in Fig. 3(a).

To support explicit redundancy and data sanity check (DSC), special instruc-

tions have been added in VLIW architecture, as DSC (1 input), DSCz (further

covering z bit), DSCadr (checking address). Every register in LAPP architecture

will be extended to contain an additional f bit, storing the check result of DSC.

DSC instruction is mainly comparison. CHK-f& instructions will invoke recover

procedure or perform its latter half according to the f bit. pre-ST instruction

calculates the address without taking the real store phase. Only when both ad-

dress and data to store are checked by CHK-f&ST, the data will be committed into

the cache. Alternatively, we can also add special treatment in L0 to L1 cache

committing to avoid the output of tainted value.

A hardware approach is needed to duplicate instruction except the DSC and

CHK-f& instructions. Fig. 3(b) shows the extended version of Fig. 3(a)?2. Instruc-

tions are now with a primary/secondary program counter (PC) format, taking

the style of Ix y. The data of Ix ∗ depends on I(x − 1). Note that it is still

possible to use Ix 0 to represent the original program in Fig. 3(a). Additionally,

as shown in Fig. 3(a), with a good understanding of the program block, it is pos-

sible to only put DSCs to the data affecting the control path or outputs. This

helps to reduce the additional cost in a redundant execution.

All instructions in Fig. 3(b) can be mapped onto the FU array with minor

extension of the supported functions. In this paper, we provide a hand-mapping

result in Fig. 3(c), which gives the mapping of redundant VLIW loop kernel

in Fig. 3(c). Note that all register data are fetched from the register file and

propagated forward. Accordingly, the registers between different array stages are

required to use hardening technologies like ECC. As demonstrated in Fig. 3(c),

the extended kernel can still be mapped within a sufficiently deep array pipeline.

In this example, the 10 stages can finish loop iterations in continuous cycles. The

performance impact from redundancy will be kept in a very low level when the

code loops around sufficient times.

?2 The target of branch is supposed to be calculated during the compiling phase so that
instructions like Bra is not needed to be duplicated. For high reliability, the control path
inside LAPP will be verified by dual hardware resources.

c© 2011 Information Processing Society of Japan3

Vol.2011-ARC-194 No.9
2011/3/11

IPSJ SIG Technical Report

gr1 #4 gr3 #1

Add Sub

gr6 gr4 gr1 #4

Eag

gr1gr3 gr3z gr6 gr1 #4

Eag Ld

gr2

gr6

Ld

gr2

#1

Sub

gr1 #4

Add

gr1

gr4

gr3z gr6 gr4 #4

Eag

gr4 #4

Ld

gr5

Eag

Ld

gr5

Sll

gr2

Add

gr6

Or

gr5

Add

gr6

DSC

gr5&f

gr6 #4

gr6 #4 gr6,f

DSC

gr3z gr4 #4

Add

gr3z&f

CHK-f&Bz

end gr4gr4

Add

#4

gr4

Or

gr5

Sll

gr2

gr2

#16gr2 #16

gr2

gr5

Eag

gr6 #4

gr6 #4

St

CHK-f&ST

DSC

Adr&f

Adr

Adr

Adr

gr6

gr6

DSC

gr6.f

gr6

Bra

loop

Redundant exec.
and results.

Exec for fault
tolerance. (c) Mapping.

gr5&f

gr5&f

Eag

 loop:
I0_0:gr1+=4;
 {gr3&z}=gr3-1;
 gr2=@(gr1,0);
I0_1:gr1+=4;
 {gr3&z}=gr3-1;
 gr2=@(gr1,0);
I1_0:z.f=DSCz gr3,z; NOP; NOP;
I2_0:gr4+=4;
 CHK-f&Bz end;
 gr5=@(gr4,0);
I2_1:gr4+=4; NOP;
 gr5=@(gr4,0);
I3_0:gr2<<=16;
 gr2<<=16; NOP;
I4_0:gr5|=gr2;
 gr5|=gr2; NOP;
I5_0:gr6+=4;
 gr5.f=DSC gr5;
 pre-ST @(gr6,0)=gr5;
I5_1:gr6+=4; NOP;
 pre-ST @(gr6,0)=gr5;
I6_0:gr6.f=DSC gr6; NOP;
 DSCadr @(gr6,0)=gr5;
I7_0:Bra loop; NOP;
 CHK-f&ST @(gr6,0)=gr5;
 end:

(a) EReLA code block.

 loop:
I0:gr1+=4;
 {gr3&z}=gr3-1;
 gr2=@(gr1,0);
I1:z.f=DSCz gr3,z; NOP; NOP;
I2:gr4+=4;
 CHK-f&Bz end;
 gr5=@(gr4,0);
I3:gr2<<=16; NOP; NOP;
I4:gr5|=gr2; NOP; NOP;
I5:gr6+=4;
 gr5.f=DSC gr5;
 pre-ST @(gr6,0)=gr5;
I6:gr6.f=DSC gr6; NOP;
 DSCadr @(gr6,0)=gr5;
I7:Bra loop; NOP;
 CHK-f&ST @(gr6,0)=gr5;
 end:

(b) After duplication in hardware

Fig. 3 Mapping EReLA codes onto LAPP.

