
IPSJ SIG Technical Report

Accelerating A* algorithms

by sweeping out small-degree nodes

Liang Zhao,†1 Pipaporn Eumthurapojn†1

and Hiroshi Nagamochi†1

A* is an algorithm framework for calculating point-to-point shortest paths.
This paper gives a simple method to accelerate A* algorithms in practice by
sweeping out small-degree nodes from the priority queue, which can reduce
the running time of the queue operations and the distance estimations. Experi-
ments show that our method is efficient in practice, especially for A* algorithms
with a heavy estimation function such as the ALT algorithm (Goldberg and
Harrelson, SODA 2005) and its time-dependent generalizations.

1. Introduction

Let G = (V,E) denote a directed graph with a set V of nodes and a set E of

arcs. Let ` : E × R → R+ denote a nonnegative transit time function of arcs,

i.e., `(e, t) denotes the transit time of an arc e with a departure time t (at the

tail of e). We assume that ` satisfies the FIFO (First-In-First-Out) property, i.e.,

t1 + `(e, t1) ≤ t2 + `(e, t2) for all e ∈ E and t1 ≤ t2. This paper considers the

following point-to-point (PtoP) time-dependent shortest path (TDSP) problem.

Problem 1 (PtoP TDSP) Given a directed graph G = (V,E), a nonneg-

ative and FIFO transit time function ` : E × R → R+, a source node s ∈ V ,

a destination node d ∈ V and a departure time t0, find an s, t-path P ∗
s,d,t0

that

minimizes the transit time from s to d with departure time t0 at s.

Remark 1 If `(e, t) ≡ ce is a constant for every arc e, it reduces to the classical

shortest path problem (t0 can be an arbitrary value), which is also referred as the

†1 Graduate School of Informatics, Kyoto University.
Corresponding author: Liang Zhao (E-mail: liang@i.kyoto-u.ac.jp)

static shortest path problem in this paper to distinguish from the more general

time-dependent formulation as stated by Problem 1.

Remark 2 In general, we also call a directed network N = (G, `) undirected

if for all arcs e = (v, w) in G, its reverse arc er = (w, v) is also in G and the

transit time functions are the same, i.e., `(e, t) = `(er, t) for all e and t. For

multiple arcs, er should be considered in pairs with e.

Remark 3 In general, we require the transit time function to satisfy the FIFO

property since the problem without this requirement is known to be NP-hard11).

Shortest path problems have many applications and so far numerous algorithms

have been proposed, see, e.g., 1), 5), 11). This paper focuses on the A* algorithm

framework (described in Section 2) and algorithms that belong to this framework,

which include the Dijkstra’s algorithm3), the ALT algorithm6), and their time-

dependent generalizations (e.g., 5), 8), 9), 11)), from a practical point of view.

For the idea, we observe that in practice, e.g. in road networks and scale-free

networks, there can exist a large number of small-degree nodes (more precisely,

nodes of degree 1 or 2). If we handle these nodes carefully and keep them out

of the priority queue during the calculation, then it is possible to reduce the

running time of queue operations and distance estimations, see Section 3. In our

experiments with the time-dependent ALT algorithm9) and road networks, it can

accelerate the calculation by a maximum of 30%, see Section 4 for details.

2. A* framework

The study of A* algorithm framework was started by Hart, Nilsson and

Raphael7). An A* algorithm is much like the well-known Dijkstra’s algorithm

except that it employs an estimation function h to guide the searching direction

toward to the destination (Dijkstra’s algorithm is a special A* algorithm with

h ≡ 0). The performance depends on the estimation function h, and how to

design a good h is an important issue in practice.

For general conditions for a good h, we refer the readers to 6) for the static

problem and 9) for the general time-dependent problem. The idea in this paper

does not depend on the estimation function, thus it works for any A* algorithm.

1 c© 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.5
2011/3/7



IPSJ SIG Technical Report

To describe it, let us first show the A* framework using the following pseudo-

code, where h(v, t) denotes the estimation function for a node v at time t, and

g(v) denotes the temporary arrival time at v (from s). For simplicity, we assume

that the destination d is reachable from the source s.

A* algorithm framework for the PtoP TDSP problem

Input : an instance (G = (V,E), `, s, d, t0).

Output : a shortest s, d-path P ∗
s,d,t0

and its transit time.

