
Regular Paper

Around the Constructive Orbit Problem

in Distributed Constraint Programming

Xavier Olive†1 and Hiroshi Nakashima†1

This paper presents an efficient method to list equivalence classes (or orbits) of
assignations of values to variables, where assignations are symmetrical through
a group of variables and values permutations. We also present an algorithm
designed to compute efficiently a canonical form of any assignation with respect
to those orbits — problem also known as the constructive orbit problem. We
illustrate how efficient our algorithm is and how it can significantly improve the
resolution of symmetrical problems with DPOP, an efficient class of algorithms
solving distributed constraint programming problems.

1. Introduction

This section presents a set of notions and notations required to understand

the problem we want to solve and how relevant this problem is to our field of

application.

We consider a set of n variables xi and a set of k values uj .

Definition 1 Let α =
{
xi ← uϕ(i)

}

i∈[1···n]
, with ϕ : [1 · · ·n] −→ [1 · · ·k] be

an assignation of n variables over k values.

Let A = [1 · · ·k]n be the set of all possible assignations. We consider a util-

ity function f : A −→ K associating a value to an assignation. We will re-

fer in this paper indifferently to αi and ϕi which are two representations of

the same object. The condensed notation (1, 2, 2, 3) refers to the assignation

α = {x1 ← 1, x2 ← 2, x3 ← 2, x4 ← 3} or ϕ : {1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 3}.

Definition 2 Let σ be a bijection from A to A so that, for each α ∈ A, the

equality f(α) = f (σ (α)) stands. σ is called a symmetry with respect to f .

Proposition 1 The set of symmetries with respect to f form a group.

Among the group of symmetries G, we distinguish the variable symmetries,

†1 Kyoto University

which exclusively permutate variables, and value symmetries which exclusively

permutate values. We focus here on groups that are generated from a set of

variable symmetries and from a set of value symmetries.

Definition 3 We name orbit of an element α all the elements in A that are

images of α through an element of G. In other words, G · α = {σ(α) |σ ∈ G}.

Definition 4 Let≪ denote a lexicographic order operator on the set of assig-

nations:

ϕ1 ≪ ϕ2 ⇔







ϕ1(1) < ϕ2(1)

∃ i ∈ [2 . . . n],
(

ϕ1(i) < ϕ2(i) ∧ ∀j < i, ϕ1(j) = ϕ2(j)
)

Definition 5 We name canonical representation of an orbit G ·α the element

α̇ which is the lowest element in lexicographic order in an orbit G · α. We define

the function γ such as for all β ∈ G · α,we have γ(β) = α̇.

With 3 variables taking values in {0, 1, 2}, if G is the group of the symmetries

swapping all variables and all values with each other, then the orbit of (1, 1, 1) is

{(0, 0, 0) , (1, 1, 1) , (2, 2, 2)}. The canonical representation of this orbit is (0, 0, 0).

We write γ(1, 1, 1) = (0, 0, 0).

G separates all 27 assignations of 3 variables taking values in {0, 1, 2} into three

orbits whose canonical representations are respectively G·(0, 0, 0) for all identical

elements, G · (0, 0, 1) for exactly two (among three) identical elements, and G ·

(0, 1, 2) for all different elements. The purpose of this paper is double. For a

given set of variables, a given set of values, and a symmetry group G, we present

an efficient way to:

• compute the γ function — referred to as the constructive orbit problem;

• list the canonical representations of all different orbits.

We claim that those two methods are of critical importance in the treatment of

symmetries in distributed constraint programming.

Related works

Clarke2), then Donaldson3) analysed the constructive orbit problem in depth,

whilst its general form had been proved NP-hard by Babai1). However, they

focused on the context of model checking. The theory developped around model

checking can be directly applied to a very simplified version of our problem,

respectively a problem with no value symmetry. Donaldson suggested that the

IPSJ SIG Technical Report

1 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

constructive orbit problem — the first item of the problem we want to solve —

can be efficiently solved for three categories of symmetry groups: fully symmetric

groups, disjoint products and wreath products.

Let us illustrate Donaldson’s model with a problem of four variables taking

values in {1, 2, 3, 4}. G is the group of the symmetries permutating all variables

while leaving the values invariant. The most obvious naive strategy for computing

γ(s) is to compute G ·s and to return the smallest element; in order to enumerate

all the orbits, the equivalent strategy would be to compute all the γ(s) for every

possible s. For example, computing γ(3, 1, 2, 4) the naive way would mean listing

(3, 1, 2, 4), (1, 3, 2, 4), (2, 1, 3, 4), . . . and pick the smallest element, i.e. (1, 2, 3, 4).

