
Regular Paper

Symmetry Breaking by Dominance Detection

in Distributed Environments

Xavier Olive†1 and Hiroshi Nakashima†1

This paper considers the approach of symmetry breaking by dominance de-
tection and extends it to the scope of distributed constraint programming. It
exploits previous results of symmetry propagation in distributed environments
and proves that propagating partial symmetry information together with back-
track messages of a distributed Branch & Bound is sufficient to prune the search
tree. It finally demonstrates the efficiency of such pruning by significantly cut-
ting down the number of non-concurrent constraint checks and by improving
execution time.

1. Introduction

Distributed constraint optimisation is a framework designed for modelling nat-

urally distributed problems. Those consist of agents cooperating to solve an

optimisation problem and include problems like meeting scheduling or the allo-

cation of targets to sensors in sensor networks. In such problems, only a subset

of agents knows about each constraint, leading to the idea of natural distribu-

tion. Keeping the definition of a problem distributed rather than centralising it

is relevant when computational and communication power is limited.

Distribution and symmetry detection may sound incompatible by nature;8),10)

first introduced the idea of symmetry propagation in a distributed context for

the DPOP algorithm11), which is a distributed version of the bucket elimination

algorithm. Agents propagate and exploit symmetry information together with

constraints to be joined and projected. The ambition of symmetry detection in

distributed environments is to ensure that a symmetry suspected by an agent

is: a) valid for the global problem; b) exploited to improve performance of the

resolution process.

†1 Kyoto University

This paper adapts this idea of symmetry propagation among agents for

SynchBB4), the distributed synchronised Branch & Bound. It proves that each

agent propagating symmetry information together with backtrack messages; and

combining its current symmetry information with other pieces of symmetry prop-

agated from other agents is sufficient to apply symmetry breaking by dominance

detection techniques3), already widely known in centralised constraint program-

ming. The result is particularly worth of attention as it does not require sym-

metry groups held by each agent to be valid for the whole problem in order for

this symmetry breaking process to be correct.

Eventually, we validate our proposal by comparing performance between the

original SynchBB and SynchBB implementing our adaptation of symmetry break-

ing by dominance detection to distributed environments in order to find a signifi-

cant improvement on the number of non-concurrent constraint checks (#ncccs)

and on execution time, particularly on highly connected problems.

2. Distributed Constraint Programming

2.1 Definition

Definition 1 A distributed constraint optimisation problem (DCOP) is a

constraint optimisation problem where variables are distributed over different

agents. It consists of a finite set of variables x1 · · ·xn, a set of domains d1 · · ·dn,

a set of agents a1 · · · an not necessarily all different, and a set of constraints

c1 · · · ct. Each constraint ci is defined on a scope of variables (xi1 , . . . xik) and

takes a positive value, or cost, on R
+ ∪ {+∞}.

The objective is to find a global solution, i.e., an assignation of values to all

variables so that the sum of the costs of all constraints is minimised. Constraints

fall into two categories: local (private) and global (distributed) constraints. Each

agent owns a local subproblem, which is a partial view of the global problem.

This global problem is the union of all the local subproblems.

2.2 SynchBB

Whilst many different algorithms have been developed for distributed con-

straint programming like DPOP11) or ADOPT7), we focus here on a pioneer

algorithm implementing a basic distributed synchronised version of Branch &

Bound: SynchBB4).

IPSJ SIG Technical Report

1 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

Variable and value ordering are fixed, and a partial assignation for variables,

called path, is exchanged among agents to be extended in a complete path, being

a solution. The first agent in the ordering initiates the algorithm by sending a

path containing its first value to the second agent. When an agent receives a

path from its predecessor in the ordering, it appends its first value to the path

and sends this new path to its successor, provided the partial cost of the new

path, or lower bound (LB), is less than the current upper bound (UB); otherwise,

it continues to try next values until the cost does not exceed the bound. If values

are exhausted, it backtracks to its predecessor.

When an agent is notified of a backtrack from its successor agent in the ordering,

it changes its assignation to next values, until the cost does not exceed the bound.

If values are exhausted, another backtrack takes place.

3. Symmetry Breaking and Propagation

We present in this section the basics of symmetry in constraint programming3),

symmetry breaking by dominance detection2), the constructive orbit problem1)

and how it can be related to propagation of symmetry information as presented

in 10).