1 g(s) := t0; OpenSet := {s}; ClosedSet := ∅;
2 while OpenSet is not empty do

3 v := a node in OpenSet with the smallest f(v) := g(v) + h(v, g(v));

4 If there are multiple candidates, choose one with the smallest g(v);

5 if v = d break the while loop;

6 ClosedSet := ClosedSet ∪ {v}; /* see Fig. 1 for an illustration */

7 for all arcs e = (v, w) ∈ E do

8 g′(w) := g(v) + `(e, g(v));

9 if w 6∈ OpenSet ∪ ClosedSet then

10 g(w) := g′(w); OpenSet := OpenSet ∪ {w}; p(w) := v;

11 else if w ∈ OpenSet and g(w) > g′(w) then

12 g(w) := g′(w); p(w) := v;

13 else if g(w) > g′(w) then

14 g(w) := g′(w); p(w) := v;

15 OpenSet := OpenSet ∪ {w}; ClosedSet := ClosedSet - {w};
16 end if

17 end for

18 end while

19 output path s → . . . → p(p(d)) → p(d) → d and time g(d)− t0.

Remark 4 It is easy to see the correctness of the above framework if the

estimation function h is nonnegative and is a lower bound of the minimum transit

time from v to d with departure time t (at v). This framework generalizes the

well-known A* framework for the static problem. If h ≡ 0, it reduces to the

generalized or the time-dependent Dijkstra’s algorithm5),11). On the other hand,

V

ClosedSet OpenSet UnvisitedNodes

v

Fig. 1 An illustration of checking the incident arcs of node v in an A* algorithm (lines 7–17
in the pseudo-code), also called relaxation in the literature. In the figure, the dashed
arrows show the state transition diagram of nodes.

if h(v, t) ≡ h(v) is a constant for every node v, then line 4 is not required9),10).

We note that, if h satisfies certain conditions, then we can remove lines 13–15 to

get a smaller searching area than the time-dependent Dijkstra’s algorithm, see

9), 10) for the detail.

Remark 5 The algorithm requires to find a minimizer of f(v) (and g(v)).

For an efficient implementation, the OpenSet is usually maintained by a priority

queue such as a heap. More precisely, the following operations of a priority queue

are used: insert, update and deletemin. For the heap implementation, each

operation can take Θ(lnnq) time, where nq denotes the number of data in the

heap. Therefore keeping a small priority queue is important in practice.

3. Method SmartUpdate for accelerating A* algorithms

Notice that how to design a good estimation function is not part of the A*

framework. In 6), Goldberg and Harrelson gave an elegant method, called the

ALT algorithm for this purpose. Later it is generalized to the time-dependent

case. See 8)–10) for the details of these algorithms.

The motivation of this study is that, taking the ALT algorithm and its time-

2 c© 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.5
2011/3/7



IPSJ SIG Technical Report

dependent generalization as examples, since calculating the values of h is a time-

consuming task, it is important to find a way to avoid calculating function h (as

well as keeping a small priority queue). This paper gives a method, called the

SmartUpdate method, for that purpose by carefully handling small-degree nodes.

For simplicity, let us consider connected and undirected networks (see Remark 2)

in the following. The degree deg(v) of a node v is defined as the total number of

arcs incident to v in the undirected sense, which equals to the in-degree and the

out-degree in the directed sense. Notice that we allow multiple arcs.

Suppose we are checking an arc (v, w) in an A* algorithm (lines 7–17).

First we observe that, a degree-1 node w other than the destination d can be

simply omitted because it can never be a node on an optimal path to d. Thus

we never insert degree-1 node into the priority queue.

Next, we observe that the insertion of a degree-2 node w can also be avoided

by considering its neighbour z that is not v. If such a neighbour z exists and is

also of degree 2, we update (relax) it and repeat until a node f (called the stop

node) of degree other than 2 or the destination d is found. We then insert the

stop node f into the priority queue if it is d or is of degree 3 or more. See Fig. 2

for an illustration. To see the correctness, just consider a contraction of the path

consisting of the skipped degree-2 nodes.

v

skipped nodes (degree = 2)

selected node
stop node: d or
degree = 1 or > 2

w z f. . .

Fig. 2 An illustration of how to avoid insertion of degree 2 nodes into the priority queue by
repeatedly relaxing its next neighbour. We insert the stop node f into the priority
queue only if it is d or is of degree 3 or more.

So far we have shown our SmartUpdate method. Let us study its performance

in practice by experiments in the next section.

4. Experiments

We show the instances and algorithms used in the experiments.

Table 1 Instance list (all are undirected and #arcs are in the undirected sense).

Name network type #nodes #arcs data source
BAY static road network 321,270 400,086 4)

td-BAY time-dependent BAY 32,1270 400,086 10)
the biggest component

itdk static Internet network 190,914 607,610 of 2) with randomly
assigned lengths ∈ [1, 100]

Table 2 List of algorithms tested in the experiments. For ease of notation, the
corresponding versions with SmartUpdate are not shown here.

Name type priority queue used source
Dijkstra static binary heap 3)

td-Dijkstra time-dependent binary heap 5), 11)
ALT static binary heap 6)

td-ALT time-dependent binary heap 10)

For the ALT and the td-ALT algorithms which requires preprocessing, the

parameters used in the calculation are shown in the next table.