As G, in this particular case where all variables are permutable, is a fully sym-

metric group, Donaldson recommends here to sort values in lexicographic order.

Let us now consider the same variables with a different symmetry group. G is

now permutating the first and second variables on one hand, and the third and

fourth variables on the other hand. G is not a fully symmetric group, however

it is the disjoint product of G1,2 (swapping the 1st and the 2nd variable) and

G3,4. Donaldson proved then that γ(3, 1, 2, 4) = γ1,2 ◦ γ3,4(3, 1, 2, 4). In other

words, compute separately γ(3, 1) and γ(2, 4) then join the results: γ(3, 1, 2, 4) =

(1, 3, 2, 4). Sorting (3, 1) and (2, 4) separately — or listing-then-choosing the

lowest element if one multiplicand is not a fully symmetry group — is obviously

more efficient than dealing with the whole 4-variable vector.

This approach, albeit reasonable in the case of variable-only symmetries, is

not applicable in the case of variable/value symmetries, where the identification

of disjoint or wreath product is far from obvious in a context of assignations

(comparable to N× N), unlike model checking (comparable to N).

We propose here a method able to deal with variable/value symmetries, and

also build from scratch a way to list all orbits. We start from an equivalent

of the fully symmetric group in this “two-dimension” (variable and value) con-

text (section 2), and extend to the general case where only some variables and

some values are permutable (section 4). We then compare performance with the

naive method (section 5.1) and show how this method is crucial in distributed

constraint programming (section 5.2).

2. Unique set of permutable variables, unique set of permutable

values

In this section, we consider a set of interchangeable variables V = {x1, · · ·xn},

and a set of interchangeable values D = {u1, · · ·uk} with regards to utility func-

tion f . We name G the group of symmetries applicable on A.

2.1 γ function

Let (ϕ, α) be an assignation. In α =
{
xi ← uϕ(i)

}

i∈[1···n]
, we have at most k

different values in
{
uϕ(i)

}
. We name # (uj) the number of occurences of uj in α

(or the number of occurences of j in the arrival domain of ϕ).

Lemma 1 The distribution of #(ui) is preserved through all σ ∈ G.

Proof Permutating variables keeps all #(ui) intact and permutating values

ui ⇋ uj just permutates #(ui) with #(uj). �

Proposition 2 α̇ =
{
uϕ(i)

}
is a canonical form iff the three following condi-

tions are fulfilled: 





ϕ(1) = 1

ϕ(i) = ϕ(i − 1) + {0, 1} for i > 1

i < j ⇔ #(ui) ≥ #(uj)

Proof Consider α̇ =
{
uϕ(i)

}
a canonical form. The proof of the first line is

direct: if ϕ(1) 6= 1, then you can just swap ϕ(1) and 1 and get a symmetric

assignation lower in lexicographic order. Similarly, if ϕ(i) < ϕ(i − 1), we can

swap them and get a lower element in the orbit G · α̇ ; if ϕ(i) > ϕ(i− 1) + 1, we

would swap ϕ(i) with ϕ(i − 1) + 1 and prove α̇ would not be a canonical form.

About the third line, let’s consider

α = (u1, . . . ui, ui, ui, . . . uj , uj, uj , uj, . . .)

By “moving” upwards the variables assigned to uj , before the variables assigned

to ui, and by then swapping ui ⇋ uj , we get

β = (u1, . . . ui, ui, ui, ui, . . . uj , uj, uj, . . .)

We just exhibited β, an element of G · α which lexicographically precedes α.

For the converse, consider now ϕ1 being a canonical form, thus satisfying the

three conditions and ϕ2 another element of ϕ1’s orbit, also satisfying the same

IPSJ SIG Technical Report

2 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

conditions. Let’s prove by recursion that ϕ2 is necessarily equal to ϕ1. First, we

have ϕ1(1) = ϕ2(1). Suppose now that ϕ1(i) = ϕ2(i) for all i < j. Lemma 1 and

the third condition yield #(uϕ1(k)) = #(uϕ2(k)) for all indices k.

Therefore, ϕ1(j) = ϕ1(j − 1) ⇔ ϕ2(j) = ϕ2(j − 1), and thanks to the second

condition, ϕ1(j) = ϕ1(j − 1) + 1 implies that ϕ2(j) = ϕ2(j − 1) + 1.