3.1 Definition

Definition 2 (Symmetry) A symmetry σ on a DCOP is an automorphism

on the set of assignations of values to variables, such that for any assignation a,

f(a) = f (σ(a)), where f is the global cost function of the DCOP.

The set of all symmetries in a DCOP form a group. We chose the following con-

venient notation to explicit symmetries which can be defined as permutations of

variables and/or values: we write {{x1, x3} , {x2}} for a problem with 3 variables

x1, x2, x3 where x1 and x3 are permutable. Similarly, {{1, 2, 3} , {4, 5}} denotes

a domain where values 1, 2, 3 are all permutable, and 4, 5 as well; this notation

implies that 1 and 4 are not permutable. We consider for simplification reasons,

but without any restriction on the general case, that all variables are defined on

the same domain.

3.2 Symmetry Breaking by Dominance Detection

In the Branch & Bound algorithm, symmetry breaking by dominance detection

(SBDD)2) is an operation answering the question “is this node symmetrically

equivalent to a previously visited one?” If the answer is yes, then the algorithm

can backtrack.

In practice, we keep a record in a list of fail sets S of roots of completed subtrees.

Each record contains information about the decision made to reach the root of the

subtree. When we reach a node, we consider P , the set of decisions corresponding

to the current search node. We say that our current node is dominated by a

completed subtree if there exists a σ in G, symmetry group of the problem, and

an s in S such that σ · s ⊆ P .

For example, if three variables x1, x2, x3 all defined on {1, 2, 3, 4} are subject

to an alldifferent constraint. The algorithm find two solutions (1, 2, 3) and

(1, 2, 4), then backtracks to variable x2 and assigns x2 = 3: all the assignations

located in the subtree rooted (1, 3) are symmetrical to assignations in the sub-

tree rooted in (1, 2): it is thus not necessary to explore it and we can already

backtrack.

This method, efficient for dealing with problems with large symmetry groups3),

considers we know about the symmetry group of the problem, which is a param-

eter impossible to know a priori in a distributed environment.

3.3 The constructive orbit problem

Definition 3 (Orbit) The orbit of an element α is the set of elements which

are images of α through any symmetry σ in the group G, and is noted G · α =

{σ · α |σ ∈ G}.

In the SBDD context, pruning occurs when the current node is equivalent to

a state in the list of fail sets: finding that two nodes are equivalent, i.e., in

the same orbit, is referred to as the orbit problem. Another way to solve the

orbit problem is to find a representative state in an orbit, e.g., the smallest in

lexicographical order. Finding this canonical form for any assignation is referred

to as the constructive orbit problem.1) describe a way to compute the constructive

orbit problem, albeit focusing on the context of model checking.

Definition 4 (Canonical form) Let α be an assignation of values to vari-

ables and G a group of symmetries over those assignations. We call canonical

form of α and write γG (α) the smallest element in lexicographical order in G ·α.

9) details an efficient way to compute the γ function when G is a combination

of variable and value permutations. The simplest case is when G is a symmetry

IPSJ SIG Technical Report

2 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

group where all variables and all values are permutable. For example, computing

γ(3, 2, 3) when the three variables {{x1, x2, x3}} and the three values {{1, 2, 3}}

are permutable consists of counting the occurrences of each value (here, one

occurrence of 2 and two occurrences of 3); then, we consider the number of

occurrences in descending order and associate each of them with each value in

lexicographical order, which leads us to two occurrences of 1 followed by one

occurrence of 2: γ(3, 2, 3) = (1, 1, 2).

3.4 Symmetry Propagation

10) first presented the idea of propagating and combining symmetry informa-

tion between agents in distributed constraint optimisation. This scheme relies on

the idea of partial symmetry, i.e., a symmetry on a partial definition of a problem

and on two operations on symmetry groups: junction, consisting of combining

symmetry information between two scopes; and projection, consisting of reducing

the scope of the symmetry group.

Definition 5 A subproblem of a problem p is the restriction of p to a subset of

variables V , their neighbour variables, and the constraints involving any variable

in V .

Each agent naturally owns a subproblem of the global problem, restricted to

its variables.

Definition 6 (Partial symmetry) A partial symmetry of a problem p is a

symmetry over a subproblem of p.

