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２次の効用関数に関する組合せオークションにおける

最適配分問題のアルゴリズム

塩 浦 昭 義†1 鈴 木 瞬 也†1

本稿では組合せオークションにおける最適配分問題について議論する．この問題で

は，オークション参加者に財を配分し，参加者の効用の合計値を最大にすることを目

的とする．本稿では，効用関数が 2次関数により与えられる場合を考える．2 次の効

用関数は，簡潔な表現をもつにもかかわらず，十分に一般的な効用関数のクラスを与

える．本稿は，2 次の効用関数に関する最適配分問題の計算複雑度を明らかにするこ

とを目的とする．とくに，効用関数が劣モジュラおよび優モジュラの場合について考

え，NP 困難性および多項式時間の厳密（もしくは近似）アルゴリズムを示す．これ

らの結果は，最小（最大）カット問題や多方面カット問題などのグラフカット問題と

の関係を利用して示される．

Algorithms for Optimal Allocation Problem
in Combinatorial Auction with Quadratic Utility Functions

Akiyoshi Shioura†1 and Shunya Suzuki†1

We discuss the optimal allocation problem in combinatorial auction, where
the items are allocated to bidders so that the sum of the bidders’ utilities is
maximized. In this paper, we consider the case where utility functions are
given by quadratic functions; the class of quadratic utility functions has a suc-
cinct representation but is sufficiently general. The main aim of this paper is
to show the computational complexity of the optimal allocation problem with
quadratic utility functions. We consider the cases where utility functions are
submodular and supermodular, and show NP-hardness and/or polynomial-time
exact/approximation algorithm. These results are given by using the relation-
ship with graph cut problems such as the min/max cut problem and the mul-
tiway cut problem.

1. Introduction

Combinatorial auction is an auction such that bidders can place bids on combina-

tions of items, rather than individual items. Combinatorial auctions can be used, for

instance, to sell spectrum licenses, pollution permits, land lots, etc., and has emerged

as a mechanism to improve economic efficiency when many items are on sale. See 2)，

3) for comprehensive survey on combinatorial auctions.

In a combinatorial auction, bidders can present bids on bundles of items, and thus

may easily express substitutabilities and complementarities among the items on sale.

The function that, given a bundle, returns the bidder’s value for that bundle is called

a utility function. A utility function is associated with each bidder specifying the hap-

piness of the bidder for each subset of the items.

Given utility functions of bidders, the auctioneer of a combinatorial auction needs to

determine how to allocate items to bidders, which is called the optimal allocation prob-

lem. One natural objective for the auctioneer is to maximize the economic efficiency of

the auction, which is the sum of the utilities of all the bidders. Formally, the optimal

allocation problem is defined as follows. Let V be a set of n items, and M a set of

m bidders, and assume, for simplicity, that V = {1, 2, . . . , n} and M = {1, 2, . . . ,m}.
Bidder i has a utility function fi : 2

V → R which is monotone, i.e., fi(X) ≥ fi(Y )

whenever X ⊇ Y . The auctioneer wishes to find a partition (S1, S2, . . . , Sm) of the set
V among the m bidders that maximizes the total utility

Pm

i=1
fi(Si).

Implementation of combinatorial auctions faces several issues to be discussed, includ-

ing representation of utility functions. A utility function for a bidder requires a value

for each subset of items, and therefore requires exponential real values in total. This

makes it difficult for bidders to reveal their preference correctly since in practice it is

not possible for bidders to submit correct values of utilities for a exponential number

of subsets of items. This also brings a difficulty to the auctioneer since the input size

of utility functions becomes exponential, and the optimal allocation becomes hard to

†1 東北大学

Tohoku University

1 c° 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.3
2011/3/7



情報処理学会研究報告

IPSJ SIG Technical Report

solve in short time.

