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Online Prediction over Permutahedron

Shota Yasutake,†1 Kohei Hatano,†1 Shuji Kijima,†1

Eiji Takimoto†1 and Masayuki Takeda†1

We consider an online prediction problem where the player is supposed to
predict a permutation of n fixed objects at each trial. This problem is motivated
by a scheduling problem whose objective is to minimize the sum of waiting times
of n sequential tasks. We propose an online prediction algorithm which predicts
almost as well as the best fixed permutation in hindsight.

1. Introduction

Permutation is one of fundamental concepts in discrete mathematics and com-
puter science. Permutations can naturally represent ranking or allocation of
fixed objects. So, they have been applied to ranking in machine learning and
information retrieval, recommendation tasks or scheduling tasks.

More formally, a permutation σ over the set {1, . . . , n} of n fixed objects is a bi-
jective function from {1, . . . , n} to {1, . . . , n}. Another popular way of represent-
ing a permutation σ over the set {1, . . . , n} is to describe it as the n-dimensional
vector in {1, . . . , n}n, defined as σ = (σ(1), . . . , σ(n)). For example, (3, 4, 2, 1) is
a representation of permutation for n = 4. Let Sn be the set of all permutations
over {1, . . . , n}, i.e., Sn = {σ ∈ {1, . . . , n}n| σ is a permutation over {1, . . . , n}}.

We consider the following online prediction problem. For each trial t = 1, . . . , T ,
( 1 ) The player predicts a permutation σt ∈ Sn.
( 2 ) The adversary returns a loss vector �t ∈ [0, 1]n.
( 3 ) The player incur loss σt · �t.

†1 Department of Informatics, Kyushu University.
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The goal of the player is to minimize the regret:
T∑

t=1

σt · �t − min
σ∈Sn

T∑
t=1

σ · �t.

This problem is motivated by the following online job scheduling problem. Sup-
pose that we have n jobs to be processed sequentially. Every day, we determine
a schedule represented by a permutation in Sn a priori. Then, at the end of the
day, we are given processing time �i ∈ [0, 1] of each job i (assume that the waiting
time is normalized up to 1). A typical goal would be to minimize total sum of
processing time

∑n
i=1 �i. But, instead, we might want to minimize the sum of

waiting time over all jobs.
For example, suppose that we process jobs according to a permutation σ =

(3, 2, 1, 4) and each processing time is given as � = (�1, �2, �3, �4). Here, we
interpret σ so that job i is processed with priority σ(i). In other words, jobs
with higher priority are processed earlier. So, we process jobs 4, 1, 2, and 3
sequentially. Waiting times of jobs i = 4, 1, 2, 3 are �4, �4 + �1, �4 + �1 + �2, and
�4 + �1 + �2 + �3, respectively. So, the sum of waiting time is exactly σ · �.

Originally, such job scheduling problem was considered in the offline setting.
In the offline setting, we are given n jobs whose each processing times are known
a priori. At the same time, we are also given a partial order over n jobs, since
some jobs have to be processed earlier than other jobs. Then, the goal of the
offline problem is to find a schedule (or permutation) which is consistent with the
given partial order, for which the sum of waiting time of jobs are minimized. It is
known that this problem is NP-hard in general5),6). However, if the partial order
forms a series parallel digraph, the problem is solved in O(n log n)5). Further
researches of this problem are studied under generalized settings 7)–9).

In this paper, we propose a randomized prediction algorithm whose expected
regret is at most O(n2

√
log n

√
T ). For each trial, our algorithm runs in time

O(n2) using O(n) space. Further, we show that the lower bound of the regret is
at least Ω(n2

√
log n

√
T ). Therefore our algorithm is optimal.

There is a previous algorithm, PermELearn4) proposed by Helmbold and War-
muth, that is applicable to our problem though the algorithm was developed for
a different setting. It can be shown that, PermELearn has the same regret bound
of ours, so this algorithm is optimal as well. However, PermELearn needs O(n2)
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space and the running time is Õ(n6).

2. Preliminaries

For any fixed positive integer n, we denote [n] as the set {1, . . . , n}. Permuta-
hedron Pn be the set of points p ∈ R

n
+ satisfying∑

i∈S

pi ≤
∑
i∈S

(n + 1 − i), for any S ⊂ [n], and

n∑
i=1

pi =
n(n + 1)

2
.

