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On an Insider Resistant Authentification

Protocol and Its Security

Kimikazu Kato ,†1 Naonobu Yatsukawa †1

and Tetsuya Shiroishi†2

Yatsukawa introduced the Insider-Resistant One-Time Password (IROTP) ,
which is an authentication protocol intended to be secure for attacks by insiders.
In the IROTP, the RSA decryption function factors recursively on a seed, and its
security depends on the period of the sequence generated by recursive factoring
of the RSA decryption function.
We have found a condition which gives a sufficient long period for the RSA

decryption function. In other words, we have proved that the IROTP, with
certain parameters, is secure for attacks utilizing the period. We have also
found an algorithm to find such parameters.

1. Introduction

The one time password (OTP) system is widely used for an authentication.

The merit of the OTP compared to the static password is lower administration

cost. Actually in the static password system, to keep it safe, an administrator

has to 1) confirm the password used is strong enough, 2) make a user to change

the password after a certain interval, and 3) care for the case that a user forgets

a password. The OTP solves those problems.

Although there are such merits in the OTP, one of its week points is vulner-

ability for insiders. A password of the OTP is usually determined by either 1)

a function value f(t) of a certain shared number t (which is counter or time),

or 2) recursive factoring of a one-way function f to a seed a, i.e. with a0 = a,

ai = f(ai−1) is used as a password4). In both cases, if an intruder sees the secret

information stored in the server, say f and ai, he/she can easily pretend to be
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an authenticated user.

To overcome that problem, Yatsukawa10),11) invented a novel protocol, which we

call the Insider-Resistant One Time Password (IROTP) system. In the IROTP,

just knowing the authentication information is useless for an eavesdropper. Ac-

tually, in the protocol, the client keeps a secret key of the RSA cryptography9)

and the server authenticates the client with the corresponding public key.

In this paper, we present an algorithm to find good parameters so that the

IROTP is secure enough. In the IROTP, in order to generate a sequence of

passwords, the decrypt function of the RSA cryptography is repeatedly applied

to a seed. If the period of the sequence is short, an eavesdropper can easily

tell the password coming next and succeed in the attack. Thus we need to

make the period long enough. We present a condition for a private key of RSA

encryption function, i.e. a pair of prime numbers, to achieve a sufficiently long

period. Furthermore, we give an algorithm to obtain a pair of prime numbers

which satisfies the condition.

Our algorithm, of course, also uses the primality check for a given integer. The

most practically effective primality check algorithm is by Miller6) and Rabin8).

Also refer to the textbook by Motwani and Raghavan7) for a comprehensive

explanation.

The rest of this paper is organized as follows. In Sect. 2, we explain some basics

of RSA, fundamental mathematical facts, and a specification of the IROTP. In

Sect. 3, we show the main results: the main theorem and the algorithm to find a

parameter to achieve a long period. Then we conclude in Sect. 4.

2. Preliminaries

2.1 RSA cryptography

We regard it is needless to explain the detailed protocol of the RSA cryp-

tography, but just for some notations, we define the encryption and decryption

function of the RSA as follows.

Definition 1. (RSA encryption and decryption function Let p and q be prime

numbers, n = pq, and e be an integer coprime to p − 1 and q − 1. The RSA

encryption function fn,e is defined as follows:

fn,e(a) := ae mod n (1)
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For an integer d which satisfies ed ≡ 1 (mod (p− 1)(q− 1)), the RSA decryption

function gp,q,d is defined as

gp,q,d(a) := ad mod pq (2)

The tuple of the parameters (n, e) is called a public key, while the tuple (p, q, d)

is called a private key.

It is known that if either p or q has a small prime factor, the encryption function

is not secure enough (see the textbook by Koblitz5) for example). In the actual

implementation of RSA encryption function in OpenSSL1), p and q are chosen so

that they do not have a prime factor not bigger than 17863.

2.2 IROTP and related problem

2.2.1 IROTP

The Insider Resistant One-Time Password (IROTP) system is proposed by

Yatsukawa10),11), and is intended to overcome the week point of existing one-

time password (OTP) system. In the classical OTP system, a password or a

password-generating function is shared between the server and the client. The

main problem is that if an eavesdropper gets the shared information, he/she can

easily impersonate to log in the server.

The idea of the IROTP is to utilize the RSA decryption function to generate

a sequence of passwords and to use the encryption function to certify that a

password is generated by the authenticated user. Only the decryption function is

stored in the server and just obtaining it cannot make an impersonation attack

possible. We explain the protocol of the IROTP as follows.

First the client and the server share an integer a0 which is used as the seed of

the sequence. The sequence of passwords is generated by ai = g(ai−1). In the

i-th time authentication process, the client send ai = g(ai−1) to the server, and

the server certifies f(ai) = ai−1 to authenticate the client.

2.2.2 Period of the IROTP

The problem which arises here is whether the period of the sequence {ai} is

long enough. If the period π of {ai} is short, just seeing the segment of the

sequence ak, . . . ak+π makes an attack successful.

The period of (g, a) for a function g and an element a in the domain of g is

defined as the smallest integer m such that gm(a) = a. We denote the period

of (g, a) by π(g, a). Our problem can be stated as follows. Find the suitable

parameters p, q, d so that the period of the RSA decryption function gp,q,d is long

enough.

2.3 Mathematical facts

Here we state some mathematical facts. For the proofs of the following two

theorems, refer to the textbook3) for example.