Thus, we need a restricted class of utility functions which has a succinct represen-

tation but sufficiently general.?1 Various such classes of utility functions have been

considered in the literature of combinatorial auction (see, e.g., 2) and Chapter 9 of 3)).

Some examples are symmetric functions, (budgeted) additive functions, single-minded

functions21), OR functions, XOR functions, and OR-of-XOR functions25).

In this paper, we consider the class of quadratic functions. In the context of com-

binatorial auction, the use of quadratic functions is firstly considered independently

by Conitzer et al.6) (as 2-wise dependent functions) and by Chevaleyre et al.5) (as 2-

additive functions). A utility function f : 2V → R is said to be quadratic (or of order

2) if it is represented as

f(X) =
X

u,v∈X,u<v
a(u, v) +

X
v∈X

b(v) (X ⊆ V ) (1)

by using real values a(u, v) (u, v ∈ V, u < v) and b(v) (v ∈ V ) (see Section 3.6 of 9)).?2

While a quadratic utility function is simple and can be represented in a succinct way,

it is sufficiently general so that by using the term a(u, v) it can express substitutability

and complementarity among items. This fact shows that quadratic utility functions

constitute an important class of utility functions.

The main aim of this paper is to reveal the computational complexity of the optimal

allocation problem with quadratic utility functions. That is, we consider the case where

a utility function fi : 2
V → R of bidder i ∈M is given as

fi(X) =
X

u,v∈X,u<v

ai(u, v) +
X
v∈X

bi(v) (X ⊆ V ) (2)

by using real values ai(u, v) (u, v ∈ V, u < v) and bi(v) (v ∈ V ). The same prob-

lem is considered in 5)，6), where they only show the NP-hardness of the very general

case. In contrast, we classify the optimal allocation problem according to the type of

utility functions (substitutes or complements) and the number of bidders (2 or more),

analyze the computational complexity of each case, and present exact/approximation

algorithms.

?1 Representation of utility functions is called a bidding language.

?2 A utility function is quadratic if and only if it can be represented by a quadratic polynomial

function with {0, 1}-variables.

Table 1 Summary of Our Results (uf. = utility function)

type of uf. \ # of bidders m m = 2 m ≥ 3

submodular uf. NP-hard, 0.879-inapprox. NP-hard, 0.879-inapprox.

0.874-approx.

gross substitutes uf. P (O(n2 log n) time) P (O(mn2 log(mn)) time)

supermodular uf. P (O(n3/ log n) time) NP-hard

0.5-approx. (2/3-approx. for m = 3)

1.1 Previous Results

We review computational complexity results of the optimal allocation problem with

general utility functions. We here consider only the case where a utility function f is

given implicitly by a value oracle, which, given a set S ⊆ V , returns a function value

f(S). Since the value oracle can be easily constructed for quadratic utility functions,

all of the results mentioned here are valid for the case of quadratic utility functions.

We firstly consider the case of submodular utility functions. The problem is NP-hard,

even ifm = 2. Moreover, there exists no polynomial-time approximation algorithm with

a ratio better than 1 − 1/e, unless P=NP18). Mirrokni et al.23) also show that an ap-
proximation algorithm with a ratio better than 1 − (1− 1/m)m requires exponentially

many calls to the value oracle, implying, without any assumption, that there exists no

polynomial-time approximation algorithm with a ratio better than 1 − 1/e. For the
class of gross-substitutes utility functions, which is known to be an important subclass

of submodular utility functions12),16), the optimal allocation problem can be solved in

polynomial time20).

We then consider the case of supermodular utility functions. Compared to the case

of submodular utility functions, this case attracts less attention in the literature of

combinatorial auction, and much is not known yet for this case. If m = 2, then the

optimal allocation problem can be easily reduced to the submodular function mini-

mization problem, which can be solved in polynomial time11). On the other hand, if

m ≥ 3 then the problem is NP-hard (see, e.g., 6)). While an O(

√
logn

n
)-approximation

algorithm is given15), no inapproximability result is known.