The unnormalized relative entropy Δ(p, q) from q ∈ R
n
+ to p ∈ R

n
+ is defined

as

Δ(p, q) =
n∑

i=1

pi ln
pi

qi
+

n∑
i=1

qi −
n∑

i=1

pi.

It is known that Δ(p, q) ≥ 0 and Δ(p, q) = 0 if and only if p = q. Unnormalized
relative entropy is not symmetric in general, i.e., Δ(p, q) �= Δ(q, p) for some
p, q ∈ R

n
+. Also, Unnormalized relative entropy is a special case of Bregman

divergence1),3), which generalizes Euclid distance or natural distance measures.
We will use a geometric property of Bregman divergence which is known as

Generalized Pythagorean Theorem. We show a version of the theorem adapted
for unnormalized relative entropy.
Theorem 1 (Bregman1),3)). Let C ⊂ R

n
+ be any convex set. Let q be any point

in R
n
+

p = inf
p′∈C

Δ(p′, q).

Then, it holds for any r ∈ C that
Δ(r, q) ≥ Δ(r, p) + Δ(p, q).

Further, this inequality becomes an equality if C is an affine set.

3. Algorithm

In this section, we propose our algorithm PermutahedLearn and prove its regret
bound.

3.1 Main Structure
The main structure of PermutahedLearn is shown in Fig. 1. The algorithm

maintains a weight vector pt in R
n
+, which represents a mixture of permutations

Fig. 1 PermutahedLearn

PermutahedLearn
( 1 ) Let p1 = (n+1

2 , . . . , n+1
2 ) ∈ [0, n]n.

( 2 ) For t = 1, . . . , T

( a ) Run Decomposition(pt) and decompose pt as

pt =
k∑

i=1

λiσ
(i),

where k ≤ n, each λi ≥ 0,
∑

i λi = 1, and each σ(i) is
in Sn.

( b ) Choose σt randomly from {σ(1), . . . , σ(k)} according
to the distribution λ.

( c ) Incur a loss σt · �t.
( d ) Update pt+ 1

2
as

pt+ 1
2 ,i =

pt,ie
−η�t,i∑n

j=1 pt,je−η�t,j
· n(n + 1)

2
.

( e ) Run Projection(pt+ 1
2
) and get pt+1, the projection

of pt+ 1
2

onto the permutahedron Pn. That is,
pt+1 = arg inf

p∈Pn

Δ(p, pt+ 1
2
).

in Sn. At each trial t, it decomposes pt into permutations, chooses a permuta-
tion σt randomly according to its coefficient, and predicts the permutation σt.
After the loss �t is assigned, PermutahedLearn updates the weight vector pt in
a multiplicative way and projects it onto the permutahedron Pn.

The main structure of our algorithm itself is built on a standard technique
in online learning literature (see, e.g.,4)). Yet, our technical contribution is to
develop efficient projection and decomposition techniques specifically designed
for the permutahedron.

We begin our analysis of PermutahedLearn with the following lemma.
Lemma 1. For any q ∈ Pn and for any t ≥ 1,

Δ(q, pt) − Δ(q, pt+1) ≥ −ηq · �t + (1 − e−η)pt · �.
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Proof. By using Generalized Pythagorean Theorem,
Δ(q, pt+ 1

2
) ≥ Δ(q, pt+1) + Δ(pt+1, pt+ 1

2
).

Since unnormalized relative entropy is non-negative,
Δ(q, pt+ 1

2
) ≥ Δ(q, pt+1). (1)

So, by using inequality (1),
Δ(q, pt) − Δ(q, pt+1) ≥ Δ(q, pt) − Δ(q, pt+ 1

2
). (2)

Then, by using the fact that
∑

i pt+ 1
2 ,i =

∑
i pt+1,i = n(n + 1)/2, the right

hand side of inequality (2) is
Δ(q, pt) − Δ(q, pt+ 1

2
) =

∑
i

qi ln
pt+1,i

pt,i

=
∑

i

qi ln
e−η�t,i∑

i pt,ie−η�t,i/n(n+1)
2

= −ηq · �t − n(n + 1)
2

ln
∑

i

pt,i/
n(n + 1)2

e

−η�t,i

. (3)

By convexity of f(x) = e−ηx, we have e−η�t,i ≤ 1 − (1 − e−η)�t,i. This implies
that

ln
∑

i

pt,i

n(n + 1)/2
e−η�t,i ≤ ln

(
1 − pt · �t/

n(n + 1)
2

)

≤ −pt · �t/
n(n + 1)

2
, (4)

where the last inequality follows from the fact that 1 − x ≤ e−x. Finally, by
combining (3) and (4), we complete the proof.

