
IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011)

Regular Paper

Generating Effective Attacks for Efficient and

Precise Penetration Testing against SQL Injection

Yuji Kosuga,†1 Miyuki Hanaoka†1

and Kenji Kono†1,†2

An SQL injection attack is one of the most serious security threats to web ap-
plications. It allows an attacker to access the underlying database and execute
arbitrary commands, which may lead to sensitive information disclosure. The
primary way to prevent SQL injection attacks is to sanitize the user-supplied
input. However, this is usually performed manually by developers and so is a
laborious and error-prone task. Although security tools assist the developers
in verifying the security of their web applications, they often generate a num-
ber of false positives/negatives. In this paper, we present our technique called
Sania, which performs efficient and precise penetration testing by dynamically
generating effective attacks through investigating SQL queries. Since Sania is
designed to be used in the development phase of web applications, it can inter-
cept SQL queries. By analyzing the SQL queries, Sania automatically generates
precise attacks and assesses the security according to the context of the poten-
tially vulnerable slots in the SQL queries. We evaluated our technique using
real-world web applications and found that our solution is efficient. Sania gener-
ated more accurate attacks and less false positives than popular web application
vulnerability scanners. We also found previously unknown vulnerabilities in a
commercial product that was just about to be released and in open-source web
applications.

1. Introduction

Web applications have become prevalent around the world with the success
of a wide range of web services, such as on-line stores, e-commerce, social net-
work services, etc. However, web applications designed to interact with back-end
databases are threatened by SQL injection attacks. SQL injection is a technique
used to obtain unrestricted access to databases through the insertion of mali-

†1 Keio University
†2 CREST, Japan Science and Technology Agency

ciously crafted strings into the SQL queries through a web application. It allows
an attacker to spoof his identity, expose and tamper with existing data in the
database, and control the database with the same privileges as its administra-
tor. This is caused by a semantic gap in the manipulation of the user inputs
between a database and a web application. Although a web application handles
the user inputs as a simple sequence of characters, a database handles them as
query-strings and interprets them as a meaningfully structured command. Ac-
cording to Cenzic 1), SQL injection was the second most frequently reported web
application vulnerability during the second half of 2009, which made up for 16%
of the vulnerabilities found in web applications that they investigated.

Sanitizing is a technique that is used to prevent SQL injection attacks by escap-
ing potentially harmful characters in client request messages. Suppose a database
contains name and password fields in a users table, and a web application con-
tains the following code to authenticate a user’s login.

sql = “SELECT * FROM users WHERE name = ’”
+ request.getParameter(name)
+ “’ AND password = ’”
+ request.getParameter(password) + “’”;

This code generates a query to obtain the authentication data from a database.
If an attacker inputs “’ or ’1’=’1” into the password field, the query becomes:

SELECT * FROM users WHERE name = ’xxx’ AND password = ’’ or ’1’=’1’.

The WHERE clause of this query is always evaluated true, and thus an attacker can
bypass the authentication, regardless of the data entered in the name field. To
prevent this SQL injection, the web application must sanitize every single quote
by replacing it with a double quote. If properly sanitized, the query becomes:

SELECT * FROM users WHERE name = ’xxx’ AND password = ’" or "1"="1’,

where the entered values are regarded as a string. This technique prevents an
SQL injection from changing the syntax of the SQL queries.

Although sanitizing all the client inputs is a sufficient measure for preventing
SQL injection attacks, it is not implemented well, judging from the fact that
SQL injection is the most frequently reported vulnerability, as highlighted in the
Cenzic’s report 1). This is because sanitizing is often done manually by developers
in a process subject to mistakes and oversights even when attempted by a skilled
and educated programmer.

69 c© 2011 Information Processing Society of Japan

70 Generating Effective Attacks for Penetration Testing against SQL Injection

In this situation, dynamic analysis tools are widely used for detecting vulner-
abilities in web applications. Dynamic analysis is a technique that attempts to
analyze the runtime behavior of a program. This technique is able to identify
vulnerabilities introduced by programs loaded at runtime, such as plugins and
dynamic libraries. In addition, this technique can be conducted on web appli-
cations written in any programming language because it does not require the
source code of the web applications. It is also useful for checking legacy web
applications because it does not require any modification to the source code of
the web application.

Existing dynamic analysis tools for discovering SQL injection vulnerabilities are
based on penetration testing, which evaluates the security of web applications by
simulating an attack from a malicious user. The attack is created by embedding
a predefined malicious string into an HTTP request. If the response differs from
the expected one or has an error introduced by the database, they regard it as a
vulnerability. It executes many unsuccessful attacks on web applications because
each of predefined malicious strings is applied to every potentially vulnerable slot
without considering the structure of SQL queries. In addition, the judgement of
the success of an attack is perfunctory because they only inspect the response
without observing the structure of the SQL queries induced by the attack.

This paper presents Sania, which efficiently and precisely perform penetration
testing to discover SQL injection vulnerabilities. Sania is designed to be used in
the development and debugging phases. Thus, Sania can intercept SQL queries
as well as HTTP requests for discovering SQL injection vulnerabilities, unlike the
existing tools that rely on only HTTP requests and responses. By investigating
SQL queries, Sania dynamically generates effective attacks according to the con-
text of each SQL query issued by the web application. By means of using the
context of SQL queries, Sania can dynamically generate effective attacks suited
for each web application, although it is difficult to use with existing techniques
that only utilize HTTP requests and responses. By using the context of SQL
queries, Sania reduces unsuccessful attacks as well as creates precise attacks that
pinpoint vulnerabilities.

For example, Sania generates an attack that exploits two potentially vulnerable
slots in the following SQL query at the same time:

SELECT * FROM users WHERE name=’ø1’ and password=’ø2’ (øi: potentially vulner-
able slot).

In this example, Sania inserts a backslash to the first potentially vulnerable slot
(ø1) and a string “ or 1=1--” to the second (ø2). If these are not properly
sanitized, this attack can successfully change the syntax of the where clause (the
name parameter is identified as “’ and password=” and the latter part “ or

1=1--’” becomes always true). In this way, by investigating the context of the
SQL query, Sania can generate context-sensitive attacks.

Additionally, Sania offers the users a way to optimize the penetration testing
by optionally providing application-specific information. For example, a web
page requires clients to enter the same data to several input fields (such as a
password field and its verification field). If the entered data do not match then
the web application returns a page that we did not expect. To reach the expected
webpage for executing the testing, Sania allows the user to specify which fields
must have the same value.