1.2 Our Results

We analyze the computational complexity of the optimal allocation problem with
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quadratic utility functions. We consider two cases where utility functions are submodu-

lar and supermodular (see Section 2 for definitions), and for each case we also consider

subcases where the number m of bidders are equal to 2 and more than 2. That is, we

consider 4 cases, each of which is denoted as (SUB|m=2), (SUB|m>2), (SUP|m=2), and
(SUP|m>2). The results obtained in this paper is summarized in Table 1. These results
are shown by using the relationship with graph cut problems such as the min/max cut

problem and the multiway (un)cut problem.

For the case of submodular quadratic utility functions, we show the NP-hardness even

for the case (SUB|m=2) by using the reduction of the max cut problem in undirected

graphs. On the other hand, we present the reduction of the case (SUB|m=2) to the max
cut problem in directed graphs. This reduction yields a 0.874-approximation algorithm

for (SUB|m=2), which is better than the approximation ratio 1 − 1/e ' 0.632 for the

case of general submodular utility functions. We also consider the special case of gross-

substitutes quadratic utility functions as an important subclass of submodular utility

functions. It is shown that the problem can be solved efficiently in O(mn2 log(mn))

time by using the reduction to the minimum quadratic-cost flow problem.

For the case of supermodular quadratic utility functions, we firstly show the

polynomial-time solvability of (SUP|m=2) by reducing it to the min cut problem in

directed graphs. We then show the NP-hardness of (SUP|m>2) by using the reduction
of the multiway (un)cut problem. For this problem, we also present a 0.5 approximation

algorithm based on randomized LP rounding, where we use the technique in Langberg

et al.19) for the multiway uncut problem.

The organization of this paper is as follows. Characterizations of submodu-

lar/supermodular quadratic utility functions are given in Section 2. In Section 3, we

present our results for (SUB|m=2) and (SUB|m>2), while the results for (SUP|m=2),
and (SUP|m>2) are given in Section 4.

2. Characterizations of Quadratic Utility Functions

We give characterizations of quadratic utility functions of the form (1) which have sub-

modularity and supermodularity. Throughout this paper we assume a(v, u) = a(u, v)

for every u, v ∈ V with u < v.

A utility function f : 2V → R is said to be submodular if it satisfies the condition

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y )
for every X, Y ∈ 2V with Y ⊆ X and v ∈ V \X. Intuitively, this condition says that the
marginal value of an item decreases as the set of items already acquired increases. A

utility function f : 2V → R is said to be supermodular if −f is submodular. Submod-
ularity (resp., supermodularity) of utility functions is used to model substitutability

(resp., complementarity) of items.

Theorem 2.1. Let f : 2V → R be a quadratic utility function of the form (1).

(i) f is submodular if and only if a(u, v) ≤ 0 (∀u, v ∈ V, u 6= v).
(ii) Submodular f is monotone if and only if b(v) +

P
u∈V \{v} a(u, v)≥0 (∀v∈V ).

Proof. It is well known that f is submodular if and only if the following inequality

holds:

f(X ∪ {u}) + f(X ∪ {v}) ≥ f(X ∪ {u, v}) + f(X) (X ⊆ V, u, v ∈ V \X, u 6= v),
which is in turn equivalent to the condition a(u, v) ≤ 0 (∀u, v ∈ V, u 6= v). If f is

submodular and monotone, then we have

0 ≤ f(V )− f(V \ {v}) = b(v) +
X

u∈V \{v}

a(u, v)

for all v ∈ V . On the other hand, if f is a submodular function satisfying the condition
b(v) +

P
u∈V \{v} a(u, v) ≥ 0 (∀v ∈ V ), then we have

f(X)− f(X \ {v}) = b(v) +
X

u∈X\{v}

a(u, v) ≥ b(v) +
X

u∈V \{v}

a(u, v) ≥ 0

for every X ⊆ V and v ∈ X, i.e., f is monotone.