Then we prove a cumulative regret bound of weight vectors pt.
Lemma 2. For any T ≥ 1 it holds that

T∑
t=1

pt · �t ≤
η infp∈Pn

∑T
t=1 p · �t + lnn

1 − e−η
.

Proof. By summing up the inequality in Lemma 1 for t = 1, . . . , T , for any
q ∈ Pn, we get

(1 − e−η)
T∑

t=1

pt · �t ≤ η

T∑
t=1

q · �t + Δ(q, p1) − Δ(q, pT+1)

≤ η

T∑
t=1

q · �t + Δ(q, p1), (5)

where the last inequality holds since Δ(q, pT+1) is non-negative. Note that, by
setting N = n(n + 1)/2, we have

Δ(q, p1) = N

n∑
i=1

qi

N
ln

qi/N

p1,i/N

≤ N ln n.

Then, by rearranging the inequality (5), we prove the inequality as claimed.

To complete our analysis for our algorithm, we specify the subroutines Projec-
tion and Decomposition, respectively, in the following subsections.

3.2 Projection
We propose an efficient algorithm Projection for computing the projection onto

the permutahedron Pn. Formally, the problem is stated as follows:
inf
p

Δ(p, q)

sub. to∑
j∈S

pj ≤
∑
j∈S

(n + 1 − j), for any S ⊂ [n],

n∑
j=1

pj =
n(n + 1)

2
. (6)

Here we omit the positivity constraints p ≥ 0 since relative entropy projection
always preserves positivity.

Apparently, this problem does not seem to be tractable as it has exponentially
many constraints. But, we show that relevant constraints are only linearly many.

For simplicity, we assume that elements in q are sorted in descending order,
i.e., q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved in time O(n log n) by sorting q.
First, we show that, by this projection, the order in q is preserved.
Lemma 3. Let p∗ be the projection of q. Then we have p1 ≥ p2 ≥ . . . pn.

Proof. Assume that the claim is false. Then, there exists i ≤ j such that p∗i < pj

and qi ≥ qj . Let r be the vector obtained by exchanging p∗i and p∗j in p∗. Then,

Δ(p∗, q) − Δ(r, q) = p∗i ln
p∗i
qi

+ p∗j ln
p∗j
qj

− p∗j ln
p∗j
qi

− p∗i ln
p∗i
qj

= p∗i ln
qj

qi
+ p∗j ln

qi

qj
= (p∗j − p∗i ) ln

qi

qj
≥ 0,

where, the last inequality holds since p∗j ≥ p∗i and qi ≥ qj . This contradicts the
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assumption that p∗ is the projection.

By Lemma 3, observe that once the conditions
i∑

j=1

pj ≤
i∑

j=1

(n + 1 − j), j = 1, . . . , n − 1

are satisfied, other inequality constraints are satisfied as well since for any S ⊂ [n]
such that |S| = i, ∑

j∈S

pj ≤
i∑

j=1

pi.

Therefore, the problem (6) is reduced to the following one.

inf
p

Δ(p, q)

sub. to
i∑

j=1

pj ≤
i∑
j

(n + 1 − j), for i = 1, . . . , n − 1,

n∑
j=1

pj =
n(n + 1)

2
. (7)

The KKT conditions imply that p∗ is the projection if and only if p satisfies
the following conditions.

p∗i =
qi exp

(
−∑n−1

j=i αj

)
Z

, (i = 1, . . . , n − 1)

p∗n =
qn

Z
,

i∑
j=1

p∗j ≤
i∑

j=1

(n + 1 − j), i = 1, . . . , n − 1

n∑
i=1

pi =
n(n + 1)

2
,

αi(
i∑

j=1

pj −
i∑

j=1

(n + 1 − j)) = 0, for i = 1, . . . , n − 1,

αi ≥ 0, for i = 1, . . . , n, (8)
(9)

where Z is the normalization constant so that
∑

i pi = n(n + 1)/2.