We conclude that ϕ1 = ϕ2 are the same canonical form of the considered orbit.

�

In order to build the set of permutations to operate on variables and values and

get (ϕ̇, α̇), we define the bijection τ : [1 · · ·n] −→ [1 · · ·n] that will sort variables

by the occurence frequency of the values assigned to them. In case of equality,

we sort variables in the lexicographical order of assigned values and then that of

variables themselves. In other words, for any couple (i, j),

τ(i) < τ(j)⇔







#(uϕ·τ(i)) ≥ #(uϕ·τ(j)) if #(uϕ·τ(i)) 6= #(uϕ·τ(j))

ϕ · τ(i) < ϕ · τ(j) if

{

#(uϕ·τ(i)) = #(uϕ·τ(j))

and ϕ · τ(i) 6= ϕ · τ(j)

i < j otherwise

Then, we define the bijection υ : [1 · · · k] −→ [1 · · ·k] in order to permute values

so that the most used value becomes u1, the second most used value becomes u2,

etc. Strictly speaking,

for any couple (i, j), υ(i) < υ(j)⇔

{

#(ui) < #(uj) if #(ui) 6= #(uj)

i < j otherwise

Proposition 3 α̇ = {xi ← uυ·ϕ·τ(i)}, (ϕ̇ = υ ◦ ϕ ◦ τ, α̇) is by construction

the lowest element in lexicographical order in the orbit of (ϕ, α), i.e., α̇ = γ(α).

For example, let V = {x1, x2, x3} and D = {1, 2, 3, 4, 5}. We want to compute

γ (4, 3, 4), i.e., find υ and τ for ϕ : {1 7→ 4, 2 7→ 3, 3 7→ 4}. We start counting

(1) = 0, # (2) = 0, # (3) = 1, # (4) = 2, and # (5) = 0. We then define τ to

swap x2 ⇌ x3, then υ to reorder values as follows:

υ ◦ ϕ ◦ τ :







1 7−→ 3

2 7−→ 4

3 7−→ 2

4 7−→ 1

5 7−→ 5

◦







1 7−→ 4

2 7−→ 3

3 7−→ 4

◦







1 7−→ 1

2 7−→ 3

3 7−→ 2

=







1 7−→ 1

2 7−→ 1

3 7−→ 2

We found γ (4, 3, 4) = (1, 1, 2).

2.2 List of orbits

Lemma 2 The number of orbits in G is equal to the number of different

decompositions of integer n into a sum of at most k positive integers.

Proof We associate to each decomposition k1 + k2 + · · · km≤k = n (with ki in

descending order) the following assignation

α =







u1, u1, · · ·u1
︸ ︷︷ ︸

k1

, u2, · · ·u2
︸ ︷︷ ︸

k2

, · · ·um, · · ·um
︸ ︷︷ ︸

km≤k







(1)

As any assignation which does not match that pattern is not a canonical form

according to Proposition 2, we cannot have more orbits than partitions. More-

over, as both variable and value permutations globally preserve the distribution

of # (ui), we cannot have less orbits than partitions. �

Corollary 1 Listing the orbits of assignations of n permutable variables over

k permutable values is equivalent to listing all partitions of n elements into subsets

of at most k elements.

We describe here in detail a way to list all partitions of n elements into subsets

of at most k elements. The parameter m being the biggest element in the subset

is to be initialized to n.

The listing on the beginning of next page describes a way to list all partitions

of n elements into subsets of at most k elements. For example, if we want to list

all canonical forms of V = {x1, x2, x3} and D = {1, 2, 3, 4, 5}, we start computing

partition(3, 5), then build the corresponding assignation as in Equation 1.

IPSJ SIG Technical Report

3 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

1 # n is the sum of all elements in a subset
m is the biggest element in a subset
k is the max number of elements in a subset

def partition(n,m,k):

6 result = []

for i in range(n-m,n-(n-1)/k): # ensures the first element is the biggest
if (i==0):

result.append([n])

else:

11 for e in partition(i,min(n-i,i,m),(k-1)):

result.append([n-i]+e) # the + symbol stands for concatenation
return result

3 = 3⇒ (1, 1, 1)

3 = 2 + 1⇒ (1, 1, 2)

3 = 1 + 1 + 1⇒ (1, 2, 3)

3. Unique set of permutable variables, set of permutable values’ sets

We consider here a set of interchangeable variables V = {x1, · · ·xn} and a set

of sets of interchangeable values D = {D1, · · ·Dm}. We name d(u) the indice

of the domain containing value u. Without loss of generality⋆1, we assume that

d(u) < d(v)⇒ u < v. We name G the group of symmetries applicable on A.