Theorem 2.2. Let f : 2V → R be a quadratic utility function of the form (1).

(i) f is supermodular if and only if a(u, v) ≥ 0 (∀u, v ∈ V, u 6= v).
(ii) Supermodular f is monotone if and only if b(v) ≥ 0 (∀v ∈ V ).

Proof. It is well known that f is supermodular if and only if it satisfies the following

inequality:

f(X ∪ {u}) + f(X ∪ {v}) ≤ f(X ∪ {u, v}) + f(X) (X ⊆ V, u, v ∈ V \X, u 6= v),
which is in turn equivalent to the condition a(u, v) ≥ 0 (∀u, v ∈ V, u 6= v). It is

easy to see that if the conditions a(u, v) ≥ 0 (∀u, v ∈ V, u 6= v) and b(v) ≥ 0
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(∀v ∈ V ) hold, then f is monotone. On the other hand, if f is monotone, then we

have 0 ≤ f({v})− f(∅) = b(v) for all v ∈ V .

We also consider an important subclass of submodular utility functions called utility

functions with gross substitutes condition12),16). The gross substitutes condition of a

utility function f : 2V → R is described as follows:

∀p, q ∈ RV with p ≤ q, ∀X ∈ argmaxS⊆V {f(S)− p(S)},
∃Y ∈ argmaxS⊆V {f(S)− q(S)} s.t. X ∩ {v ∈ V | p(v) = q(v)} ⊆ Y .

Intuitively, the gross substitutes condition says that the demand for an item does not

decrease if the prices of other items increase.

Theorem 2.3 (cf. 14)). A quadratic utility function f : 2V → R of the form (1) sat-

isfies the gross substitutes condition if and only if a(u, v) ≤ 0 (∀u, v ∈ V, u 6= v) and

a(u, v) ≤ max{a(u, t), a(v, t)} (∀u, v, t ∈ V, u 6= v, u 6= t, v 6= t).
In the proof we use the following characterization of gross-substitutes utility functions.

Theorem 2.4 (see 24); see also Theorem 13.5 of 3)). A utility function f : 2V → R

satisfies the gross-substitutes condition if and only if f is submodular and satisfies the

following condition for every X ⊆ V and distinct u, v, t ∈ V \X:
f(X ∪ {u, v}) + f(X ∪ {t})

≤ max{f(X ∪ {u, t}) + f(X ∪ {v}), f(X ∪ {v, t}) + f(X ∪ {u})}.
(3)

Proof of Theorem 2.3. For every X ⊆ V and distinct u, v, t ∈ V \X, it holds that
{f(X ∪ {u, v})− f(X)}+ {f(X ∪ {t})− f(X)}
= a(u, v) +

X
s∈X

a(s, u) +
X
s∈X

a(s, v) +
X
s∈X

a(s, t) + {b(u) + b(v) + b(t)}.

Therefore, the inequality (3) in Theorem 2.4 is equivalent to a(u, v) ≤
max{a(u, t), a(v, t)}. Hence, the statement of Theorem 2.3 follows from this fact and

Theorems 2.1 and 2.4.

3. Results for Submodular Utility Functions

3.1 Hardness

We show the hardness of the problem (SUB|m=2) by the reduction of the max cut

problem in undirected graphs. The max cut problem is a famous NP-hard problem;

moreover, it is NP-hard to compute a solution with approximation ratio better than

0.879, under the assumption of the unique game conjecture17).