Each agent can detect partial symmetries over the subproblem of its own.

There is no inclusion rule between the group of global symmetries of a problem

p and the group of partial symmetries seen by an agent: this means that it is

impossible to find all symmetries of a global problem from the partial symmetries

of all agents. However, if all agents agree on a partial symmetry σ, σ is also a

global symmetry. More specifically, we can state the following proposition.

Proposition 1 If σ is a partial symmetry over p1 and p2, two subproblem of

the same CSP, then σ is a partial symmetry over their reunion p1 ∪ p2.

This leads us to the general definition of the junction of two symmetry groups.

Definition 7 (Junction) Let G1 (resp. G2) be a group of symmetries on the

constraint c1 (resp. c2) defined on the scope of variables S1 (resp. S1), we define

the junction G1 ⊕G2 by considering the elements of G1 (resp. G2):

• if σ1 ∈ G1 permutates variables in S1 ∩ S2, then σ1 ∈ G1 ⊕G2,

• if σ2 ∈ G1 permutates x ∈ S1 ∩ S2 with y ∈ S1 ∩ S2, then σ2 /∈ G1 ⊕G2,

• if σ3 ∈ G1 permutates variables y ∈ S1 ∩ S2, then σ3 ∈ G1 ⊕G2 iff. σ3 ∈ G2.

For example, with the notation defined for variable permutations, let G1 =

{{x, y, z, t}} and G2 = {{x, y, u}} be two groups of symmetry of subproblems re-

stricted respectively to S1 = {x, y, z, t} and S2 = {x, y, u}. The junction G1⊕G2

is defined on S1∪S2 = {x, y, z, t, u} and can be expressed as {{x, y} , {z, t} , {u}}.

With this definition of junction, we can reformulate Proposition 1 into the

following:

Proposition 2 If G1 (resp. G2) is a group of symmetry on subproblem p1
(resp. p2), then G1 ⊕G2 is a group of symmetry on p1 ∪ p2.

This implies that the junction of all symmetry groups as seen by each agent

is a symmetry group for the global problem. However, rather than computing

complete groups of symmetries for each agent, we prefer to focus on restrictions

of those groups on the scopes of variables owned by each agent. This leads us to

the definition of the projection of a variable out of a symmetry group.

Definition 8 (Projection) Let G be a symmetry group on the scope S and

x a variable in S. G|x is the restriction of G on S − {x}. By definition, all

symmetries of G|x are symmetries of the original group G.

For example, if a symmetry group can be represented as the following combi-

nation of variable and value permutations G = {{x, z} , {y}} , {{1, 2} , {3}}, then

G|z = {{x} , {y}} , {{1, 2} , {3}}.

4. Distributed SBDD

Rather than trying to find all symmetries of a DCOP, which is not reasonable

when we want to keep the definition of a problem distributed; or to find symme-

tries of a DCOP through the junction of all agents’ symmetry groups, we present

an algorithm which dynamically builds partial symmetry groups.

4.1 Algorithm

We consider a list of variables (x1, x2, · · ·xn). Those variables are defined on do-

mains that we will consider identical for clarity reasons and name (u1, u2, · · ·up).

For each constraint whose scope is (xi1 , xi2 , · · · , xik), the variable the least in lex-

icographic order, i.e., xik , is responsible for evaluating its cost. Each variable xi

IPSJ SIG Technical Report

3 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

is aware of a group of symmetry Gi. The symmetries intrinsic to each constraint

owned by xik are joined into Gik .
⋆1

An assignation initiated to α0 = ∅ is sent by the root of the search tree to

x1. When a variable xi+1 receives an assignation αi, it creates αi+1 by append-

ing xi+1 ← u1: if αi+1 does not break any of the constraints held by xi+1, it

passes αi+1 to xi+2; otherwise, it tries with next value u2. When the domain is

exhausted, xi+1 backtracks and projects xi+1 out of Gi+1 and sends the result

Gi+1|xi+1
back to xi together with the backtrack message.