Fig. 2 Projection

Projection
Input: q ∈ R

n
+ satisfying that q1 ≥ q2 ≥ · ≥ qn.

Output: projection p of q onto Pn.
( 1 ) Let i0 = 0.
( 2 ) For t = 1, . . . ,

( a ) Let

Ct
i =

∑i
j=1(n + 1 − j) −∑it−1

j=1 pj∑i
j=it−1+1 qj

and
it = arg min

i:it−1<i≤n
Ct

i .

If there are multiple minimizers, choose the largest
one as it.

( b ) Set pit−1+1 = qit−1+1C
t
it

, . . . , pit = qitC
t
it

.
( c ) If it = n, then break.

( 3 ) Output p.

Now we describe the detail of the projection algorithm in Fig. 2.
Lemma 4. ( 1 ) Given q, the algorithm Projection outputs the projection of q

onto the permutahedron Pn.
( 2 ) The time complexity of Projection is O(n2).

Proof. We show that there exists α1, . . . , αn−1 and Z such that the output p

satisfies the optimality conditions (9), which completes the proof of the first
statement.

First of all, we show that Ct−1
it−1

≤ Ct
it

for each iteration t. Because of the
definition of Ct−1

it−1
, we have Ct−1

it−1
< Ct−1

it
. So, it suffices to prove that Ct−1

it
< Ct

it
.

To see this, observe that
it−2∑
i=1

pj + Ct−1
it

it∑
j=it−2+1

qj =
it∑

j=1

(n + 1 − j),
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and
it∑

j=1

(n + 1 − j) =
it−1∑
i=1

pj + Ct
it

it∑
j=it−1+1

qj

=
it−2∑
i=1

pj + Ct−1
it−1

it−1∑
j=it−2+1

qj + Ct
it

it∑
j=it−1+1

qj

<

it−2∑
i=1

pj + Ct−1
it

it−1∑
j=it−2+1

qj + Ct
it

it∑
j=it−1+1

qj ,

where the last inequality holds since Ct−1
it−1

< Ct−1
it

.
By rearranging the inequalities above, we have

Ct−1
it

it∑
j=it−1+1

qj < Ct
it

it∑
j=it−1+1

qj ,

which implies Ct−1
it

< Ct
it
.

Now we fix each αit so that e−αit Ct+1
it+1

= Ct
it
, i.e., αit = ln(Ct+1

it+1
/Ct

it
) and fix

Z to be Z = CT
n , where T satisfies iT = n. Note that since Ct+1

it+1
> Ct

it
), each

αit is strictly positive. For other i /∈ {i1, . . . , iT }, we set αi = 0. Then, each pit

can be expressed as
pit = qitC

t
it

= qi exp
(−αit − αit+1 − · · · − αiT

)
/Z

= qi exp (−αit − αit+1 − · · · − αn−1) /Z.

Similarly, for other i such that it−1 < i < it, we have
pi = qiC

t
it

= qi exp (−αit − αit+1 − · · · − αn−1) /Z

= qi exp (−αi − αi+1 − · · · − αn−1) /Z.

To see if the specified αis and Z satisfies the optimality conditions (9), observe
that (i) for each it,

it∑
j=1

pj =
it−1∑
j=1

pj +
it∑

j=it−1+1

qjC
t
it

=
∑

j

(n + 1 − j)

and αit > 0, and (ii) for each i such that it−1 < i < it,
i∑

j=1

pj =
it−1∑
j=1

pj +
it∑

j=it−1+1

qjC
t
it

≤
it−1∑
j=1

pj +
it∑

j=it−1+1

qjC
t
i =

∑
j

(n + 1 − j)

and αi = 0.

Finally, the algorithm terminates in time O(n2) since the number of iteration
is at most n and each iteration takes O(n) time, which completes the second
statement of the lemma.

3.3 Decomposition
In this subsection, we describe how to represent a point p ∈ Pn by a convex

combination of permutations. For simplicity assume that p1 ≥ · · · ≥ pn. To begin
with, we define special points in the permutahedron, which we call permutations
with ties. Suppose q ∈ Pn satisfies that q1 ≥ q2 ≥ · · · ≥ qn. A permutation with
ties q ∈ Pn satisfies that if qi > qi+1 then

∑i
j=1 qj =

∑i
j=1(n + 1 − i) hold for

any i ∈ [n]. For example, if q ∈ P5 satisfies q1 = q2 > q3 = q4 = q5, then q is
uniquely determined as q = (4.5, 4.5, 2, 2, 2). Note that every permutation with
ties q satisfying that q1 ≥ q2 ≥ · · · ≥ qn is represented by a convex combination
of (at most) two permutations, namely (σ + σ′)/2 where σ = (n, n − 1, . . . , 1)
and σ′ is a “partially reversed” permutation satisfying that

σ′(i) > σ′(j) if qi > qj and,

σ′(i) < σ′(i + 1) if qi = qi+1.