We evaluated Sania using six real-world web applications. Sania proved to be
efficient, finding 416 vulnerabilities and generating only 7 false positives. Paros 2),
a popular web application scanner, found only 7 vulnerabilities and generated
70 false positives under the same evaluation conditions. Moreover, we tested a
production-quality web application, which was in the final testing phase before
being shipped to the customer. Sania successfully found one vulnerability in
the application. In addition, Sania found an unknown vulnerability in a free
open-source web application.

The remainder of this paper is organized as follows. We begin the next section
by reviewing and discussing related work. Section 3 describes the Sania design.
Section 4 presents the technique to improve the accuracy of the testing. Section 5
describes the implementation and Section 6 presents our experimental results. In
Section 7, we provide results from tests made on actual products. Finally, we
conclude the paper in Section 8.

2. Related Work

In this section, we list work closely related to ours and discuss their pros and
cons, and broadly classify them under three headings: (i) defensive coding tech-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

71 Generating Effective Attacks for Penetration Testing against SQL Injection

niques for programmers, (ii) techniques for vulnerability discovery, and (iii) mon-
itoring and prevention techniques at runtime.

2.1 Defensive Coding
Currently, the use of a prepared statement is widely recommended for elimi-

nating SQL injection vulnerabilities. A prepared statement separates the values
in a query from the structure of the SQL query. The programmer defines the
skeleton of an SQL query and the actual value is applied to the skeleton at
runtime. For example, the following program written in Java creates a prepared
statement that has two placeholders represented with “?”, to which actual values
are applied.

String sql="SELECT * FROM users WHERE name=? AND age=?"; /* example in Java */
PreparedStatement ps = connection.prepareStatement(sql);

The following program applies actual values to the placeholders.
ps.setString(1, request.getParameter(name));
ps.setInt(2, request.getParameter(age));

Since this program binds the first placeholder to a string and the second to an
integer, it is impossible to change the structure of an SQL query. However, to
use prepared statements, web applications must be modified and all the legacy
web applications rewritten. Sania is useful for checking for SQL injection vulner-
abilities in legacy applications because it does not require them to be rewritten.

2.2 Vulnerability Discovery
Several research efforts have been conducted into detecting SQL injection

vulnerabilities. We classify them into three categories: (a) dynamic analysis,
(b) static analysis, and (c) the combination of dynamic and static analyses. Sa-
nia belongs to the dynamic analysis category.

2.2.1 Dynamic Analysis
Dynamic analysis is a technique to evaluate an application at runtime. By

leveraging dynamic analysis, we can observe how a web application behaves in
response to attacks.

Sania belongs to this category and employs a dynamic analysis technique for
detecting SQL injection vulnerabilities. Sania is designed to be used in the devel-
opment phase of web applications, it can capture SQL queries. By investigating
SQL queries, Sania dynamically generates precise attacks with using the context

of SQL queries.
Existing vulnerability scanners 2)–7) also employ dynamic analysis techniques

for detecting SQL injection vulnerabilities. Unlike Sania, they do not use the
context of the SQL queries in penetration testing. Since they have no knowl-
edge on the context of SQL queries, it is difficult for them to dynamically create
context-sensitive attacks such as an attack that exploits two potentially vulnera-
ble slots introduced in Section 1. Rather, instead of dynamically creating attacks,
they use predefined attacks and execute many unsuccessful attacks to a web appli-
cation because each of predefined malicious strings is applied to every potentially
vulnerable slot without considering the structure of SQL queries. Sania creates
fewer numbers of more precise attacks that cover possible exploitations since it
generate accurate attacks by making use of the structure of SQL queries.

2.2.2 Static Analysis
Static analysis is a technique that examines the source code of a web application

without executing the program. By leveraging static analysis, we can perform
security checks with high coverage rates. However, this analysis is typically
unable to detect vulnerabilities introduced at runtime.

A static analysis tool called Pixy 8) and the approach by Xie and Aiken 9)

use flow-sensitive taint analysis to detect several kinds of vulnerabilities in PHP
web applications, including SQL injection vulnerabilities. They check whether
sanitizing is performed along each path from a source (point of input) to a sink
(query issuing point). QED 10) also checks if sanitizing function is used within
every path, but is based on flow-insensitive technique. In QED, vulnerability
patterns of interest are described in a Java-like language, and QED finds all
potential matches of the vulnerability patterns from a target web application.
Even though these techniques can detect the existence of sanitizing blocks of
code, they do not examine the correctness of the sanitizing code. The user must
manually examine them, which is always liable to make mistakes and oversights.
Sania checks SQL queries that passed through those sanitizing block of code, and
thus minimizes the risk of such errors.

The approach by Wassermann and Su 11) uses static analysis combined with
automated reasoning. It generates finite state automata and verifies that the
SQL queries generated by the application do not contain a tautology such as

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

72 Generating Effective Attacks for Penetration Testing against SQL Injection

“1=1”. Although a tautology is often used by a naive SQL injection as shown
in the example in Section 1, there are other types of SQL injection that do not
contain a tautology. For example, it is possible to insert a statement to drop a
table, “DROP TABLE users”. On the other hand, Sania can detect SQL injection
that does not contain a tautology because it checks the syntax of SQL queries.

2.2.3 Combination of Dynamic and Static Analyses
Saner 12) combines static and dynamic analyses. In the static analysis phase, it

analyzes how an application modifies user inputs along each path from a source
to a sink. Since the static analysis can incorrectly flag a correct sanitizing code as
suspicious, Saner executes the suspicious code with predefined malicious inputs
in the dynamic analysis phase. This set of malicious inputs are predefined and
thus it is difficult to test the inputs sensitive to the SQL context.

2.3 Monitoring and Prevention at Runtime
Several research efforts 13)–16) use model checking to prevent SQL injection at-

tacks. They build models of intended SQL queries before running a web applica-
tion and monitor the application at runtime to identify queries that do not match
the model. To create the models, SQLCheck 15), SQLGuard 14), and CANDID 13)

statically analyze the source code of the web application. The approach by
Valeur 16) uses machine learning in which typical application queries are used as
a training set. The effectiveness of these approaches tends to be limited by the
precision of the models.

SQLrand 17) provides a framework that allows developers to create SQL queries
from randomized keywords instead of normal SQL keywords. A proxy between
the web application and the database intercepts SQL queries and de-randomizes
the keywords. The SQL keywords injected by an attacker would not have been
constructed by the randomized keywords, and thus the injected commands would
result in a syntactically incorrect query. Since SQLrand uses a secret key to
modify keywords, its security relies on attackers not being able to discover this
key.

Some techniques use dynamic taint analysis to prevent SQL injection at-
tacks 18)–20). They use context-sensitive analysis to reject SQL queries if a suspi-
cious input was used to create certain types of SQL tokens. A common drawback
of these approaches is that legacy web applications must be modified to incorpo-

rate these techniques.
As a whole, web application service providers are reluctant to use a tool for

preventing SQL injection at runtime because it would impose runtime overhead
and would generate false positives that might badly effect the service itself. Since
sanitizing is a sufficient measure for preventing SQL injection attacks, tools that
identify and fix vulnerabilities before web applications provide a service are highly
expected.