3.1 γ function

Let (ϕ, α) be an assignation of variables.

We first reorder variables in order to group together permutable values; we

build the bijection ψ : [1 · · ·n] −→ [1 · · ·n] so that

ψ(i) < ψ(j)⇔ d
(
uϕ·ψ(i)

)
< d

(
uϕ·ψ(j)

)
∨

(

d(uϕ·ψ(i)) = d(uϕ·ψ(j)) ∧ i < j
)

Then, we deal with each set of permutable values separately.

For example, let V = {x1, x2, x3, x4, x5} and D = {{1, 2} , {3, 4} , {5}}. We

want to compute γ(3, 2, 2, 4, 3). We first permutate variables (by ψ : {1 7→ 3, 2 7→

⋆1 We could redefine the lexicographical order so that (u) ≪ (v) iff d(u) < d(v) ∨
(d(u) = d(v) ∧ u < v)

1, 3 7→ 2, 4 7→ 4, 5 7→ 5}) in order to isolate {1, 2} and {3, 4}: γ(3, 2, 2, 4, 3) =

γ(2, 2, 3, 4, 3), before solving separately the two problems:

• V1 = {x1, x2} , D1 = {1, 2} , γ1(2, 2) = (1, 1)

• V2 = {x3, x4, x5} , D2 = {3, 4} , γ2(3, 4, 3) = (3, 3, 4)

and concatenate them into:

γ(3, 2, 2, 4, 3) = γ(2, 2, 3, 4, 3) = γ1(2, 2)∗γ2(3, 4, 3) = (1, 1)∗(3, 3, 4) = (1, 1, 3, 3, 4)

3.2 List of orbits

We naturally extend Lemma 1 into the following:

Lemma 3 For each assignation α ∈ A, #(Di) =
∑

ui,j∈Di
#(ui,j), is invari-

ant through any permutation in G.

Corollary 2 We can list all orbits for V × {Di} by enumerating all decom-

positions of n into sums of #(Di).

For instance, for V = {x1, x2, x3, x4, x5} and D = {{1, 2} , {3, 4} , {5}}, we first

decompose 5 into sums of no more than 3 elements.

5 = 5⇒ {#(D1) = 5} , {#(D2) = 5} , {#(D3) = 5}

5 = 4 + 1⇒ {#(D1) = 4,#(D2) = 1} , {#(D1) = 4,#(D3) = 1}

{#(D2) = 4,#(D3) = 1} , {#(D1) = 1,#(D2) = 4}

{#(D1) = 1,#(D3) = 4} , {#(D2) = 1,#(D3) = 4}

5 = 3 + 2⇒ {#(D1) = 3,#(D2) = 2} , {#(D1) = 3,#(D3) = 2}

{#(D2) = 3,#(D3) = 2} , {#(D1) = 2,#(D2) = 3}

{#(D1) = 2,#(D3) = 3} , {#(D2) = 2,#(D3) = 3}

5 = 3 + 1 + 1⇒ {#(D1) = 3,#(D2) = 1,#(D3) = 1}

{#(D1) = 1,#(D2) = 3,#(D3) = 1}

{#(D1) = 1,#(D2) = 1,#(D3) = 3}

5 = 2 + 2 + 1⇒ {#(D1) = 2,#(D2) = 2,#(D3) = 1}

{#(D1) = 2,#(D2) = 1,#(D3) = 2}

{#(D1) = 1,#(D2) = 2,#(D3) = 2}

Then for each {#(Di) = ki}, we split V into {x1, . . . xk1} , {xk1+1, . . . xk2} , . . .

and refer to the case of unique set of permutable values for listing the orbits of
{
xki−1+1, . . . xki

}
variables taking values on Di.

For instance, for {#(D1) = 2,#(D2) = 3}, we list separately the orbits of

IPSJ SIG Technical Report

4 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

{x1, x2} taking values on {1, 2} (resp. (1, 1) and (1, 2)) and of {x3, x4, x5} taking

values on {3, 4} (resp. (3, 3, 3) and (3, 3, 4)) before concatenating them.