Note that σ′ is uniquely determined by q ∈ R and σ. For example, let r =
(4.5, 4.5, 2, 2, 2) and σ = (5, 4, 3, 2, 1), then its partially reversed permutation σ′

is (4, 5, 1, 2, 3).
Now we describe our algorithm to represent p ∈ Pn with a convex combination

of permutations. Note that σ1 = σ0 holds if the input p satisfies that pi > pi+1

for any i ∈ [n − 1].
We will prove the following lemma on Decomposition.

Lemma 5. Decomposition provides a convex combination of permutations rep-
resenting an arbitrarily given p ∈ Pn. Its running time is O(n2).

To show Lemma 5, we show the following Lemmas.
Lemma 6. At any iteration t in Decomposition, pt satisfies that pt

i ≥ pt
i+1 for

any i ∈ [n − 1].

Proof. We give an inductive proof with respect to t. In case of t = 1, it is clear.
In case of t > 1, we assume pt−1

i ≥ pt−1
i+1 holds for any i ∈ [n− 1]. If pt−1

i = pt−1
i+1,

then qt−1
i = qt−1

i+1 holds, from the definition of qt−1. Thus
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Fig. 3 Decomposition

Decomposition
Input: p ∈ Pn satisfying that p1 ≥ p2 ≥ · · · ≥ pn.
Output: Permutations σ0, . . . , σT and λ0, . . . , λT ∈ R>0 s.t.∑T

i=0 λiσ
i = p,

∑T
i=0 λi = 1.

( 1 ) Let σ0 = (n, n − 1, . . . , 1), p1 = p and λ = 1.
( 2 ) For t = 1, . . . ,

( a ) Find a partially reversed permutation σt with respect
to pt and σ0. Let qt = (σ0 + σt)/2.

( b ) Let

λt = min
i∈[n]

{
pt

i − pt
i+1

qt
i − qt

i+1

| qt
i �= qt

i+1

}
,

where we define pt
n+1 = qt

n+1 = 0, for convenience.
( c ) Let pt+1 = pt − λtq

t and let λ = λ − λt.
( d ) If λ=0 then let T = t and break.

( 3 ) Set λ0 = 1/2 and λt = λt/2 for t ∈ [T ].
Output permutations σ0, . . . σt and λ0, . . . , λT .

pt
σ(i) = pt−1

i − λt−1q
t−1
i = pt−1

i+1 − λt−1q
t−1
i+1 = pt

i+1

and we obtain the claim. If pt−1
i > pt−1

i+1, then qt−1
i > qt−1

i+1 holds, and

pt+1
i − pt+1

i+1 = pt
i − λtq

t
i − (pt

i+1 − λtq
t
i+1)

= pt
i − pt

i+1 − λt(qt
i − qt

i+1)

= (qt
i − qt

i+1)
(

pt
i − pt

i+1

qt
i − qt

i+1

− λt

)
≥ 0

where the last inequality becomes from the definition of

λt = min
i∈[n]

{(
pt

i+1 − pt
i

)
/
(
qt
i+1 − qt

i

) | qt
i+1 �= qt

i

}
.

Lemma 7. In Decomposition, pT+1 (= pT − λT qT ) = 0 holds.