3. Design of Sania

3.1 Overview
An interactive web application ordinarily accesses its back-end database

through a restricted private network by issuing SQL queries. Because Sania
is designed to be used in the development phase of web applications, Sania can
intercept the SQL queries between the web application and the database as well
as HTTP requests between a browser and the web application. In Sania, the user
sends innocuous HTTP requests through a web browser. Sania intercepts those
innocuous requests and SQL queries issued from the web application. This is
illustrated in the left-side of Fig. 1. Sania then begins penetration testing with
the following three steps.
(1) Identifying target slots

Sania analyzes the syntax of the SQL queries to identify target slots. A
target slot is a slot in an SQL query, in which an attacker can embed
malicious strings to cause SQL injection. For example, when a client tries
to log into a web application, a browser sends an HTTP request with

Fig. 1 Fundamental design of Sania.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

73 Generating Effective Attacks for Penetration Testing against SQL Injection

parameters p1, p2, and p3. If the parameters p1 and p2 appear at the slots
ø1 and ø2 in the following SQL query respectively, we refer to the slots as
target slots.

SELECT * FROM users WHERE name=’ø1’ AND (password=’ø2’) (øi: target slot)

Then p1 and p2 are used for embedding attacks to cause SQL injection, but
p3 is not.

(2) Crafting attacks
Sania analyzes the context of each target slot to generate context-dependent
attacks that can successfully change the syntax of the SQL query. In the
previous example, by analyzing the context of the target slot “ø2”, Sania
generates an attack code such as “’) or 1=1--”, which contains a right-
parenthesis to close the left-parenthesis. This avoids breaking the syntax
of the SQL query.

(3) Checking vulnerabilities
After sending the attacks generated from the second step, Sania checks if
there are any SQL injection vulnerability within the web application. Sania
uses the well-known tree validation technique 14); if an attack successfully
injects malicious strings into an SQL query, the parse tree of the SQL query
differs from that generated from the innocuous HTTP request.

The technical originality is described in Section 3.3. We also describe another
optional technique to improve the accuracy of Sania’s testing in Section 4.

3.2 Identifying Target Slots
In SQL injection attacks, an attacker embeds malicious strings at certain points

in HTTP requests whose values may appear in target slots in SQL queries. The
malicious strings can be embedded into query-strings, cookies, or any other pa-
rameters in an HTTP header.

Suppose that an HTTP request has a query-string such as “id=555&cat=book”
and the generated SQL query is “SELECT * FROM users WHERE user id=555”.
This query-string has two sets of data separated by an ampersand (&), and the
equality sign (=) divides each data set into two elements: parameter and value.
In this case, the parameters are id and cat, and their values are respectively 555

and book. A parameter element is fixed, but an attacker can freely alter a value
element. In Sania, a target slot is identified by checking whether a value element

appears in a leaf node of the parse trees of the SQL queries generated from the
innocuous HTTP request.

Sania may identify a potentially safe slot as a target slot if the value of a
stateful parameter appears in an SQL query. A stateful parameter is an HTTP
parameter whose value is not embedded into any SQL query even though the
same value happens to appear in an SQL query. Suppose a web page accepts
the query-string, name=xxx&action=yyy, and the action parameter is a stateful
parameter to determine the action of the web page. When the value of the action
parameter is:
• select; the web page issues the following SQL query:

select * from users where name=’σ’ (σ: the value of name parameter).

• others; the web page issues no SQL query.
If the query-string in an HTTP request contains name=xxx&action=select, the
SQL query becomes for example “select * from users where name=’xxx’”.
Sania determines the slots in which the values, xxx and select, appear are both
target slots, even though the HTTP parameter select does not appear in a
target slot. It results in an unsuccessful attempt to exploit a stateful parameter
since its value never appears in target slots. Note that it is inappropriate to
remove the reserved SQL keywords from testing, because a reserved word, such
as “select”, can appear in a target slot. To exclude stateful parameters, Sania
allows the users to specify which parameters never appear in target slots. The
details are discussed in Section 4.

3.3 Crafting Attacks
Sania dynamically generates attacks by analyzing SQL queries generated from

an innocuous request. It embeds a malicious string, called an attack code into
a target slot. Sania generates two types of attacks: singular and combination.
In a singular attack, Sania inserts an attack code into a single target slot. In a
combination attack, it inserts attack codes into two target slots at the same time.

3.3.1 Singular Attack
A singular attack attempts to exploit a target slot at a time. To create an

effective singular attack, Sania generates attack codes according to the context
of the target slot in the SQL query. The context is obtained by tracing back to
the ancestor nodes of the target slot in the parse tree of the SQL query, since

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

74 Generating Effective Attacks for Penetration Testing against SQL Injection

each node in the parse tree represents the syntax in the SQL grammar. Suppose
a web application issues the following SQL query to authenticate a user’s log in.

SELECT * FROM users WHERE name = ’ø1’ AND (password = ø2) (øi: target slot)

The parse tree reveals that the target slots ø1 and ø2 are a string and an integer
in the SQL grammar respectively. In addition, Sania can learn that ø2 is enclosed
in parentheses by tracing the ancestor nodes of ø2 in the parse tree.

With the information about the context of a target slot, Sania can create
effective attacks. In the above example, an attack code for the string (ø1) is for
example “’ or 1=1--”, which contains a single quote to end the name value in
the SQL query. By ignoring the characters after double-hyphens “--”, the attack
code successfully changes the syntax of the SQL query. On the other hand, an
attack code for the integer (ø2) is for example “123) or 1=1--”, which does
not contain a single quote to end the password value since ø2 is not enclosed in
quotes. Note that the attack code contains a right-parenthesis “)” to end the
left parenthesis. This is possible because Sania creates attack codes according to
the context of a target slot.

To create context-dependent attack codes, Sania uses an attack rule that we
prepared for each data type in the SQL grammar. An attack rule is a specifica-
tion about how to create attack codes according to the data type. Sania refers to
the attack rule corresponding to the SQL data type of target slot when creating
attack codes. In the above example, the attack codes are created by referring to
the attack rule for a string or that for an integer. We found the SQL data type
of target slots can be classified into 95 patterns in the SQL grammar and de-
fined an attack rule for each data type by thoroughly investigating SQL injection
techniques 21)–28).

Each attack rule is represented as a four-element tuple:
(metaCharacter, userInput, insertedSQL, parentheses).