When xi receives a backtrack message from xi+1, it updates its symmetry

information Gi ← Gi ⊕Gi+1|xi+1
and, if Gi is not empty, will record the current

couple
(

γGi (αi) , Gi

)

, i.e., the lowest element γGi (αi) of αi’s orbit with respect

to Gi. Each variable xi keeps track of a list of couples
(

t1i , t
2
i , · · ·

)

, where tki =
(

γGk
i

(

αk
i

)

, Gk
i

)

.

The symmetry breaking strategy is then based on the following proposition.

Proposition 3 Let βi be an assignation made by variable xi. If there exists

a tki =
(

γGk
i

(

αk
i

)

, Gk
i

)

such that γGk
i (βi) = γGk

i

(

αk
i

)

, then the subtree rooted

in βi can be pruned.

Proof For any partial assignation α made by variable x, we name LB(α) the

lower bound calculated with α; UB↓(α) and UB
↑(α) the upper bound respectively

before and after the traversal of the subtree rooted in α. The process of updating

upper bounds as defined in Branch & Bound ensures that for any assignation ε in

the subtree rooted in α, if ε triggered a backtrack, the inequality LB(ε) ≥ UB
↑(α)

stands.

If we know in advance, i.e., before traversing the subtree rooted in βi, that for

any leaf assignation δ in the subtree rooted in βi, LB(δ) ≥ UB
↓(βi), then we can

prune the subtree rooted in βi, knowing that UB↑(βi) = UB
↓(βi).

Let j > i be the largest index of the variable accessed in the tree parse

⋆1 Without loss of generalisation, each agent can apply a symmetry detection algorithm on
its subproblem in order to initialise its group of partial symmetries Gik . However, in our
examples, we reasonably assume the definition of one constraint includes its intrinsic sym-
metry definition, e.g., as the definition x 6= y is stated, the property that all variables and
all values are permutable is naturally deduced. Then, the junction of the symmetry groups
of all constraints owned by the same agent is a valid symmetry group for the subproblem
owned by this agent.

before reaching αk
i . Then, Gk

i is the symmetry group obtained by joining

Gi, Gi+1, . . . , Gj and projecting xi+1, . . . xj according to the process described

hereabove, that is

Gk
i = Gi ⊕ (Gi+1 ⊕ (Gi+2 ⊕ (· · ·Gj) |...) |xi+2) |xi+1

Let δ be a leaf assignation in the subtree rooted in βi and δj its leading part for

variables x1, . . . , xj ; δj can therefore be expressed as an assignation to variables

x1, . . . , xj whose leading part for x1, . . . , xi is βi. The positivity of constraints

ensures that LB(δ) ≥ LB (δj).

We introduce the following lemma in order to proceed further this proof.

Lemma 1 There exists a σ in Gk
i such that αk

i = σ(βi) and LB (δj) =

LB (σ (δj)), where σ (δj) is in the subtree rooted in αk
i .

Proof of Lemma 1 Let us consider first the case where j = i + 1. The lower

bound evaluated for δj is by definition obtained by adding the lower bound for

βi and the sum of the constraints owned by xj , namely fj (δj):

LB (δj) = LB (βi) + fj (δj)

We have LB (βi) = LB
(

αk
i

)

by definition; on the other hand, fj (δj) = fj (σ (δj))

is ensured by the inclusion Gi⊕Gj|xj
⊆ Gi⊕Gj . We can therefore easily unfold:

LB (σ (δj)) = LB
(

αk
i

)

+ fj (σ (δj))

= LB (βi) + fj (δj)

= LB (δj)

The general case for any j arises from a simple induction. �

Let us come back to the proof of Proposition 3 and distinguish the two following

cases.

(1) Let us assume first that βi is the first target of the pruning by dominance

detection.

Since σ(δj) is in the subtree rooted in αk
i and j is the deepest level in

the traverse of the subtree, there exists a leading part εl of σ(δj) (with

i < l ≤ j) which triggered a backtrack in the search process of the subtree.

Therefore, Branch & Bound ensures that LB(εl) ≥ UB
↑(αk

i) and the fact

that the chronological series of evaluations of (UB) by all variables xi is

non increasing lets us assert that UB↑
(

αk
i

)

≥ UB
↓(βi).