Therefore, the orbits issued of {#(D1) = 2,#(D2) = 3} are

(1, 1, 3, 3, 3), (1, 1, 3, 3, 4), (1, 2, 3, 3, 3), (1, 2, 3, 3, 4)

4. Set of permutable variables’ sets, set of permutable values’ sets

In this section, we consider a set of sets of interchangeable variables V =

{V1, · · ·Vn} and a set of sets of interchangeable values D = {D1, · · ·Dm}. We

assume that all Vi =
{

xi1 , · · ·xili

}

and all Di =
{

ui1 , · · ·uiki

}

are ordered so

that i < j ⇒ i1 < j1. We name G the group of symmetries applicable on A.

4.1 γ function

Let (ϕ, α) be an assignation of variables. We want to find the first element α̇

in lexicographic order in the orbit of α. We first decompose ϕ according to the

{Vi} in {ϕ1, . . . ϕn}.

While we treat the Vi separately, we cannot escape the fact that a permutation

of the values has an impact on all the Vi together. If we want to proceed re-

cursively, once we find a canonical form on Vi, the value permutations we would

apply on Vi+1 to find a canonical form also have an impact on Vi. As a conse-

quence, we need to find a way to characterize value permutations on Vi+1 that

will have no impact on this Vi.

That idea brought up the following definition of the ∇α operator.

Definition 6 We define the ∇α operator to decompose each set of symmetric

values in D = {D1, . . . Dm} according to the number of occurrence of each value

in an assignation α:

∇α ·D =

{
{

x ∈ Di | #(x) = j
}

i∈[1..m]
j∈N

}

(2)

For example, if D = {{1, 2, 3, 4}} and α = (1, 1, 2, 2, 3), then we have the

following — because #(1) = #(2) = 2, #(3) = 1 and #(4) = 0:

∇α ·D = {{1, 2} , {3} , {4}}

This means that if we swap 1 ⇋ 2, we can swap x1 ⇋ x3 and x2 ⇋ x4 and get α

back. However, we cannot swap 1 ⇋ 3 because there is no variable permutation

to get α back.

Proposition 4 We can find the global Γ function by recursivity:

• we first compute γD on the assignation restricted on the first set of per-

mutable variables ϕ̇1,

• we build a ∇1 operator with respect to that ϕ̇1,

• we prepend ϕ̇1 to the result of Γ on the assignation restricted to the remaining

variables, on which we apply υ1 and τ1 found in the first step.

In other words,

ΓD
(

ϕ1 ∗ · · · ∗ ϕn

)

= γD(ϕ1)
︸ ︷︷ ︸

υ1◦ϕ1◦τ1

∗ Γ∇1·D
(

υ1◦ (ϕ2 ∗ · · · ∗ ϕn) ◦τ1

)

(3)

We will show at first that ΓD(ϕ) is an element of the orbit of ϕ by exhibiting

a sequence of variable and value permutation leading to it; then show that no

element in the orbit of ϕ can be smaller in lexicographic order than ΓD(ϕ). For

that purpose, we need the following lemma and its corollary on ∇ϕ operator.

Lemma 4 Let ϕ be an assignation of all permutable variables over a set of

values. For any permutation of two values υa⇋b, there exists a permutation of

variables ψ restoring ϕ iff a and b have the same number of occurences. In other

words,

∀υa,b ∃τυ s.t. υa,b ◦ ϕ ◦ ψ = ϕ⇔ #(a) = # (b)

Proof

Indeed, provided that a and b have the same number of occurrences, we can

construct τυ by swapping the first variable that takes value a with the first

variable that takes value b, the second variable that takes value a with the second

variable that takes value b, and so forth. Conversely, if #(a) > #(b), i.e. we have

more variables assigned to value a than to value b, we cannot swap them by pair.

�

Since any permutation can be decomposed as a sequence of pair permutations,

and since ∇ϕ decomposes values’ sets according to the number of occurences of

values in ϕ, we can state the following,

Corollary 3 Let ϕ be an assignation of all permutable variables over a set

of values’ sets D. For any permutation of values υ, there exists a permutation

of variables ψ such as ϕ = υ ◦ ϕ ◦ ψ iff υ ∈ Uϕ where Uϕ is the group of value

IPSJ SIG Technical Report

5 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

permutation inferred by ∇ϕ ·D.