A metaCharacter holds a boolean value that represents whether to insert a
quote, which ends the user input (usually a string) in a target slot to divide the
target slot into two parts. The first part, called a userInput, contains a normal
string that mimics the input from an ordinary user. The second part, called
an insertedSQL, contains a part of the SQL query that an attacker attempts
to inject. Since the quote inserted into a target slot represents the end of a

userInput, the string in the insertedSQL is interpreted as SQL keywords. In
addition, a parentheses also holds a boolean value that determines whether or
not to insert parentheses to make an SQL query syntactically correct.

The attack code for a string in the above example “’ or 1=1--” is generated
from the attack rule for a string, which is defined as:

(true, λ | ε, or 1=1-- | ;select x from z--, true).

This represents metaCharacter is required, userInput is either the input from
the user (λ) or a blank (ε), insertedSQL is “or 1=1--” or “;select x from

z--”, and parentheses are required to create an attack code. When the
metaCharacter is required, Sania also chooses the proper quote type, a sin-
gle quote (’) or a double quote ("), according to the context of target slots.
In the above example, the single quote is chosen because ø1 is enclosed in sin-
gle quotes. The attack rule also indicates parentheses are required. In this
case, no parenthesis is used because none of the ancestor nodes of ø1 holds any
parenthesis.

The attack code for an integer in the above example “123) or 1=1--” is gen-
erated from the attack rule for an integer, which is defined as:

(false, λ, or 1=1-- | ;select x from z--, true).

The false for metaCharacter indicates no quote is required to end the password
value since it is not enclosed in any quotes. userInput has to hold the value of
the password. Since the value of parenthesis is true, a right-parenthesis is
embedded into the attack code to close the left-parenthesis. Sania counts the
appropriate number of parentheses by tracing the ancestor nodes.

3.3.2 Combination Attack
A combination attack exploits two target slots at the same time. Sania inserts

a special character into the first target slot and an SQL keyword into the second
to cause an SQL injection. Suppose a web application issues the following SQL
query:

SELECT * FROM users WHERE name=’ø1’ and password=’ø2’ (øi: target slot).

Sania inserts a backslash to the first target slot (ø1) and a string “ or 1=1--” to
the second (ø2). If they are not sanitized correctly, the resulting SQL becomes:

SELECT * FROM users WHERE name=’\’ and password=’ or 1=1--’,

The name parameter is identified as “’ and password=” because the injected

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

75 Generating Effective Attacks for Penetration Testing against SQL Injection

backslash escapes the single quote. Thus, the where clause is evaluated to be
true because “1=1” is always true and the single quote at the end of the query is
commented out by the double-hyphens “--”.

Sania executes a combination attack only when the first target slot is enclosed
in quotes. This is because Sania can detect the vulnerability by a singular attack
if the first target slot that is not enclosed in quotes is vulnerable to a combination
attack. As shown above, to activate the SQL keyword injected into ø2, the quote
that indicates the beginning of ø2 should be forced to indicate the end of ø1.
To this end, if no quote encloses ø1, at least one quote should be injected into
ø1. Since Sania checks if a quote can be injected to every target slot with sin-
gular attacks, Sania can detect the vulnerability without executing combination
attacks.

We defined two attack rules for combination attacks:
(1) (true, \, or 1=1-- | ;select x from z--, true), which is used if

the second target slot is not enclosed in quotes, such as:
SELECT * FROM users WHERE name=’ø1’ and id=ø2 (øi: target slot).

(2) (false, \, or 1=1-- | ;select x from z--, true), which is used if
the second target slot is enclosed in quotes, such as:

SELECT * FROM users WHERE name=’ø1’ and passwd=’ø2’ (øi: target slot).

In a combination attack, Sania chooses two target slots even if there are more
than two target slots in an SQL query. This is because attacking two target slots
is enough to detect a vulnerability against a combination attack.

3.4 Checking Vulnerabilities
To check for an SQL injection vulnerability, Sania uses the well-known tech-

nique called tree validation 14). In the tree validation, the structure of a query
generated from an innocuous request is juxtaposed with that of an actual query
generated from an attack. This technique determines the attack was successful
if those structures are different.

In addition to the tree validation, Sania also checks for multi-byte SQL injec-
tion 29), which can bypass sanitizing through the abuse of multibyte character
sets. For example, since the addslashes() function in PHP changes “’” into
“\’”, we expect the input “0x97’ or 1=1” will be changed into “0x97\’ or

1=1”. When the Shift-JIS character set is used, “0x97’ or 1=1” is changed into

“予’ or 1=1”, in which the single quote is not sanitized properly. Ascii code
level, “0x97’” becomes 0x9727 (“’” is 0x27). addslashes() changes 0x9727 to
0x975c27 because “’” (0x27) is changed to “\’” (0x5c27). When this byte se-
quence (0x975c27) is interpreted in Shift-JIS, it becomes “予’” because 0x975c

represents a multi-byte character “予” in Shift-JIS. In this way, a multi-byte
character hides a backslash. Similarly, multi-byte SQL injection is possible in
UTF-8, UTF-16, BIG5, and GBK character sets, if a backslash is preceded by a
byte code that does not represent a letter or a digit or a symbol (0x20∼0x7e).
To detect multi-byte SQL injection vulnerabilities, Sania creates attack codes
containing these type of suspicious bytes and checks those bytes do not precede
a backslash in an SQL query.

4. Improving Accuracy of the Testing

Sania allows the users to specify additional information about target web ap-
plications to improve the accuracy of the testing. This information is called
Sania-attributes. We prepared five Sania-attributes as shown in Table 1, and
introduce them in order.

4.1 Length Attribute
A database defines the maximum length of a string that can be inserted via a

web application. An attack code that is longer than the length will be rejected
by the database. To suppress the creation of such attacks, Sania allows the users
to specify the maximum length of the attack code. The Sania-attribute, length-
attribute, is used to specify the maximum length so that Sania does not create
attack codes whose length is longer than that specified by the length-attribute.

4.2 Equivalent Attribute
In some web pages, a client needs to enter the same data into several input

Table 1 Sania-attributes to improve the accuracy of testing.

Name Purpose
length-attribute To limit the maximum length of attack code
equivalent-attribute To apply the same value to multiple fields
skip-attribute To skip user-specified parameters
preserve-attribute To detect a vulnerability of second-order SQL injection
structure-attribute To accept the change of tree structure of SQL query

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

76 Generating Effective Attacks for Penetration Testing against SQL Injection

fields. For example, a web page has a password field and its verification field
to which the same password must be entered. If these do not match, the web
application rejects the request. Sania allows the user to attach Sania-attribute,
equivalent-attribute, to HTTP parameters. By attaching equivalent-attribute,
Sania inserts the same data to the parameters.