IPSJ SIG Technical Report

4 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

αk
i

εl

σ(δj)

i

l
j

βi

δj

δ

Gk
i

Fig. 1 Piece of the search tree

Therefore as we unroll the following sequence of equalities and inequalities

(refer to Figure 1):

LB(δ) ≥ LB (δj) = LB (σ (δj)) ≥ LB (εl) ≥ UB
↑
(

αk
i

)

≥ UB
↓(βi)

we get the proof that LB(δ) ≥ UB
↑(βi) to allow us to prune the subtree

rooted in βi and to have UB
↓(βi) = UB

↑(βi).

(2) In the general case, there exists a leading part εl of σ(δj) (with i < l ≤ j)

which either triggered a backtrack, or which was pruned by symmetry

detection. If εl triggered a backtrack, we can refer to the preceding case.

If εl was pruned by symmetry detection, let us consider two cases:

(a) l = j is impossible, because pruning at level j by symmetry detection

requires that a backtrack from level j+1 was triggered at least once;

(b) l > j. There exists a tk
′

l =
(

γGk′

l (τ (εl)) , G
k′

l

)

such that

γGk′

l (τ (εl)) = γGk′

l (εl). We can apply the same reasoning in or-

der to find

LB (σ (δj)) ≥ UB
↑ (εl) ≥ UB

↓ (βi)

�

As a consequence, when computing the cost of a optimisation problem, each

agent checks whether the canonical form of the current assignation is equivalent

to any recorded assignation with respect to the group of symmetry known at

the time of the record. If so, we may prune the subtree rooted in the current

assignation; if not, we can compute the lower bound of the current assignation.

4.2 Example Problem

Let us consider the following simple problem. We have 4 variables x, y, z, t, each

owned by a different agent. They are all defined on {0, 1, 2} and constrained by

the following rules we describe here intensively:

(x, y, z) :

alldifferent 7→ 0

x = y = z 7→ +∞

otherwise 20

(z, t) :

{

z = t 7→ +∞

z 6= t 7→ 5

We simulate in Table 1 the sequence of assignations leading to find a solution

while taking symmetries into account. Figure 2 illustrates with a red colour the

nodes that are dominated by others. The symmetry information are registered

in each agent/variable. The search tree is significantly pruned.

This problem displays an example where not all tkz correspond to the same

symmetry group: symmetry information known by agent/variable z before and

after the backtrack to (0, 0, 1) is different: {{x, y, z}} becomes {{x} , {y, z}}.

Even though x and z are not permutable in the global problem, the orbit of

assignation (0, 0, 0) with respect to the symmetry group {{x, y, z} , {0, 1, 2}} can

be considered as part of the list of fail sets.

(0)

(0, 0)

(0, 0, 0)

(0, 0, 1, 0)

(0, 0, 1)

. . .

(0, 0, 2)

(0, 1)

(0, 1, 0)

. . .

(0, 1, 1) (0, 1, 2)

(0, 1, 2, 2)

(0, 2)

(1) (2)

Fig. 2 Distributed SBDD with symmetry propagation — red nodes are symmetrically
equivalent to preceding states and have been pruned in the tree walk.

IPSJ SIG Technical Report

5 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

assignation LB UB Gi

x (0) 0 +∞
y (0, 0) 0 +∞
z (0, 0, 0) +∞ +∞ {{x, y, z}} , {{0, 1, 2}}
z (0, 0, 0) BT +∞ {{x, y, z}} , {{0, 1, 2}}
z t1z = ((0, 0, 0) , {{x, y, z}} , {{0, 1, 2}})
z (0, 0, 1) 20 +∞ {{x, y, z}} , {{0, 1, 2}}
t (0, 0, 1, 0) 25 25 {{z, t}} , {{0, 1, 2}}
t (0, 0, 1, 1) +∞ 25 {{z, t}} , {{0, 1, 2}}
t (0, 0, 1, 2) 25 25 {{z, t}} , {{0, 1, 2}}
z (0, 0, 1) BT 25 {{x, y} , {z}} , {{0, 1, 2}}
z t2z = ((0, 0, 1) , {{x, y} , {z}} , {{0, 1, 2}})
z (0, 0, 2) BT γ2