As an instance of the max cut problem, let us consider an undirected graphG = (V,E)

with edge weight w(u, v) ≥ 0 ((u, v) ∈ E). We define an instance of (SUB|m=2) by
regarding V as the item set and by using quadratic utility functions such that

ai(u, v) =

(
−w(u, v) ((u, v) ∈ E),
0 (otherwise),

(u, v ∈ V, u < v),

bi(v) = (1/2)
X

{w(u, v) | (u, v) ∈ E, u ∈ V \ {v}} (v ∈ V )

for i = 1, 2. The definitions of ai and bi imply that the resulting quadratic utility func-

tion f1 and f2 are monotone and submodular by Theorem 2.1. Moreover, the objective

function value f1(V1) + f2(V2) of a partition (V1, V2) is equal to

−
2X
i=1

X
{w(u, v) | (u, v) ∈ E, u, v ∈ Vi}+

X
(u,v)∈E

w(u, v)

=
X

{w(u, v) | (u, v) ∈ E, u ∈ V1, v ∈ V2},
i.e., the total weight of cut edges in G. Hence, the max cut problem on undirected

graphs is reduced to (SUB|m=2), and this reduction preserves the approximation ratio.
This fact, together with the result in 17), implies the following:

Theorem 3.1. The problems (SUB|m=2) and (SUB|m>2) are NP-hard. Moreover,
for both problems it is NP-hard to compute a solution with with approximation ratio

better than 0.879, under the assumption of the unique game conjecture.

3.2 Approximability

We present an approximability result for the problem (SUB|m=2) by showing the
reduction to the max s-t cut problem in directed graphs.

Given an instance of (SUB|m=2), we define a directed graph G = (V ∪ {s, t}, E) by
E = {(u, v) | u, v ∈ V, u < v} ∪ {(s, u) | u ∈ V } ∪ {(v, t) | v ∈ V }.
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For each edge (u, v) ∈ E, its weight w(u, v) is defined as follows:
w(s, u) = b2(u) +

P
{a2(u, v) | v ∈ V, v > u} (u ∈ V ),

w(v, t) = b1(v) +
P
{a1(u, v) | u ∈ V, u < v} (v ∈ V ),

w(u, v) = −a1(u, v)− a2(u, v) (u, v ∈ V, u < v).
Theorem 2.1 (i) implies w(u, v) ≥ 0, while (ii) implies w(s, u) ≥ 0 and w(v, t) ≥ 0.

Hence, all of edge weights are nonnegative.

Let (S, T ) be a partition of the vertex set V ∪ {s, t} satisfying s ∈ S, t ∈ T . Then,
the objective function value of (S, T ) is equal toX

{w(v, t) | v ∈ S ∩ V }+
X

{w(s, v) | v ∈ T ∩ V }

+
X

{w(u, v) | u ∈ S ∩ V, v ∈ T ∩ V, u < v}

=
X

{b1(v) | v ∈ S ∩ V }+
X

{a1(u, v) | u, v ∈ S ∩ V, u < v}

+
X

{b2(v) | v ∈ T ∩ V }+
X

{a2(u, v) | u, v ∈ T ∩ V, u < v}
= f1(S ∩ V ) + f2(T ∩ V ).

Hence, (SUB|m=2) is reduced to the max s-t cut problem in G, and this reduction pre-

serves the approximation ratio. It is shown by Lewin et al.22) that a 0.874-approximate

solution of the max s-t cut problem can be computed in polynomial time. Therefore,

we obtain the following result:

Theorem 3.2. A 0.874-approximate solution of the problem (SUB|m=2) can be com-
puted in polynomial time.

3.3 Polynomial-Time Exact Algorithm for Special Case

We consider a special case where utility functions satisfy the gross substitutes con-

dition, and show that the optimal allocation problem in this case can be reduced to

the minimum quadratic-cost flow problem. The reduction is based on the following

property of gross-substitutes quadratic utility functions. A set family F ⊆ 2V is said

to be laminar if it satisfies X ⊆ Y , X ⊇ Y , or X ∩ Y = ∅ holds for every X, Y ∈ F .
Lemma 3.3 (cf. Corollary 3.4 of 14)). A quadratic utility function f : 2V → R of

the form (1) satisfies the gross substitutes condition if and only if it is represented as

f(X) = −
P

S∈F cS |X ∩ S|2 by using a laminar family F ⊆ 2V and real numbers cS

(S ∈ F) satisfying {v} ∈ F (v ∈ V ) and cS ≥ 0 (S ∈ F , |S| ≥ 2).