4.3 Skip Attribute
Sania excludes HTTP parameters from testing if the Sania-attribute, skip-

attribute is attached to the HTTP parameters. This attribute is useful for stateful
parameters described in Section 3.2. It is also useful for excluding a volatile
parameter. A volatile parameter is an HTTP parameter whose value appears in
the SQL query only when it has a certain value. For example, the following SQL
query is issued only when the value for ø2 is an integer:

SELECT * FROM books WHERE category=’ø1’ and price<ø2 (øi: target slot).

If ø2 is not an integer, the SQL query will be:
SELECT * FROM books WHERE category=’ø1’ (øi: target slot).

In this example, ø2 is not vulnerable because no attack code can be created only
with integers. By attaching a skip-attribute to the volatile parameter, Sania can
skip the testing.

4.4 Preserve Attribute
To deal with a second-order SQL injection attack 21), Sania introduces preserve-

attribute. A second-order SQL injection is an attack that targets user-supplied
data temporarily stored in the web application. The attack succeeds when a
certain request triggers the issue of the SQL query that contains the user-supplied
data. Since Sania observes the SQL query just after a request is sent, it can
not identify the user-supplied data in the SQL query. For example, request R1

contains parameter p1 but does not trigger any SQL query. The second request
R2 neither contains any parameter nor triggers any issue of an SQL query. The
third request R3 has no parameter but issues an SQL query that contains p1. In
this example, Sania can not identify p1 in the SQL query triggered by R3.

A preserve-attribute is attached to the parameter whose value appears in a later
SQL query triggered by another request. Sania records all the requests between
the request attached preserve-attribute and the request that triggers the SQL
query. To send an attack, Sania sends all the recorded requests and checks for a

Table 2 Structure-attributes and their acceptable expressions.

Name Acceptable expressions
arithmeticExpression Number/mathematical statements
conditionalExpression Conditional statements such as AND/OR statements

relationalExpression
Relational statements used to compare two values, such as
LIKE and IS NULL statements

notExpression
Statements that can accept NOT expression, such as BE-
TWEEN, IN, and LIKE statements

subSelectExpression
Statements that can accept sub-SELECT expressions, such as
JOIN and FROM statements

vulnerability in the SQL query of interest. In the above example, Sania records
the requests (from R1 to R3), and checks the SQL query after R3.

4.5 Structure Attribute
We also added another Sania-attribute to optimize the tree validation for a

special case we encountered during the preliminary experiments. We found the
structure of a dynamically generated query depends on the client’s inputs, even
though there was no vulnerability. The web application issues the following SQL
query and the ø can hold an arbitrary arithmetic expression including a number:

SELECT * FROM users WHERE id=ø (ø: target slot).

The structure of this SQL query changes according to the value of ø, because an
arithmetic expression, for example “1+2”, is expressed as a subtree composed of
two number nodes. Because of this, Sania judges the application to be vulnerable
to SQL injection. To avoid this problem, Sania allows the user to attach a
structure-attribute to an HTTP parameter, which enables the user to specify
several acceptable subtrees. Table 2 lists structure-attributes. In the above
example, the user can associate an arithmeticExpression attribute with the
id field to let it contain an arbitrary arithmetic expression.

4.6 Automated Deletion of Inserted Data
Additionally, we also found a case where Sania needs to delete successfully

injected attack code before executing the subsequent attacks. A web page, such
as a user registration page, issues an SQL query to insert user-supplied data into
the database. If Sania embeds an attack code into the data, the attack code is
stored in the database and will adversely affect the subsequent attack results.
For example, the web site initially checks the database for the user ID specified

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

77 Generating Effective Attacks for Penetration Testing against SQL Injection

Fig. 2 Implementation and vulnerability detection process of Sania.

in an HTTP request. If the user ID is not in the database, an SQL query is issued
to insert the new user information. Otherwise, the SQL query is not issued and
we cannot execute testing of any value in the SQL query. To avoid this, every
data inserted into the database has to be deleted before the next attack starts.
Sania automatically issues an SQL query that deletes the inserted data.

5. Implementation

We implemented a prototype of Sania in Java that had 25,000 lines of code.
In addition, it had a list of attack rules in XML that had 1,800 lines of code. As
shown in Fig. 2, Sania consists of GUI interface, an HTTP proxy, an SQL proxy,
and a core component. The GUI interface supplies a panel to control Sania, and
the HTTP and SQL proxies intercept HTTP and SQL packets respectively. The
core component performs a task to detect SQL injection vulnerabilities, such as
identifying target slots, crafting attacks, and checking vulnerabilities.

In this implementation, Sania requires two user involvements; accessing the
target web application with a browser and optionally providing Sania-attributes.
By accessing the web application, the browser sends an HTTP request, and the
request triggers SQL queries. Sania needs these packets for initializing the testing.
In addition, by providing Sania-attributes, Sania can optimize the testing. Since
the phase of providing the attributes is after identifying target slots and before
crafting attacks, Sania can display detailed information on the GUI panel about
target slots, such as which syntax they belong to in the SQL query, and create
effective attacks according to the provided attributes as shown in Fig. 3.

A test result is output in HTML or XML. The target slots, attack codes, and

Fig. 3 Snapshot of Sania at work (selecting Sania-attributes for improving attack codes and
flexible tree validation).

the structures of SQL queries are output in the document, so that the user can
easily see how the SQL injection succeeded.

6. Experiments

This section presents our evaluation of Sania. We compare Sania with a public
web application scanner from the two points of view: efficiency and false positives.

6.1 Experimental Setup
We selected six subject web applications to evaluate Sania. All of them are

interactive web applications that accept HTTP requests from a client, generate
SQL queries, and issue them to the database. Table 3 lists the subject programs.
Five of them (Bookstore, Portal, Event, Classifieds and EmplDir) are free open
source applications from GotoCode 30). We found some of them have already
been used to provide real world services. Each web application is provided in
multiple programming languages. We chose the JSP and PHP versions, but we
show only the result of the JSP version because there is no difference in the test
result. The remaining one, E-learning, is a JSP and Java Servlet application
provided by IX Knowledge Inc. 31). It was previously put to actual use on an
intranet but no longer used since a newer version has been released.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

78 Generating Effective Attacks for Penetration Testing against SQL Injection

Table 3 Subject programs used in our evaluation.

Subject Description Language LOC Target slot

E-learning Online Learning System
Java (Servlet)

3,682 13 (24)
& JSP

Bookstore Online Bookstore JSP 11,078 71 (117)
Portal Portal for club JSP 10,051 98 (136)
Event Event tracking system JSP 4,737 29 (50)
Classifieds Online Classifieds System JSP 6,540 40 (64)
EmplDir Online Employee Directory JSP 3,526 24 (38)

Table 4 Sania-attributes specified for evaluation.