z (0, 0, 2) = (0, 0, 1)
y (0, 0) BT 25 {{x, y}} , {{0, 1, 2}}
y t1y = ((0, 0) , {{x, y}} , {{0, 1, 2}})
y (0, 1) 0 25 {{x, y}} , {{0, 1, 2}}
z (0, 1, 0) 20 25 {{x, y} , {z}} , {{0, 1, 2}}
t (0, 1, 0, 0) +∞ 25 {{z, t}} , {{0, 1, 2}}
t (0, 1, 0, 1) 25 25 {{z, t}} , {{0, 1, 2}}
t (0, 1, 0, 2) 25 25 {{z, t}} , {{0, 1, 2}}
z (0, 1, 0) BT 25 {{x, y} , {z}} , {{0, 1, 2}}
z t3z = ((0, 1, 0) , {{x, y} , {z}} , {{0, 1, 2}})
z (0, 1, 1) BT γ3

z (0, 1, 1) = (0, 1, 0)
z (0, 1, 2) 0 25 {{x, y} , {z}} , {{0, 1, 2}}
t (0, 1, 2, 0) 5 5 {{z, t}} , {{0, 1, 2}}
t (0, 1, 2, 1) 5 5 {{z, t}} , {{0, 1, 2}}
t (0, 1, 2, 2) +∞ 5 {{z, t}} , {{0, 1, 2}}
z (0, 1, 2) BT 5 {{x, y} , {z}} , {{0, 1, 2}}
z t4z = ((0, 1, 2) , {{x, y} , {z}} , {{0, 1, 2}})
y (0, 1) BT 5 {{x, y}} , {{0, 1, 2}}
y t2y = ((0, 1) , {{x, y}} , {{0, 1, 2}})
y (0, 2) BT γ2

y (0, 2) = (0, 1)
x (0) BT 5 {{x}} , {{0, 1, 2}}
x t1x = ((0) , {{x}} , {{0, 1, 2}})
x (1) BT γ1

x (1) = (0)
x (2) BT γ1

x (2) = (0)

Table 1 Tree walk for distributed SBDD with symmetry propagation (BT stands for
“backtrack”)

5. Performance

We chose to evaluate this way of propagating symmetry groups and pruning

search trees by executing various instances of the distributed graph colouring

problem, equivalent to many real-life problems, such as job scheduling or register

allocation. Although much optimisation has been produced for the centralised

graph colouring problem, we compare performance between strictly distributed

methods, namely the original SynchBB with and without our adaptation of SBDD

to distributed environments. We based our comparison on the number of non-

concurrent constraint checks (#ncccs) introduced in 6) and on the execution

time.

Definition 9 (#ncccs) Non-concurrent constraint checks are counted in a

similar way Lamport’s logical time is achieved: instead of steps of computation,

the number of non-concurrent constraint checks is counted to measure the local

computational effort.

In practice, with SynchBB, the #ncccs is equal to the total number of con-

straint checks if all variables are connected, i.e., if the constraint graph is formed

of only one component. In order to take the symmetry detection overhead into

account, we counted one constraint check for each evaluation of the γ function.

We modelled our distributed graph colouring problem with n variables x1 · · ·xn.

Each variable represents a node xp, which has a constraint stating the impossi-

bility of having identical colours for this node and each of its neighbours (xpi
).

We named that constraint graphcolouring(xp, xp0
, · · ·xpk

), k being the number

of neighbours of xp. The cost function assigns +∞ if there exists an i such as

xp = xpi
, and 0 otherwise. This constraint naturally induces a group of value

symmetries (all colours are permutable) and of variable symmetries (all xpi
are

permutable). We generated several distributed graph colouring problems with

6 colours, 4 agents, each owning 5 variables. The symmetries present in this

problem being combinations of variable and value symmetries, we used the im-

plementation of the γ function as introduced in Section 3.3 and described in

depth in 9).

On Figure 3, we compared the number of non-concurrent constraint checks on

200 instances of the problem: one resolution was executed on a regular SynchBB,

the other with a SynchBB with dominance detection. Dominance detection was

efficient with respect to the #ncccs on 90 % of the executions. This means that

on these executions, computing the γ function was compensated by the pruning

of the search tree.

IPSJ SIG Technical Report

6 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

100

1,000

10,000

100,000

100 1,000 10,000

#ncccs without distributed dominance detection

#ncccs with distributed dominance detection

Fig. 3 Number of non-concurrent constraint checks (#ncccs) for 200 distributed graph
colouring problem instances. Each dot represents one instance; the coordinates de-
picts the #ncccs for a resolution with SynchBB with (x-axis) and without distributed
dominance detection (y-axis).