Table 3 Parameters for the ALT and the td-ALT algorithms.

Name #landmarks #time samples method for choosing landmarks

ALT 16 – farthest6)

td-ALT 8 4 farthest10)

Let us first show the degree distributions of each instances.

Table 4 Degree distribution (in %) of the instances.

Instance / Degree 1 2 3 4 5 6 7 ≥ 8
BAY, td-BAY 22.7 19.2 44.8 13.1 0.2 0.0 0.0 0 (none)

itdk 21.7 22.5 12.4 9.0 6.0 4.6 3.5 20.3

3 c© 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.5
2011/3/7



IPSJ SIG Technical Report

From the degree distribution, we can see that over 40% of the nodes are of

degree 1 or 2 even for different types of networks. We remark that the itdk

instance obeys the power law, see 2).

In the test, for each instance, we randomly pick up 128 queries (s, d, t0) and

collect the total running time for each algorithm. This does not count the pre-

processing time for ALT algorithms. Finally we compare the total running time

with and without the proposed SmartUpdate method. The experimental results

are shown in the following tables.

Table 5 Total running time of the experiments for the static problem, where SU stands for
the proposed SmartUpdate method.

instance Dijkstra Dijkstra + SU ALT ALT + SU
BAY 7,880 5,160 1,280 950
itdk 11,790 9,070 1,360 1,170

Table 6 Total running time of the experiments for the time-dependent problem, where SU
stands for the proposed SmartUpdate method.

instance td-Dijkstra td-Dijkstra + SU td-ALT td-ALT + SU
td-BAY 13,850ms 10,030ms 7,090ms 5,010ms

From the above tables, we observe that the proposed SmartUpdate method is

efficient in practice. For a more detailed study, we show some results of the time-

dependent instance td-BAY, which shows SmartUpdate reduces the number of

priority queue inserts and the distance estimations. This explains why a speed-up

can be obtained. We note that the speed-up ratio is about 30%. Considering the

overhead, this matches the ratio of degree-1 and degree-2 nodes in the graph.

Table 7 Detailed results for the time-dependent experiment. All the values are the average
of 128 random queries, where SU stands for the proposed SmartUpdate method.

td-Dijkstra td-Dijkstra + SU td-ALT td-ALT + SU
#selected nodes 164,047 97,350 54,918 32,584
#queue inserts 164,668 97,796 55,224 32,858
#queue updates 13,644 13,745 5,140 5,173
#estimations 0 0 60,364 38,031

5. Conclusion

In this paper, we have proposed a simple yet practical method to accelerate

the calculation of A* algorithms by keeping nodes of degree 1 or 2 out of the

priority queue. This can reduce the running time of queue operations and distance

estimations. Experiments on real road network and Internet router network show

that the SmartUpdate method is efficient in practice. As a future work, it would

be interesting to find a way to reduce the searching space.

References

1) Ahuja R.K., Magnanti T.L. and Orlin J.B.: Network flows: theory, algorithms, and
applications, Prentice-Hall (1993).

2) CAIDA’s router-level topology measurements, http://www.caida.org/tools/

measurement/skitter/router_topology/ (itdk0304_rlinks_undirected.gz)
3) Dijkstra E.W.: A note on two problems in connexion with graphs, Numerische
Mathematik, 1, 269–271 (1959).

4) 9th DIMACS implementation challenge: Shortest paths, http://www.dis.

uniroma1.it/~challenge9/

5) Dreyfus S.E.: An appraisal of some shortest-path algorithm, Operations Research,
17 (3), 395–412 (1969).

6) Goldberg A.V. and Harrelson C.: Computing the shortest path: A* search meets
graph theory, Proc. SODA 2005, 156–165 (2005).

7) Hart P. E., Nilsson N. J., and Raphael B.: A formal basis for the heuristic deter-
mination of minimum cost paths, IEEE Trans. Systems Science and Cybernetics, 4
(2), 100–107 (1968).

8) Nannicini G., Delling D., Liberti L. and Schultes D.: Bidirectional A* search for
time-Dependent fast paths, Proc. WEA 2008, LNCS 5038, 334–346 (2008).

9) Ohshima T.: A landmark algorithm for the time-dependent shortest path problem,
Master’s thesis, Graduate School of Informatics, Kyoto University (2008).

10) Ohshima T., Eumthurapojn P., Zhao L. and Nagamochi H.: An A* Algorithm
framework for the point-to-point time-dependent shortest path problem, China-
Japan Joint Conference on Computational Geometry, Graphs and Applications
(CGGA) (2010).

11) Orda A. and Rom R.: Shortest-path and minimum-delay algorithms in networks
with time-dependent edge-length, J. ACM, 37 (3), 607–625 (1990).

4 c© 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.5
2011/3/7