Proof of Proposition 4

Let’s consider two sets of permutable variables, a set of values’ sets D, and a

simple assignation ϕ = ϕ1 ∗ ϕ2. We can write:

ΓD
(

ϕ1 ∗ ϕ2

)

= γD(ϕ1)
︸ ︷︷ ︸

υ1◦ϕ1◦τ1

∗ Γ∇1·D
(

υ1 ◦ ϕ2 ◦ τ1

)

= υ1 ◦ ϕ1 ◦ τ1 ∗ υ2υ1 ◦ ϕ2 ◦ τ1τ2
and since υ2 ∈ U1, according to Corollary 3, there exists a ψ1 such as

= υ2υ1 ◦ ϕ1 ◦ τ1ψ1 ∗ υ2υ1 ◦ ϕ2 ◦ τ1τ2

= υ2υ1 ◦
(

ϕ1 ◦ τ1ψ1 ∗ ϕ2 ◦ τ1τ2

)

and since ψ1 (resp. τ2) acts only on ϕ1’s (resp. ϕ2) scope

= υ2υ1 ◦ (ϕ1 ∗ ϕ2) ◦ τ1ψ1τ2

We exhibited a set of variables and values permutations leading from ϕ to Γ(ϕ);

henceforth Γ(ϕ) is in the orbit of ϕ. Let’s now consider ϕ̇≪ Γ(ϕ) an element of

the orbit of ϕ and state a few fundamental facts:

(1) γD(ϕ1) is the lowest element the orbit of ϕ1, namely U ◦ ϕi ◦ T , where U

and T are groups of value and variable permutations inferred from D and

V respectively;

(2) similarly, γ∇1·D(υ1 ◦ ϕ2 ◦ τ1) is the lowest element in the orbit U1 ◦ (υ1 ◦

ϕ2 ◦ τ1) ◦ T ; or in U1 ◦ (υ1 ◦ ϕ2) ◦ T because τ1 does not act on ϕ2;

(3) ϕ̇ should have the form

ϕ̇ = υ ◦ ϕ ◦ τ = υ ◦ (ϕ1 ∗ ϕ2) ◦ τ = (υ ◦ ϕ1 ◦ τ) ∗ (υ ◦ ϕ2 ◦ τ)

where υ ∈ U and τ ∈ T , and thus

υ ◦ ϕ1 ◦ τ = γD(ϕ1) = υ1 ◦ ϕ1 ◦ τ1 = υ2υ1 ◦ ϕ1 ◦ τ1ψ1

must hold to make ϕ̇ lexicographically smaller than Γ(ϕ).

Then, since ϕ̇ 6= Γ (ϕ), we have υ 6= υ2υ1 ∨ τ 6= τ1ψ1τ2.

(1) If υ 6= υ2υ1, then we name υ̇ = υυ−1
1 6= υ2:

(a) if υ̇ /∈ U1, then there exists some ψ̇ ∈ T such that ϕ̇1 = υ ◦ ϕ1 ◦ τ =

υ̇υ1 ◦ϕ1 ◦τ1ψ̇, but it cannot make ϕ̇1 = υ1 ◦ϕ1 ◦τ1 = γD(ϕ1) because

of the only-if part of Corollary 3. Therefore ϕ̇1 6= γD(ϕ1) and thus

ϕ̇1 ≫ γD(ϕ1).

(b) If υ̇ ∈ U1, ϕ̇1 can be equal to γD(ϕ1), but in that case, ϕ̇2 = υ̇υ1 ◦

ϕ2 ◦τ ≫ υ2υ1 ◦ϕ2 ◦τ1τ2 = γ∇1·D(ϕ2) because both of them are in the

orbit U1 ◦ (υ1 ◦ ϕ2) ◦ T , υ̇ 6= υ2 and γ∇1·D(ϕ2) is the lowest element

in the orbit.

(2) Only υ = υ2υ1 is hence valid, leading to τ = τ̇1τ̇2 with τ̇1 6= τ1ψ1 ∨ τ̇2 6= τ2:

(a) τ̇1 6= τ1ψ1 is impossible, because ϕ̇1 = υ2υ1 ◦ ϕ1 ◦ τ̇1 is in U ◦ ϕ1 ◦ T

where γD(ϕ1) is the lowest element and thus ϕ̇1 ≫ γD(ϕ1)

(b) therefore, τ̇2 6= τ2, leads us to ϕ̇2 = υ2υ1 ◦ ϕ2 ◦ τ1τ̇2 ≫ γ∇1·D(ϕ2)

because ϕ̇2 ∈ U1 ◦ ϕ2 ◦ T .

ΓD(ϕ) is then necessarily the lowest in lexicographic order in the orbit of ϕ.