Proof. Without loss of generality, we may assume that p1 ≥ p2 ≥ · · · ≥ pn, for
simplicity of notations. First we show pT+1 ≥ 0. Since Lemma 6, if there exists
j ∈ [n] satisfying that pT+1

j < 0, then pT+1
n < 0 holds. Thus it is enough to show

pT+1
n ≥ 0. Let i∗ = min{j ∈ [n] | pT

j = pT
n}. Then we have pT

i∗ = pT
i∗+1 = · · · = pT

n

and qT
i∗ = qT

i∗+1 = · · · = qT
n . Hence, we get pT+1

i∗ = pT+1
i∗+1 = · · · = pT+1

n . In case
of i∗ ≥ 2, pt

i∗−1 > pt
i∗ holds for any t ∈ [T ], meaning that qt

i∗−1 > qt
i∗ holds for

any t ∈ [T ]. Thus we can see that
∑n

j=i∗ qt
j =

∑n
j=i∗(n + 1 − j) holds for any

t ∈ [T ], from the definition of qt. Then we obtain

n∑
j=i∗

T∑
t=1

λtq
t
j =

T∑
t=1

λt

n∑
j=i∗

qt
j =

T∑
t=1

λt

n∑
j=i∗

(n + 1 − j)

=
n∑

j=i∗
(n + 1 − j) ≤

n∑
j=i∗

pj

where the last inequality is due to constraints of the permutahedron
∑i∗−1

j=1 pj ≤∑i∗−1
j=1 (n + 1 − j) and

∑n
j=1 pj =

∑n
j=1(n + 1 − j). Thus we obtain that

n∑
j=i∗

pT+1
j =

n∑
j=i∗

(
pj −

T∑
t=1

λtq
t
j

)
≥ 0.

As discussed above, pT+1
i∗ = pT+1

i∗+1 = · · · = pT+1
n holds, and we obtain pT+1

n ≥ 0.
In case of i∗ = 1, the proof is done in a similar way.

Now we show pT+1 = 0. Since p ∈ Pn,
∑n

j=1 pT+1
j =

∑n
j=1(n + 1 − j) holds.

In a similar way as the proof of pT+1 ≥ 0,
n∑

j=1

T∑
t=1

λtq
t
j =

T∑
t=1

λt

n∑
j=1

qt
j =

T∑
t=1

λt

n∑
j=1

(n + 1 − j) =
n∑

j=1

(n + 1 − j).

Since pT+1 ≥ 0, pT+1 = p −∑T
t=1 λtq

t = 0.

Lemma 8. The number of iterations T is at most n.
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Proof. From the definition of λt, there is at least one i ∈ [n] satisfying that
pt

i > pt
i+1 and pt+1

i = pt+1
i+1. If pt

i = pt
i+1, then pt+1

i = pt+1
i+1 as discussed in the

proof of Lemma 6. Now the claim is clear.

Proof of Lemma 5. Since Lemma 7, it is clear that the output
∑T

t=0 λtσ
t by

Decomposition is equal to an arbitrarily given p ∈ Pn.
It is not difficult to see that every lines in Decomposition is done in O(n).

Hence, we obtain that the running time is O(n2), since Lemma 8.
We remark that |{σ0, σ1, . . . , σT }| ≤ n holds, the existence of such represen-

tation is suggested by well-known Caratheodory’s theorem.
Memory-Efficient Implementation of Decomposition Now we discuss an
algorithm with O(n) space and in O(n2) time to obtain a random permutation
π ∈ {σ0, σ1, . . . , σT } according to the probability λt, using a modified version of
Decomposition. Firstly notice that we do not need to memorize σt in Decomposi-
tion to compute λs and σs for s > t. Thus two-paths algorithm is easily obtained;
we memorize only λt for t ∈ {1, . . . , T} in the first run of Decomposition, and we
choose σt with the probability λt in the second run of Decomposition, then we
obtain a desired π. In fact, it is easily improved to one-path algorithm, consisting
of the second run only.

3.4 Main Result
Now we are ready to prove the main result. Note that by using the algorithm

Decomposition,
E [σt · �t] = pt.

So, by Lemma 2, we get the following theorem immediately.
Theorem 2.

E

[
T∑

t=1

σt · �t

]
≤ η minσ∈Sn

∑T
t=1 σ · �t + n(n+1)

2 ln n

1 − e−η
.

In particular, if we set η = 2 ln(1 + 1/
√

T ), since, η ≤ e
η
2 − e−

η
2 for η ≥ 0, we

have η
1−e−η ≤ e

η
2 = (1 + 1/

√
T ), and 1

1−e−η = (1+1/
√

T )2

1/T+2/
√

T
≤ 1 +

√
T/2. Further,

by using the fact that σ · �t = O(n2), we get the following corollary.

Corollary 3. For η = 2 ln(1 + 1/
√

T ),

E

[
T∑

t=1

σt · �t

]
≤ min

σ∈Sn

T∑
t=1

σ · �t + O(n2
√

T ln n).