This lemma implies that the function value of a gross-substitutes quadratic utility func-

tion can be represented as the (quadratic) flow cost on a tree network.

We now explain the reduction to the minimum quadratic-cost flow problem. Suppose

that a utility function fi of bidder i is of the form fi(X) = −
P

S∈Fi c
i
S |X ∩S|2, where

Fi ⊆ 2V is a laminar family and ciS (S ∈ Fi) are real numbers satisfying the conditions in
Lemma 3.3. We construct a graph Ĝ = (V̂ , Ê) as follows. Define V̂ = {r}∪V ∪

Sm

i=1
Vi,

where Vi (i ∈ M) is given as Vi = {viS | S ∈ Fi}. Note that vi{u} ∈ Vi for each i ∈ M
and u ∈ V . We also define Ê = E0 ∪

Sm

i=1
Ei, where

E0 = {(u, vi{u}) | u ∈ V, i ∈M},
Ei = {(viX , r) | X ∈ F ,maximal in F} ∪ {(viX , viρ(X)) | X ∈ Fi, not maximal in Fi},

and for every non-maximal set X ∈ Fi, we denote by ρ(X) the unique minimal set

Y ∈ Fi with Y ⊃ X. Note that edge set Ei for i ∈ M constitutes a rooted tree with

root r. For each edge (u, vi{u}), its capacity is given by the interval [0, 1], and its cost is

0. For each edge (viX , v
i
Y ) or (v

i
X , r) in Ei, its capacity is [0,+∞], and its cost function

is given by ciXϕ2, where ϕ is the flow value on the edge. We also define supply/demand

values of vertices to be 1 for each u ∈ V , −n for r, and 0 for other vertices.
We consider the minimum (quadratic-)cost flow problem on the network Ĝ under the

capacity constraint and the supply/demand constraint. It is not difficult to see that

integral feasible flows on the network have one-to-one correspondence to partitions of

the set V , and the cost of the flow is equal to the negative of the total utilities for

the corresponding partition. Hence, we can obtain an optimal allocation by solving the

minimum cost flow problem.

The minimum quadratic-cost flow problem can be solved by iteratively augmenting

flows along a shortest path in the so-called “auxiliary network,” and the number of

iterations is n (see, e.g., 1)). Since the graph Ĝ has O(mn) vertices and O(mn) edges,

the minimum cost flow problem can be solved in O(mn log(mn))×n = O(mn2 log(mn))
time by using the shortest-path algorithm of Fredman and Tarjan8) as a subroutine.

Theorem 3.4. The optimal allocation problem with gross-substitutes quadratic utility

functions can be solved in O(mn2 log(mn)) time.
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4. Results for Supermodular Utility Functions

We firstly show that the problem (SUP|m=2) can be solved in polynomial time.
Lemma 4.1 (Theorem 1 of 13)). Given an instance of (SUP|m=2), we can construct
in O(n2) time an edge-weighted directed graph G = (V ∪ {s, t}, E) such that for every
X ⊆ V , the cut value of (X ∪ {s}, (V \X) ∪ {t}) is equal to f1(X) + f2(V \X).
This lemma shows that (SUP|m=2) can be reduced to the minimum s-t cut problem

in G. Note that the graph G has O(n) vertices and O(n2) edges. Hence, the minimum

s-t cut problem can be solved in O(n3/ log n) time by the algorithm of Cheriyan et al.4).