The proof with ϕ1 ∗ · · · ∗ ϕn can then be naturally induced from the ϕ1 ∗ ϕ2

case.

�

For example, let V = {{x1, x2, x3} , {x4, x5} , {x6}} and D = {{1, 2, 3, 4, 5}}.

We want to compute γ(4, 5, 3, 5, 5, 4). We start decomposing ϕ:

ϕ =







ϕ1 = {1 7→ 4, 2 7→ 5, 3 7→ 3}

ϕ2 = {4 7→ 5, 5 7→ 5}

ϕ3 = {6 7→ 4}
4.1.1 Computing ϕ̇1

We consider the resolution of γD · ϕ1 with V1 = {x1, x2, x3} and D =

{{1, 2, 3, 4, 5}} according to previous sections.

υ1 ◦ϕ1 ◦ τ1 :







1 7−→ 4

2 7−→ 5

3 7−→ 1

4 7−→ 2

5 7−→ 3

◦







1 7−→ 4

2 7−→ 5

3 7−→ 3

◦







1 7−→ 3

2 7−→ 1

3 7−→ 2

=







1 7−→ 1

2 7−→ 2

3 7−→ 3

We have α̇1 = (1, 2, 3). We also compute ∇1 ·D = {{1, 2, 3} , {4, 5}}.

4.1.2 Computing ϕ̇2

We consider the resolution of γ∇1·D · γD · ϕ2 = γ∇1·D(3, 3) with V2 = {x4, x5}

and ∇1 ·D = {{1, 2, 3} , {4, 5}}

IPSJ SIG Technical Report

6 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

υ2◦
(
γD·ϕ2

)
◦τ2 :







1 7−→ 2

2 7−→ 3

3 7−→ 1

◦

{

4 7−→ 3

5 7−→ 3
◦

{

4 7−→ 4

5 7−→ 5
=

{

4 7−→ 1

5 7−→ 1

We have α̇2 = (1, 1). We then compute ∇2 · ∇1 ·D = {{1} , {2, 3} , {4, 5}}.

4.1.3 Computing ϕ̇3

We consider the resolution of γ∇2·∇1·D · γ∇1·D · γD · ϕ3 = γ∇2·∇1·D(3) with

V3 = {x6} and ∇2 · ∇1 ·D = {{1} , {2, 3} , {4, 5}}.

υ3◦
(
γ∇1·D · γD · ϕ3

)
◦τ3 :

{

2 7−→ 3

3 7−→ 2
◦
{

6 7−→ 3 ◦
{

6 7−→ 6 =
{

6 7−→ 2

We have α̇3 = (2). The solution is γ(4, 5, 3, 5, 5, 4) = (1, 2, 3, 1, 1, 2) .

4.2 List of orbits

Similarly, we can list orbits by considering all the Vi in order and by dividing

the set of sets of permutable values with the ∇ operator. We recursively build a

tree as deep as n, number of Vi.

For example, see Figure 1 for an example with V = {{x1, x2} , {x3} , {x4}} and

D = {{1, 2, 3}}. The figure represents a tree where each leaf is a possible orbit

for the symmetry group.

5. Experimental results

5.1 Orbits’ listing problem

We tried here to compare the performance of our algorithm to the naive ap-

proach. We generated randomly 200 problems consisting of sets of permutable

variables’ sets and sets of permutable values’ sets and listed all the canonical

forms for each orbit.

We traced in Figure 2 an average of the execution time for both our method

and the first naive method in function of the size of the problem, measured here

as the sum of the number of variables and of the number of values. We used a

Java 6 Sun environment on a Core2Duo based Linux with 2GB RAM.

Our method offers an outstanding speedup compared to the naive method,

standing between 25 and 300,000 for large problems.

{x1, x2} × {{1, 2, 3}}

(1, 1)

(1, 2)

{x3} × {{1} , {2, 3}}

{x3} × {{1, 2} , {3}}

(1, 1, 1)

(1, 1, 2)

(1, 2, 1)

(1, 2, 3)

{x4} × {{1} , {2, 3}}

{x4} × {{1} , {2} , {3}}

{x4} × {{1} , {2} , {3}}

{x4} × {{1, 2} , {3}}

(1, 1, 1, 1)

(1, 1, 1, 2)

(1, 1, 2, 1)

(1, 1, 2, 2)

(1, 1, 2, 3)

(1, 2, 1, 1)

(1, 2, 1, 2)

(1, 2, 1, 3)

(1, 2, 3, 1)

(1, 2, 3, 3)

Fig. 1 List of orbits for V = {{x1, x2} , {x3} , {x4}} and D = {{1, 2, 3}}.