Subject
length- equivalent- skip- structure-

attribute attribute attribute attribute
E-learning 0 0 0 1 parameter (2 tree elements)
Bookstore 0 2 (1 pair) 30 0
Portal 25 0 28 0
Event 2 0 12 0
Classifieds 0 0 17 0
EmplDir 0 0 7 0

Table 3 shows each subject’s name (Subject), a brief description (Description),
the languages in which the application was written (Language), the number of
lines of code (LOC), and the number of target slots (Target slot) with the to-
tal number of HTTP parameters into which an attacker can attempt to inject
malicious strings in parentheses.

Before Sania started to craft attacks, we had manually provided Sania-
attributes. Table 4 shows the number of attributes specified for each web
application. Even though we are not the authors of the subject web applica-
tions, it was easy for us to know application-specific information for providing
Sania-attributes because we only looked for some information about the maxi-
mum character length allowed at the database, input fields that must have the
same value, and so on. Specifying them would be even easier for a developer of
a web application.

We compare Sania with Paros 2). We carefully investigated 25 vulnerability
scanners: 15 scanners from Security-Hacks.com 32) and 10 scanners from Inse-
cure.Org 33). Free scanners that we could use were 21 out of the 25 scanners. 20
out of the 21 scanners can detect SQL injection vulnerabilities. Four out of the

Table 5 Results for Sania and Paros.

Subject
Sania Paros

trials warns vuls. f.p. trials warns vuls. f.p.
E-learning 214 210 210 (21) 0 362 9 7 (5) 2 (2)
Bookstore 708 52 52 (26) 0 4,802 8 0 8 (7)

Portal 1,080 93 88 (44) 5 (5) 5,477 20 0 20 (20)
Event 276 18 16 (8) 2 (2) 1,698 21 0 21 (20)

Classifieds 498 32 32 (16) 0 1,210 6 0 6 (6)
EmplDir 290 18 18 (9) 0 1,924 13 0 13 (11)

total 3,064 423 416 (124) 7 (7) 15,473 77 7 (5) 70 (66)

20 can detect unknown vulnerabilities. Two out of the 4 scanners are automated
tools. We used both of the two remaining scanners for our subjects and found
Paros detected more vulnerabilities than the other. The popularity of Paros is
quite high; more than 7,000 copies of Paros are downloaded every month from
August 2009 to June 2010 at SourceForge.net 34). We therefore use Paros for our
comparison.

Paros indiscriminately applies an attack code to every HTTP parameter. The
attack code is a predefined string listed in the program. After sending an attack,
Paros determines the success of the attack in two ways. First, Paros determines
that the attack is successful if the response after the attack differs from the normal
response. Second, it determines an attack is successful if the response message
contains predefined strings that indicate the existence of a vulnerability, such
as “JDBC.Driver.error”. This technique is also employed in three commercial
systems 3),4),7).

There is no significant difference in testing time between Sania and Paros. It
took around 15 minutes to perform testing for each subject application.

6.2 Results
Table 5 shows the experimental results for Sania and Paros. The table presents

the number of trials (trials), the number of warning messages that a tool reported
they are vulnerable (warns), total vulnerabilities with the number of actual vul-
nerable slots in parentheses (vuls.), and false positives with the number of target
slots that were not actually vulnerable in parentheses (f.p.) for each subject. We
checked whether each warning was truly vulnerable. This table reveals that Sa-
nia found, using fewer trials, more vulnerabilities for every subject and generated

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

79 Generating Effective Attacks for Penetration Testing against SQL Injection

Table 6 Details of vulnerabilities for Sania and Paros.

Attack Type Sania Paros
Singular 194 (13) 7 (5)

Combination 222 (111) 0
Total 416 (124) 7 (5)

fewer false positives than Paros did.
6.2.1 Accuracy of Attacks
Table 6 shows the total number of warnings for attack types. Note that there

is no vulnerability that Paros could find but Sania could not. The table reveals
that Sania can execute:
• Precise singular attacks. It found more vulnerabilities (194 vuls.) than Paros

(7 vuls.). This is because Sania generates an elaborate attack according to
the context of a target slot. It was necessary to embed a parenthesis into an
attack code to detect the vulnerabilities that only Sania could detect.

• Powerful combination attacks. It found 222 vulnerabilities. A combination
attack requires knowledge about target slots in an SQL query. Therefore, it
is hard for Paros to work out a combination attack.

E-learning does not sanitize at all and is the only subject where Paros could
successfully find vulnerabilities. All vulnerabilities in the GotoCode applications
are revealed by combination attacks. For example, a web page of the Event

application accepts a query-string, Login=xxx&Password=zzz, to authenticate a
user’s log in, and issues the following SQL query:

SELECT count(*) FROM users WHERE user login =’xxx’ and user password=’zzz’.

When Sania sets a backslash to the value in the Login parameter, it can easily
change the syntax of the resulting SQL query. Paros cannot find them because
it does not support any function to attack several target slots at the same time.

6.2.2 False Positives
Table 7 shows the number of false positives with the number of target slots

that were not actually vulnerable in parentheses. In total, Sania and Paros
respectively raised 7 and 70 false positives.

6.2.2.1 Data Length Error
The maximum length of data is defined at the database. Sania generated 7

false positives as a result of making attacks longer than the limitation, and Paros

Table 7 Details of false positives for Sania and Paros.

Subject
Sania Paros

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
E-learning 0 0 0 0 0 0 0 0 0 2 (2)
Bookstore 0 0 0 0 0 0 7 (6) 1 (1) 0 0

Portal 5 (5) 0 0 0 0 2 (2) 7 (7) 6 (6) 5 (5) 0
Event 2 (2) 0 0 0 0 1 (1) 8 (7) 8 (8) 4 (4) 0

Classifieds 0 0 0 0 0 3 (3) 3 (3) 0 0 0
EmplDir 0 0 0 0 0 5 (4) 4 (3) 4 (4) 0 0

total 7 (7) 0 0 0 0 11 (10) 29 (26) 19 (19) 9 (9) 2 (2)

f1: Data length error, f2: Attacking potentially safe slots, f3: Mishandling of dynamic
contents, f4: Data type error, f5: Duplicate warning

also generated 11 false positives as shown in Table 7.
In our subject, Portal limits the length of the member password to 15 charac-

ters at the database, and a web page in the application has a sanitizing function
that translates a single-quote into two single-quotes. We used length-attributes
for limiting attack codes to member password to be less than 15 characters. How-
ever, the sanitizing operation converted the attack codes to longer than the length
defined by the length-attribute. For example, the sanitizing operation converted
an attack code “xxx’ or ’1’=’1” (14 characters) into “xxx’’ or ’’1’’=’’1”
(18 characters). The database rejected the attack code. After handling an error
message from the database, the web application generated a response page that is
different from the expected one. Since the web application issued an SQL query
that was not the expected SQL query, Sania raised an alert. This happened 7
times.