Theorem 4.2. The problem (SUP|m=2) can be solved in O(n3/ log n) time.
In the following, we consider the problem (SUP|m>2).
4.1 Hardness

To show the NP-hardness of the problem (SUB|m>2), we show that the multiway

(un)cut problem on undirected graphs7),19) can be reduced to (SUB|m>2).
Input of the multiway (un)cut problem is an undirected graph G = (V,E) with dis-

tinct terminals s1, s2, . . . , sk ∈ V (k ≥ 2) and edge weight w(u, v) ≥ 0 ((u, v) ∈ E).
In the multiway cut problem, we find a partition (V1, V2, . . . , Vk) of V with si ∈ Vi

(i = 1, 2, . . . , k) minimizing the total weight of cut edges, i.e.,
P
{w(u, v) | (u, v) ∈

E, u ∈ Vi, , v ∈ Vj , i 6= j}, while in the multiway uncut problem, we want to maximize
the total weight of uncut edges. The multiway (un)cut problem is known to be NP-hard,

even when k = 37).

Given an instance of the multiway (un)cut problem, we define an instance of

(SUB|m>2) by regarding V as the item set and by

ai(u, v) =

(
w(u, v) ((u, v) ∈ E),
0 (otherwise),

bi(v) =

(
Γ (v = si),

0 (otherwise),

where Γ is a sufficiently large positive number. Let (V1, V2, . . . , Vk) be a partition of

V which is an optimal solution of this instance. Then, each Vi contains the vertex si

since bi(si) is a sufficiently large number. Moreover, the objective function value is

given as
Pk

i=1

P
{w(u, v) | (u, v) ∈ E, u, v ∈ Vi}, which we want to maximize. Hence,

an optimal solution for (SUB|m>2) is an optimal solution for the multiway (un)cut
problem, and vice versa.

Theorem 4.3. The problem (SUB|m>2) is NP-hard, even when m = 3.

4.2 Approximability

We propose a 0.5-approximation algorithm for the problem (SUB|m>2). Our algo-
rithm is based on a natural linear programming (LP) relaxation:

Maximize

kX
i=1

X
u,v∈V,u<v

ai(u, v)yi(u, v) +

kX
i=1

X
v∈V

bi(v)xi(v)

subject to

kX
i=1

xi(v) = 1 (v ∈ V ),

yi(u, v) = min{xi(u), xi(v)} (u, v ∈ V, u < v),
xi(v) ≥ 0 (v ∈ V ), yi(u, v) ≥ 0 (u, v ∈ V, u < v).

The algorithm firstly compute an optimal solution of the LP. Then, the algorithm

chooses a bidder i ∈ {1, 2, . . . ,m} and a value ρ ∈ [0, 1] uniformly at random, and

assigns each item v ∈ V to the bidder i if xi(v) ≥ ρ. The algorithm repeats this step

until all items are assigned to one of the bidders.

We analyze the performance of the algorithm. For v ∈ V and i ∈ M , let Xi(v) be

a random variable that is 1 if the item v is assigned to the bidder i and 0 otherwise.

Similarly, for u, v ∈ V and i ∈ M , let Y i(u, v) be a random variable that is 1 if both

of the items u and v are assigned to the bidder i and 0 otherwise. We also denote

y(u, v) =
Pm

i=1
yi(u, v) for u, v ∈ V with u < v.

Lemma 4.4 (Fact 3.1 of 19)). Let v ∈ V and i ∈ M . Assume that item v is not

assigned to any bidder before some iteration. Then, the probability that v is assigned to

bidder i in the iteration is (1/m)xi(v).

Lemma 4.5 (Claim 3.2 of 19)). Pr[Xi(v) = 1] = xi(v) for v ∈ V and i ∈M .
Lemma 4.6.

Pr[Y i(u, v) = 1] ≥ yi(u, v)

2− y(u, v)
holds for u, v ∈ V with u < v and i ∈M .

Proof. Let Ψ ∈ [0, 1] be the probability that both of u and v are assigned to the bidder
i in the same iteration. Then, Pr[Y i(u, v) = 1] ≥ Ψ holds.