5.2 Application to distributed constraint programming

Distributed constraint programming is a paradigm where a number of agents

own variables linked together by constraints. Agents are separate computing

units, with private and public data: private information is not to be communi-

cated with other agents, and public information is shared by two or more agents.

The challenge is to get a consistent solution, valid for all agents.

IPSJ SIG Technical Report

7 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

time

1 s

1ms

1µs
6 7 8 9 10 11 12 13 14 15

Naive method
Proposed method

number of variables + number of values

Fig. 2 Execution time for the proposed algorithm: the speedup gets as big 300,000 for large
problems.

Symmetry breaking being an efficient technique to improve constraint program-

ming4), the authors studied several ways to exploit those symmetries in a dis-

tributed context7),8): 9) focuses on methods to improve the DPOP algorithm11),

a distributed version of the bucket elimination method. This method is based on

the idea that a constraint to be propagated is represented extensively, i.e., as an

evaluation function of the set of assignations. An hypercube is an object listing

the variables, their domains and the evaluation function of every single assig-

nation. As two symmetrical assignations have the same constraint evaluation,

we proposed a sparse version of this hypercube to keep only one assignation per

symmetry orbit and cut the constraint representation size. On the other hand,

10) is another method based on symmetry breaking by dominance detection4)

but in a distributed environment, using SynchBB6) instead of Branch & Bound.

6. Conclusion

We presented in this paper a very efficient method to solve an extension of the

constructive orbit problem, showing a speedup ranging from 25 to 300,000. We

extended Donaldson’s work3) focusing on model checking (and transposable to

variable symmetries), to the context of constraint programming with both vari-

able and value symmetries. We also exhibited promising results in distributed

constraint programming, where the detection/exploitation of symmetry is a chal-

lenging issue considering the distribution of data. The efficient way to list orbits

and compute γ lets us reduce the data volume dramatically resulting in a speedup

going up to two-fold even in an environment where communication remains rather

cheap.

References

1) Babai, L. and Luks, E.: Canonical labeling of graphs, Proceedings of the fifteenth

annual ACM symposium on Theory of computing, ACM, pp.171–183 (1983).
2) Clarke, E., Emerson, E.A., Jha, S. and Sistla, A.P.: Symmetry reductions in model
checking, Computer Aided Verification, Springer, pp.147–158 (1998).

3) Donaldson, A.F. and Miller, A.: On the constructive orbit problem, Annals of

mathematics and artificial intelligence, Vol.57, pp.1–35 (2009).
4) Gent, I., Petrie, K. and Puget, J.-F.: Symmetry in Constraint Programming, Hand-

book of constraint programming (Rossi, F., van Beek, P. and Walsh, T., eds.), Else-
vier Science Ltd, chapter10, pp.329–376 (2006).

5) Hirayama, K., Yeoh, W. and Zivan, R.(eds.): Proceedings of the 11th International

Workshop on Distributed Constraint Programming (2009).
6) Hirayama, K. and Yokoo, M.: Distributed Partial Constraint Satisfaction Problem,
Principles and Practice of Constraint Programming, pp.222–236 (1997).

7) Olive, X. and Nakashima, H.: Breaking Symmetries in Distributed Constraint
Programming Problems, Hirayama et al.5), pp.165–169.

8) Olive, X. and Nakashima, H.: SymDPOP: Adapting DPOP to exploit partial sym-
metries, Proceedings of the 12th International Workshop on Distributed Constraint

Programming (vander Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M. and
Sen, S., eds.), pp.38–52 (2010).

9) Olive, X. and Nakashima, H.: Efficient Representation of Constraints and Propa-
gation of Variable–Value Symmetries in Distributed Constraint Reasoning, Journal
of Information Processing, Vol.19 (2011).

10) Olive, X. and Nakashima, H.: Symmetry Breaking by Dominance Detection in
Distributed Environments, IPSJ SIG Notes, Vol.2011-AL-134 (2011).

11) Petcu, A. and Faltings, B.: A Scalable Method for Multiagent Constraint Opti-
mization, Proceedings of the 19th International Joint Conference on Artificial In-

telligence, Vol.19, p.266 (2005).

IPSJ SIG Technical Report

8 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.22
2011/3/7