4. Lower Bound

In this section, we derive a lower bound of the regret for our online prediction
problem over the permutahedron Pn. To do so, we develop a reduction from the
n-expert problem defined as follows.

n-expert problem
For each trial t = 1, . . . , T

( 1 ) The player chooses an expert it.
( 2 ) The adversary assigns each expert i loss �t,i ∈ [0, 1].
( 3 ) The player incurs loss �t = �t,it .

For the n-expert problem, lower bound of the regret is known:
Theorem 4 (Cesa-bianchi et al.2)). For n-expert problem, for sufficiently large
T , the regret is

Ω
(√

T ln n
)

Now we show a reduction from n-expert problem to our prediction problem
over the permutahedron Pn. Assume that we are given an algorithm which
predicts permutations. For each trial t, first, we get a permutation σt and choose
the expert σt(1). Then, the adversary assigns each expert i loss �t,i. Now we
construct a loss �̄t for the permutation σt as follows: �̄t = �t,σt(1)(1, . . . , 1).

Then observe that
σt · �t =

n(n + 1)
2

�t,σt(1),

which implies the lower bound of our problem.
Theorem 5. For our prediction problem over permutahedron, for sufficiently
large T , the regret is

Ω
(
n2

√
T ln n

)
.

5. Experimental Results

In this section, we show our initial experiments of our algorithms for artificial
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Fig. 4 Cumulative losses of PermtahedLearn, PermELearn, and the best permutation.
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data. For our artificial data, we fix n = 10. To generate a loss vector at each trial
t, we specify each i-the element �t,i of the loss vector �t independently randomly
as follows:

�t,i =

{
1 , with probability ri, and

0 , otherwise,
where we set ri = i/n. We generate T = 300 random loss vectors.

The algorithms we compare are PermtahedLearn, PermELearn and the
best permutation in hindsight. As the parameter η, we consider η ∈
{0.025, 0.05, 0.1, 0.2}. For each setting of η, we run algorithms for 3 times and
choose the one attaining the lowest average cumulative losses as the best param-
eters for each of them. As a result, we specify η = 0.2 for PermtahedLearn and
η = 0.1 for PermELearn, respectively.

We plot the cumulative losses of algorithms with their best parameters in Fig. 4.
As can be seen, the cumulative loss of PermutahedLearn is much smaller than
that of PermELearn and competitive with that of the best fixed permutation in
hindsight.

6. Conclusion

In this paper, we propose an efficient prediction algorithm for an online pre-
diction problem over the n-dimensional permutahedron. The upper bound of the
regret of our algorithm matches the lower bound, so our algorithm is optimal.
Further, our algorithm runs in time O(n2) and uses O(n) space at each trial.

An interesting future work would be investigating the case where permutations
to predict have to meet some partial-order constraints, as studied in previous
works5) for the offline setting.

Acknowledgments This work is supported in part by MEXT Grand-in-Aid
for Young Scientists (B) 21700171.

References

1) L.M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Physics, 7:200–217, 1967.

2) N.Cesa-Bianchi, Y.Freund, D.Haussler, D.P. Helmbold, R.E. Schapire, and M.K.
Warmuth. How to use expert advice. Journal of the Association for Computing
Machinery, 44(3):427–485, 1997.

3) N.Cesa-Bianchi and G.Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

4) D.P. Helmbold and M.K. Warmuth. Learning permutations with exponential
weights. Journal of Machine Learning Research, 10:1705–1736, 2009.

5) E.L. Lawler. On sequencing jobs to minimize weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics 2, 2:75–90, 1978.

6) J.Lenstra and A.R. Kan. Complexity of scheduling under precedence constraints.
Operations Research, 26:22–35, 1978.

7) M.Queyranne and Y.Wang. Single-machine scheduling polyhedra with precedence
constraints. Mathematics of Operations Research, 16(1):1–20, 1991.

8) A.von Arnim, U.Faigle, and R.Schrader. The permutahedron of series-parallel
posets. Discrete Applied Mathematics, 28(1):3–9, 1990.

9) A.von Arnim and A.S. Schulz. Facets of the generalized permutahedron of a poset.
Discrete Applied Mathematics, 72:179–192, 1997.

8 c© 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.12
2011/3/7