Figure 4 draws an average of execution times⋆1 according to the biggest number

of variables in a graph component, i.e., the depth of the deepest search tree in the

problem. Dominance detection brought an average speedup of 1.71 (resp. 1.54)

on the total amount of executions for trees of depth 14 (resp. 16): our method

yielded better performance in deeper trees in general.

6. Conclusion

This paper presented a distributed version of symmetry breaking by dominance

detection for the distributed Branch & Bound (SynchBB), where symmetry in-

formation are sent together with backtracking messages, and adequately joined

at that time with neighbouring agents’ symmetry information. It proved that

it is sufficient to rely on the list of fail sets created with respect to symmetry

information known at the time of their creation in order to prune the search tree.

Indeed, updating an agent’s symmetry information does not question the validity

of previously recorded fail sets.

⋆1 Frodo framework5), Core2Duo based Linux, 2GB RAM, java-6-sun-1.6

without dominance detection

with dominance detection

50

100

150

200

250

300

8 10 12 14 16

biggest number of variable in a graph component

execution time (in ms)

144

197

246

305

Fig. 4 Execution time in ms for distributed graph colouring problem instances solved with
SynchBB algorithm with and without distributed dominance detection

The proposed method showed a significant execution speed-up (around 1.7)

on problems with deep search trees and a serious cut on the number of non-

concurrent constraint checks on 90 % of generated instances of the distributed

graph colouring problem.

References

1) Donaldson, A.F. and Miller, A.: On the constructive orbit problem, Annals of

mathematics and artificial intelligence, Vol.57, pp.1–35 (2009).
2) Fahle, T., Schamberger, S. and Sellmann, M.: Symmetry Breaking, Principles and
Practice of Constraint Programming (Walsh, T., ed.), LNCS 2239, Springer, pp.
93–107 (2001).

3) Gent, I., Petrie, K. and Puget, J.-F.: Symmetry in Constraint Programming, Hand-

book of constraint programming (Rossi, F., van Beek, P. and Walsh, T., eds.), Else-
vier Science Ltd, chapter10, pp.329–376 (2006).

4) Hirayama, K. and Yokoo, M.: Distributed Partial Constraint Satisfaction Problem,
Principles and Practice of Constraint Programming, pp.222–236 (1997).

5) Léauté, T., Ottens, B. and Szymanek, R.: FRODO2.0: An Open-Source Frame-
work for Distributed Constraint Optimization, Proceedings of the 11th International

Workshop on Distributed Constraint Programming (Hirayama, K., Yeoh, W. and

IPSJ SIG Technical Report

7 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

Zivan, R., eds.), pp.160–164 (2009).
6) Meisels, A., Kaplansky, E., Razgon, I. and Zivan, R.: Comparing performance of
distributed constraints processing algorithms, Proceedings of the 3rd International

Workshop on Distributed Constraint Reasoning, pp.86–93 (2002).
7) Modi, P., Shen, W., Tambe, M. and Yokoo, M.: ADOPT: Asynchronous Dis-
tributed Constraint Optimization with Quality Guarantees, Artificial Intelligence,
Vol.161, No.1-2, pp.149–180 (2005).

8) Olive, X. and Nakashima, H.: SymDPOP: Adapting DPOP to exploit partial sym-
metries, Proceedings of the 12th International Workshop on Distributed Constraint

Programming (vander Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M. and
Sen, S., eds.), pp.38–52 (2010).

9) Olive, X. and Nakashima, H.: Around the Constructive Orbit Problem in Dis-
tributed Constraint Programming, IPSJ SIG Notes, Vol.2011-AL-134 (2011).

10) Olive, X. and Nakashima, H.: Efficient Representation of Constraints and Propa-
gation of Variable–Value Symmetries in Distributed Constraint Reasoning, Journal
of Information Processing, Vol.19 (2011).

11) Petcu, A. and Faltings, B.: A Scalable Method for Multiagent Constraint Opti-
mization, Proceedings of the 19th International Joint Conference on Artificial In-

telligence, Vol.19, p.266 (2005).

IPSJ SIG Technical Report

8 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.23
2011/3/7