Theorem 1 (Fermat). If p is prime and a 6= 0, then

ap−1 ≡ 1 (mod p) (3)

Theorem 2 (Chinese Reminder). Let n1, . . . , nm be integers with gcd(ni, nj) = 1

for i 6= j. Let n be product n = n1 · · ·nm. Let a1, . . . , am integers. Consider the

following system of equations:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ am (mod nm). (4)

Then there exists only one x(0 ≤ x < n) which satisfies this system.

For the proof of the following theorem, refer to the Erdös et al.2).

Theorem 3. When an integer n is factored as

n = 2t0pt11 pt22 · · · ptmm , (5)

define λ(n) as

λ(n) =

{
lcm(2t0−1, pt1−1

1 (p1 − 1), . . . , ptm−1
m (pm − 1)) (t0 ≤ 2)

lcm(2t0−2, pt1−1
1 (p1 − 1), . . . , ptm−1

m (pm − 1)) (t0 ≥ 3)
. (6)

Then,

dλ(n) ≡ 1 (mod n) (7)

for an integer d such that gcd(d, n) = 1. Moreover there exist an integer d such

that λ(n) is smallest number s which satisfies ds ≡ 1 (mod n)

3. Algorithm

The following theorem is essential to show the existence of a parameter set

which achieves a sufficiently long period.

Theorem 4. There exists an integer a such that the period π(gp,q,d, a) of the

RSA decryption function gp,q,d with respect to a is

π(gp,q,d, a) = λ
(
lcm(p− 1, q − 1)

)
(8)
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where λ(n) is the function defined in Theorem 3.

Proof. The period is the smallest k which satisfies ad
k ≡ a. This is equivalent to

ad
k−1 ≡ 1. Because of Theorem 1,

ap−1 ≡ 1(mod p), aq−1 ≡ 1(mod q). (9)

Let s = lcm(p−1, q−1), then s is the smallest number that satisfies as ≡ 1(mod p)

and as ≡ 1(mod q). Due to Theorem 2, s is the smallest integer that satisfies

as ≡ 1 (mod n). (10)

This means

dk ≡ 1 (mod s). (11)

By applying Theorem 3, we complete the proof.

In Theorem 4, it is only said that for a suitable d, the period becomes λ(n).

The following theorem includes a condition for d although the period stated is

weaker than Theorem 4

Theorem 5. For a prime number p, suppose that p−1 can be divided by a prime

number r ≥ 3. For an integer d, suppose that d mod r ∈ Z/rZ is a generator of(
Z/rZ

)×
. Then the period is bigger than or equal to r − 1.

Proof. Because d mod r is a generator, if l < r− 1, then dl 6≡ 1 (mod r). Thus,

because of 2, dl 6≡ 1 (mod lcm(p−1, q−1)). This means ad
l−1 6≡ 1 (mod pq)

We give a subroutine which computes the factoring of a large number if possible.

Even though an arbitrary large number cannot be factored within a practical

time, if an integer is expressed as (product of small primes)×(large prime), the

explicit prime power factorization can be obtained by the following algorithm.

Here pi means i-th prime number with p0 = 2.

function SmallNumberFactor (n,m, b)

x← n; F ← ∅
while x > b and i ≤ m do

if x is divisible by pi
then x← x/pi; F = F ∪

{
pi
}

else i← i+ 1

end while

if x is prime then

return F ∪
{
x
}

else

return “not factored”

end if

end function

This function factors n with firstm primes. It returns prime power factorization

of n if possible and “not factored” otherwise.

Now we consider a method to find suitable p and q which guarantee a long

period. Theorem 5 means if p has a large prime factor, the period is proved to

be long. We propose the following algorithm to determine only p, not for both

p and q. The other prime q can be determined arbitrarily. Here, by {pi}mi=0, we

denote the first m + 1 prime numbers with p0 = 2. Here, l, m, π0, and π1 are

parameters explained below.

n← sufficiently large odd number

while true do

if n is prime then

for i := 1 to l do

if n− 1 is divided by pi then goto next

end for

Call SmallPrimeFactor(n− 1,m,π0)

if factored then

r ←Largest prime factor of n− 1

F ← SmallPrimeFactor(r − 1,m,π1)

if factored then return n and F

end if

end if

n← n+ 2

end while

This function returns a prime number which should be used as p and the factors

of (largest prime factor of n− 1)− 1. The factors is used to determine a and d.

Note that l is the parameter to keep the encryption safe, and as is mentioned,

the value used in OpenSSL is pl = 17863. The parameter m(≥ l) is to determine
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the balance between how many primes are targeted and judging time per num-

ber. For a smaller m, the judging time becomes shorter but fewer primes are

considered as candidates. The algorithm works even for the case m = l, which

means the case that p − 1 is (power of 2)×(prime), but suitably large m makes

it easier to find an appropriate parameter set.

The parameter π0 is to assure a long period. Let the largest prime divisor of

p − 1 be r, then r > π0. Due to Theorem 5, the period becomes ≥ π0 − 1 for

some d.

The rest is determine a suitable d. Since r − 1 is factored, it is easy to find

a generator of
(
Z/rZ

)×
, and let d be the generator. Actually, to say d is a

generator, just check d
r−1
s 6≡ 1 (mod r) for all prime divisor s of r.

4. Conclusion

We found a condition to achieve a long period of the RSA decryption function,

it is essential to assure the security of the authentication protocol of the IROTP.

We have also given an algorithm to get suitable parameters of the IROTP which

satisfies the condition. Our result directly leads to the implementation of the

IROTP with sufficient security.
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