The probability that u and v is assigned to an bidder i ∈ M in some iteration is

(1/m)min{xi(u), xi(v)} = (1/m)yi(u, v). Similarly, the probability that at least one of
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u and v is assigned to any bidder in some iteration is

mX
i=1

1

m
·max{xi(u), xi(v)} = 1

m

"
mX
i=1

{xi(u) + xi(v)}−
mX
i=1

min{xi(u), xi(v)}
#

=
1

m
{2− y(u, v)}.

Hence, the probability that u and v is assigned to an bidder i ∈M in the k-th iteration

is h
1− 1

m
· {2− y(u, v)}

ik−1
· 1
m
· yi(u, v).

Hence,

Ψ =

∞X
k=1

h
1− 1

m
{2− y(u, v)}

ik−1
· 1
m
· yi(u, v)

=
m

2− y(u, v) ·
1

m
· yi(u, v) = yi(u, v)

2− y(u, v) .

This implies the claim of the lemma.

We consider the expected value of the objective function for a solution obtained by

the algorithm. By Lemmas 4.5 and 4.6, it holds that

mX
i=1

X
u,v∈V,u<v

ai(u, v) Pr[Y i(u, v) = 1] +

mX
i=1

X
v∈V

bi(v) Pr[Xi(v) = 1]

≥
mX
i=1

X
u,v∈V,u<v

ai(u, v) · yi(u, v)

2− y(u, v) +
mX
i=1

X
v∈V

bi(v)xi(v) = 0.5 ·OPTLP,

where OPTLP denotes the optimal value of the LP. Since OPTLP is an upper bound of

the optimal value of (SUB|m>2), we obtain the following result.
Theorem 4.7. A 0.5-approximate solution of the problem (SUB|m>2) can be computed
in polynomial time.

With a more careful analysis we can show that the approximation ratio is 1/(2− ε) (>

0.5), where ε = min{y(u, v) | (u, v) ∈ E, y(u, v) > 0} (analyze the cases y(u, v) = 0

and y(u, v) > 0 separately).

Our analysis shows that the integrality gap of the LP is at least 0.5. On the other

hand, an instance with integrality gap 2/3 can be easily constructed. An open problem

is to close the gap between 0.5 and 2/3. A possible approach for a better approxi-

mation algorithm is to construct a new LP formulation which has a larger value of

min{y(u, v) | (u, v) ∈ E, y(u, v) > 0}.
We then consider alternative approximation algorithms by using the fact that

(SUP|m=2) can be solved in polynomial time. If m = 3, then we can obtain a 2/3-

approximate solution easily by using this fact. We compute an optimal allocation

(V
(12)
1 , V

(12)
2 , ∅) of items to bidders 1 and 2, where bidder 3 is ignored. In the same way,

we compute optimal allocations (V
(13)
1 , ∅, V (13)

3 ) for bidders 1 and 3 and (∅, V (23)
2 , V

(23)
3 )

for bidders 2 and 3. Then, we choose the best allocation among the three, which is a

2/3-approximate solution of the original problem.

Theorem 4.8. A 2/3-approximate solution of the problem (SUB|m>2) with m = 3

can be computed in polynomial time.

For general case with m ≥ 3, it is natural to consider the following heuristic based on
local search. Given a partition (V1, V2, . . . , Vm) of V and bidders i, j ∈ M , we denote
by realloc(i, j) an operation which optimally re-allocates items in Vi ∪ Vj to bidders i
and j. Our heuristic is as follows: start with an arbitrarily chosen initial partition, and

repeatedly apply the operation realloc(i, j) to arbitrarily chosen two bidders i, j ∈M
until no improvement is possible by this operation. Although our preliminary computa-

tional experiment shows that this heuristic always outputs a near-optimal solution, we

can construct a family of instances for which the approximation ratio can be arbitrarily

close to 0.
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