On the other hand, Paros does not recognize the acceptable maximum length.
It generated improperly long attack codes and the web application returned an
unintended response page. Then, Paros determined the attack was successful
because the response page was different from the intended one. This happened
11 times in total.

6.2.2.2 Attacking Potentially Safe Slots
A parameter is potentially safe when it is a stateful or volatile parameter. We

attached a skip-attribute to such a parameter, so that Sania could skip testing it.
On the other hand, Paros executed the testing and wrongly evaluated it which
generated 29 false positives as shown in Table 7.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

80 Generating Effective Attacks for Penetration Testing against SQL Injection

Paros embedded attack codes to the value of stateful parameters, and generated
16 false positives. A stateful parameter is potentially safe because its value is not
embedded into any SQL query, but the same value happens to appear in an SQL
query. In our evaluation, a FormAction parameter is used as a stateful parameter
in Bookstore. The parameter requires its value to be “insert” to insert new
member information, and to be “delete” to delete the existing user information.
If a value other than “insert” and “delete” is used, the web application makes
the client go back to the original page with an error, “java.sql.SQLException:
Can not issue empty query”, without issuing any SQL queries. Therefore, if
an attack code is applied to this stateful parameter, no SQL query is issued and
an unintended page is returned. Paros recognizes this as a successful attack,
which resulted in false positive.

Paros also embedded attack codes to the values of volatile parameters, and
generated 13 false positives. A volatile parameter is an HTTP parameter whose
value appears in the SQL query only when it has a certain value. In our ex-
periments, a web page of EmplDir checks if the user input is a number. If the
user input is a number, an SQL query is issued to retrieve the user information
whose user-ID corresponds to the number. If an attacker attempts to insert an
attack code composed of non-digit characters, the application rejects it, issues
no SQL query, and returns an unintended response page. Paros recognized it as
the success of an attack, which resulted in false positive.

6.2.2.3 Mishandling of Dynamic Contents
Paros generated 19 false positives as a result of mishandling of dynamic con-

tents, while Sania generated no false positives, as shown in Table 7. Some web
applications dynamically generate web pages that contain the values entered by
a user. For example, in a web page in Classifieds, the user can add a new
category name. After the new category name is added, the web application re-
turns a page containing a list of all registered category names. When an attacker
attempts to inject an attack code to the category name field, the content of the
response page always changes even when the attack fails. Paros always misjudged
this as vulnerable because it regards the change in the response page as imply-
ing a successful attack, and generated false positives. Sania generated no false
positives because it judges the success of an attack by looking at the structure

of the SQL query.
6.2.2.4 Data Type Error
Paros generated 9 false positives by injecting improper types of attack codes,

while Sania generated no false positive, as shown in Table 7. If the type of attack
code is not equivalent to that of a corresponding column in a database, the
database returns an error to its host web application. When handling this error
message, some web applications generate a response page that is different from
the intended one. For example, in a web page in Portal, the user enters a date-
formatted string to a “date added” parameter. The corresponding column in
the database accepts only a date expression. Since Paros has no way of knowing
the type of target slot, it executed inappropriate attacks, and generated 9 false
positives. On the other hand, since Sania properly recognizes the type of a target
slot by looking into the structure of the SQL query, it did not inject incorrect
data type attack codes.

6.2.2.5 Duplicated Warnings
Paros generated 2 duplicated warnings, as shown in Table 7. A duplicated

warning is not false alert but a redundant warning. For example, servlet alias
enables clients to use a shortcut URL to call a servlet. In E-learning, accessing
the URL:

http://hostname:port/E-learning/Security

is the same as accessing the following URL:
http://hostname:port/E-learning/user/jsp/login.jsp.

While Paros tests all the pages indiscriminately, Sania users can choose the page
of interest to test, which suppresses this type of warning duplication.

7. Testing Real Products

After Sania was proven effective in our experiments, we had a chance to test
a production-quality commercial web application developed by IX Knowledge
Inc. 31) on March 28, 2007. This application, RSS-Dripper, provides RSS infor-
mation to users based on their previous choices. It is written in Java Servlet
and JSP, developed on Struts 35), and was in the final stage of development just
before being shipped when we tested it.

The login page in RSS-Dripper accepts two parameter, userid and password.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

81 Generating Effective Attacks for Penetration Testing against SQL Injection

When a query-string, userid=xxx&password=zzz, is supplied, it issues the fol-
lowing SQL query:

SELECT USERID, USERNAME, PASSWORD, MAILADDRESS, TIMESTAMP
FROM USERMST WHERE USERID = ’xxx’ AND TRIM(PASSWORD) = ’zzz’.

After Sania executed 32 attacks, it detected one SQL injection vulnerabil-
ity against a combination attack with a query-string, userid=\&password= or

1=1--. After the testing, we confirmed that it was truly vulnerable. By analyzing
the source code of RSS-Dripper, we found that it did not sanitize the backslash.

Additionally, we found an SQL injection vulnerability in Schoorbs 36), an open-
source web application. This vulnerability resided in an HTML hidden field,
which was supposed to only accept a number. Since it was not properly sanitized,
an attacker can inject an arbitrary SQL statement preceded by a number, such as
“2;delete from schoorbs room--”. We provided indepth information on this
vulnerability to the developer, and confirmed that the vulnerability was readily
fixed in the next version.

8. Conclusion

We presented Sania that dynamically generates effective attacks for penetration
testing to efficiently detect SQL injection vulnerabilities. Because it is designed
to be used in the development phase of web applications, it can intercept SQL
queries. By investigating the context of potentially vulnerable slots in the SQL
queries, Sania dynamically generates precise, context-dependent attacks. We
evaluated our technique using real-world web applications and Sania was found
to prove effective. It found 416 SQL injection vulnerabilities and generated only
7 false positives when evaluated. In contrast, Paros, a popular web application
scanner, found only 7 vulnerabilities and generated 70 false positives. We also
found vulnerabilities in a production-quality commercial web application and in
an open source web application. Finally, we plan to adapt our technique to detect
other injection vulnerabilities, such as cross-site scripting, XPath injection, and
OS injection.

Acknowledgments The authors would like to thank IX Knowledge Inc. for
providing us with E-learning and RSS-Dripper for our evaluations. This work is
partially supported by funding from Research Fellowships of the Japan Society

for the Promotion of Science.