LAPP uses its normal mode, which is a VLIW processor to execute codes out-

side a loop kernel or unmappable loops7). Similarly to a traditional multi-modular

redundant architecture, we can add two normal VLIW cores inside LAPP to per-

form non-FU array duplicated executions. Additionally, the resources in the FU

gr1

Add

gr1

gr2

DSC

gr1&f

gr1

Add

gr2

VLIW processer0 VLIW processer1

Array 0

Array 1

dual-head LAPP:
1. different array stage 0s
2. different VLIW processors on array stage 0
3. Shared array stage 1..n

gr1

Fig. 4 A dual-head LAPP to cover errors under normal execution.

gr1

Add

gr1

gr2 gr1

Add

gr1

gr2

DSC

gr1&f

AL00 AL01

AL10 AL11

AL20 AL21

Add

gr1

Add

gr1

DSC

gr1&f

AL10 AL11

AL20 AL21

gr1 gr2 gr1 gr2

AL00 AL01

gr1 gr2 gr1 gr2

AL00.err_cnt++;
AL01.err_cnt++;
AL10.err_cnt++;

(a) error detected in gr.dsc in AL10. (c) Remapping(b) error handling.

Fig. 5 Using error counter and re-mapping to locate hard error in LAPP.

array, both the network and the FUs can be used for the additional comparison

purpose. Fig. 4 gives a preliminary diagram for this idea. Detailed hardware

connection is still under research.

4.2 Scheme to Locate Permanently Defected Units

The architecture in Fig. 3 can sufficiently detect error during the real execution.

When the error is transient, it can be covered by a re-execution based fail-safe

procedure. However, when permanent error—also known as hard error—attacks,

the defected unit will always generate incorrect results and simple re-executions

will continue to fail. Since the DSC instruction only takes two inputs, it can not

specify the erroneous data path. For this purpose, we adopt the following scheme

to tolerate hard errors.

c© 2011 Information Processing Society of Japan4

Vol.2011-ARC-194 No.9
2011/3/11

IPSJ SIG Technical Report

As shown in Fig. 5, the FU array redundantly executes gr1+=gr2 and com-

pares the two results. Suppose DSC detects error and set f flag to represent this

erroneous state. The recover() procedure will first increase the err cnt fields in

all the mapped units. In this example, err cnt fields of AL00, AL01, AL10 will be

incremented. In the next mapping phase, the unused AL2X array pipeline stage

will be included in the mapping as shown in Fig. 5(c). Eventually, the err cnt

bits of certain ALUs will reach some pre-determined threshold, which indicates

a location of permanent defected states. Accordingly, a free array pipeline stage

will always be provided inside the array The free stage will rotate along the array

depth, during the remapping phase.

5. Conclusions

In this paper, we give an FU array based accelerator architecture, which works

on VLIW codes with explicit redundancy and data checks. An extended VLIW

ISA with the name of EReLA is proposed for the purpose of generating high reli-

able binaries. The proposal provides an optimized interface between the FU array

based processor and the program binaries to tolerate both soft and hard errors.

Our mapping result in this paper shows that the software/hardware approaches

can sufficiently maintain processor throughputs and conceal performance impact

from redundant executions.

Acknowledgments This work is supported by JST ALCA (Advanced Low

Carbon Technology Research and Development) Program. This work is partially

supported by VLSI Design and Education Center (VDEC), University of Tokyo

with the collaboration with Synopsys Corporation.

References

1) Meaney, P., Swaney, S., Sanda, P. and Spainhower, L.: IBM z990 Soft Error Detec-
tion and Recovery, Device and Materials Reliability, IEEE Transactions on, Vol.5,
No.3, pp.419–427 (2005).

2) Rotenberg, E.: AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessors, Proceedings of the 29th Annual International Symposium on Fault-
Tolerant Computing, pp.84–91 (1999).

3) Oh, N., Shirvani, P. and McCluskey, E.: Error Detection by Duplicated Instructions
in Super-Scalar Processors, IEEE Transactions on Reliability, Vol.51, No.1, pp.63–

75 (2002).
4) Reinhardt, S.K. and Mukherjee, S.S.: Transient Fault Detection via Simultane-
ous Multithreading, Proceedings of the 27th annual international symposium on
Computer architecture, pp.25–36 (2000).

5) Qureshi, M.K., Mutlu, O. and Patt, Y.N.: Microarchitecture-Based Introspection:
A Technique for Transient-Fault Tolerance in Microprocessors, Proceedings of the
2005 International Conference on Dependable Systems and Networks, pp.434–443
(2005).

6) Gomaa, M., Scarbrough, C., Vijaykumar, T.N. and Pomeranz, I.: Transient-Fault
Recovery for Chip Multiprocessors, Proceedings of the 30th annual international
symposium on Computer architecture, pp.98–109 (2003).

7) Yoshimura, K., Iwakami, T., Nakada, T., Yao, J., Shimada, H. and Nakashima, Y.:
An Instruction Mapping Scheme for FU Array Accelerator, IEICE Transactions on
Information and Systems, Vol.E94-D, No.2, pp.286–297 (2011).

c© 2011 Information Processing Society of Japan5

Vol.2011-ARC-194 No.9
2011/3/11