References

1) Cenzic, Inc.: Q3–Q4 2009 Trends Report on Web Security (2009).
http://www.cenzic.com/downloads/Cenzic AppSecTrends Q3-Q4-2009.pdf

2) Chinotec Technologies Company: Paros. http://www.parosproxy.org/
3) Acunetix: Acunetix WVS. http://www.acunetix.com/
4) Hewlett-Packard: HP WebInspect software.
5) Huang, Y.-W., Huang, S.-K., Lin, T.-P. and Tsai, C.-H.: Web Application Security

Assessment by Fault Injection and Behavior Monitoring, Proc. Int’l Conf. World
Wide Web, pp.148–159 (2003).

6) Kals, S., Kirda, E., Kruegel, C. and Jovanovic, N.: SecuBat: A Web Vulnerability
Scanner, Proc. Int’l Conf. World Wide Web, pp.247–256 (2006).

7) Watchfire: AppScan. http://www.watchfire.com/
8) Jovanovic, N., Kruegel, C. and Kirda, E.: Pixy: A Static Analysis Tool for Detect-

ing Web Application Vulnerabilities (Short Paper), Proc. IEEE Sym. Security and
Privacy, pp.258–263 (2006).

9) Xie, Y. and Aiken, A.: Static Detection of Security Vulnerabilities in Scripting
Languages, Proc. Conf. USENIX Security Sym., pp.179–192 (2006).

10) Martin, M. and Lam, M.S.: Automatic Generation of XSS and SQL Injection
Attacks with Goal-Directed Model Checking, Proc. Conf. USENIX Security Sym.,
pp.31–43 (2008).

11) Wassermann, G. and Su, Z.: An Analysis Framework for Security in Web Applica-
tions, Proc. FSE Workshop on Specification and Verification of Component-Based
Systems, pp.70–78 (2004).

12) Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C. and
Vigna, G.: Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications, Proc. IEEE Sym. Security and Privacy, pp.387–401 (2008).

13) Bandhakavi, S., Bisht, P., Madhusudan, P. and Venkatakrishnan, V.N.: CANDID:
Preventing SQL Injection Attacks using Dynamic Candidate Evaluations, Proc.
ACM Conf. Computer and Communications Security, pp.12–24 (2007).

14) Buehrer, G., Weide, B.W. and Sivilotti, P.A.G.: Using Parse Tree Validation to
Prevent SQL Injection Attacks, Proc. Int’l Workshop on Software Engineering and
Middleware, pp.106–113 (2005).

15) Su, Z. and Wassermann, G.: The Essence of Command Injection Attacks in Web
Applications, Proc. ACM SIGPLAN-SIGACT Sym. Principles of Programming
Languages, pp.372–382 (2006).

16) Valeur, F., Mutz, D. and Vigna, G.: A Learning-Based Approach to the Detection
of SQL Attacks, Proc. Conf. Detection of Intrusions and Malware Vulnerability
Assessment, pp.123–140 (2005).

17) Boyd, S. and Keromytis, A.: SQLrand: Preventing SQL Injection Attacks, Proc.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

82 Generating Effective Attacks for Penetration Testing against SQL Injection

Applied Cryptography and Network Security Conf., pp.292–304 (2004).
18) Halfond, W.G.J., Orso, A. and Manolios, P.: Using Positive Tainting and Syntax-

Aware Evaluation to Counter SQL Injection Attacks, Proc. ACM SIGSOFT Int’l
Sym. Foundations of Software Engineering, pp.175–185 (2006).

19) Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. and Evans, D.: Auto-
matically Hardening Web Applications using Precise Tainting, Proc. IFIP Int’l
Information Security Conf., pp.372–382 (2005).

20) Pietraszek, T. and Berghe, C.V.: Defending Against Injection Attacks through
Context-Sensitive String Evaluation, Proc. Recent Advances in Intrusion Detection,
pp.124–145 (2005).

21) Anley, C.: Advanced SQL Injection In SQL Server Applications, An NGSSoftware
Insight Security Research (NISR) Publication (2002).

22) C.A. Mackay: SQL Injection Attacks and Some Tips on How to Prevent Them
(2005). http://www.codeproject.com/cs/database/SqlInjectionAttacks.asp

23) Ferruh Mavituna: SQL Injection Cheat Sheet (2007).
http://ferruh.mavituna.com/makale/sql-injection-cheatsheet/

24) Friedl, S.: SQL Injection Attacks by Example (2006). http://www.unixwiz.net/
techtips/sql-injection.html

25) iMPERVA: Blind SQL Injection (2003).
http://www.imperva.com/resources/adc/blind sql server injection.html

26) OWASP: Testing for SQL Injection (2008).
http://www.owasp.org/index.php/Testing for SQL Injection

27) SecuriTeam: SQL Injection Walkthrough (2002).
http://www.securiteam.com/securityreviews/5DP0N1P76E.html

28) Spett, K.: SQL Injection: Are your web applications vulnerable? (2004).
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

29) Shiflett, C.: addslashes() Versus mysql real escape string() (2006).
http://shiflett.org/blog/2006/jan/addslashes-versus-mysql-real-escape-string

30) GotoCode.com: GotoCode. http://www.gotocode.com/
31) IX Knowledge Inc. http://www.ikic.co.jp/
32) KT: Top 15 free SQL Injection Scanners (2007).

http://kalmah03.wordpress.com/2007/05/21/top-15-free-sql-scanner/
33) Gordon Lyon: Top 10 Web Vulnerability Scanners (2006).

http://sectools.org/web-scanners.html
34) SourceForge.net. http://sourceforge.net

35) Apache Struts project: Struts. http://struts.apache.org/
36) XhockY: Schoorbs version 1.0.2 (2008). http://schoorbs.xhochy.com/

(Received May 7, 2010)
(Accepted August 28, 2010)

Yuji Kosuga received his B.E. and M.E. degrees from Keio
University in 2007 and 2009, respectively. He is currently a Ph.D.
student in the Graduate School of Science and Technology, Keio
University. His research interests are in web security and system
software. He is a student member of IPSJ.

Miyuki Hanaoka received her B.E. degree from the University
of Electro-Communications in 2005, and M.E. from Keio Univer-
sity in 2007. Her research interests include network security and
system software. She is a student member of IEEE, ACM, and
IPSJ.

Kenji Kono received his B.Sc. degree in 1993, M.Sc. degree in
1995, and Ph.D. degree in 2000, all in computer science from the
University of Tokyo. He is an associate professor of the Depart-
ment of Information and Computer Science at Keio University.
His research interests include operating systems, system software,
and Internet security. He is a member of the IEEE/CS, ACM and
USENIX.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 1 69–82 (Feb. 2011) c© 2011 Information Processing Society of Japan

