
IPSJ SIG Technical Report

Approximating the path-distance-width for k-cocomparability graphs

Yota Otachi∗1 , Toshiki Saitoh∗2 , Katsuhisa Yamanaka∗3 ,
Shuji Kijima∗4 , Yoshio Okamoto∗5 , Hirotaka Ono∗6 ,

Yushi Uno∗7 and Koichi Yamazaki∗8

1. Introduction

The path-distance-width is a graph parameter to measure how close a graph is to
a path19),20). There are several other such graph parameters including pathwidth and
bandwidth. Roughly speaking, the classes of graphs of bounded path-distance-width,
bounded bandwidth, and bounded pathwidth havechain-like structures. It is known that
for any connected graph, pathwidth≤ bandwidth< 2 · path-distance-width13),20). By this
relation, many useful properties for bounded pathwidth graphs and bounded bandwidth
graphs also hold for bounded path-distance-width graphs. There are other graph classes
which also have chain-like structures, such as interval graphs, AT-free graphs, andk-
cocomparability graphs. It is known that there are relationships among those graph
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parameters and graph classes2),4),13),20).
This study is motivated by the research on bandwidth of AT-free graphs10),14). To see

the motivation, let us briefly review the history of the research on bandwidth for interval
graphs and AT-free graphs. One may expect that if we restrict our input graphs to inter-
val graphs or AT-free graphs, then we would be able to find easily its chain-like structure
(such as its interval representation or a dominating pair), and then from the chain-like
structure we might be able to compute the bandwidth. It had not been known, however,
whether the bandwidth can be computed for interval graphs in polynomial time12). But
then it turned out that the decision problem can be solved in polynomial time (see18)).
Since interval graphs are AT-free graphs, it would be natural to ask whether or not the
bandwidth decision problem for AT-free graphs can be solved in polynomial time. Un-
fortunately, the bandwidth decision problem for AT-free graphs is NP-complete14),16).
However, it is known that for AT-free graphs, the bandwidth can be approximated within
a factor 2 inO(mn) time14), wherem andn denote the number of edges and the number
of vertices, respectively.

In a sense, bandwidth and path-distance-width have some common features. In fact,
there is a similarity between the problem of computing the path-distance-width and the
problem of computing the bandwidth: both problems do not admit any PTAS even for
trees1),19). Hence, it would be reasonable to ask the computational complexity of comput-
ing the path-distance-width for AT-free graphs. Unfortunately, as we will prove in this
paper, the path-distance-width decision problem for AT-free graphs is also NP-complete.
More precisely, we will show that the problem is NP-complete for cobipartite graphs.
Thus we consider the problem of approximating the path-distance-width.

Although some techniques developed in the research on bandwidth can be carried
over into the research on path-distance-width, the path-distance-width problem has a
serious drawback which the bandwidth problem does not have: path-distance-width is
not closed under the edge deletion. In many cases, this drawback makes the design and
analysis of algorithms very difficult. In this study, however, it turns out that the restric-
tion to AT-free graphs is enough to overcome the drawback for achieving a constant
factor approximation. In this paper, we first present approximation algorithms with con-
stant approximation ratios for the path-distance-width on a superclass of AT-free graphs,
which is known ask-cocomparability graphs. Although this is already a constant fac-
tor approximation for AT-free graphs, we present another approximation algorithm for
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AT-free graphs, which has a better running time and a better approximation ratio. We
also show that the problem is solvable for cochain graphs. The complexity for interval
graphs and proper interval graphs remains open.

2. Preliminaries

In this paper, graphs are finite, simple, and connected.
Graph
Let G be a graph. We denote byV(G) andE(G) the vertex set and the edge set ofG,

respectively. Thedistance between two vertices u, v ∈ V(G) in G, denoted bydG(u, v),
is the length of a shortestu–v path inG. We define thedistance between a vertex subset
S ⊆ V(G) and a vertex v∈ V(G) in G asdG(S, v) = minu∈S dG(u, v). ForS ⊆ V(G), we
define thediameter of S in Gas diamG(S) = maxu,v∈S dG(u, v). Thediameter of a graph
G is defined as diam(G) = diamG(V(G)).

The (open) neighborhoodof a vertexv in G, denoted byNG(v), is the set of vertices
adjacent tov; that is NG(v) = {u | {u, v} ∈ E(G)}. The closed neighborhoodof v in
G, denoted byNG(v), is the set{v} ∪ NG(v). The (open) neighborhoodof a vertex set
S ⊆ V(G) in G, denoted byNG(S), is the set of vertices not inS and adjacent to some
vertexu ∈ S; that isNG(S) =

∪
v∈S NG(v) \ S.

Thecompliment of a graph Gis the graphG such thatV
(
G
)
= V(G) and two distinct

vertices are adjacent inG if and only if they are not adjacent inG.
Path-distance-width
A sequence (L1, L2, . . . , Lt) of subsets of vertices is adistance structureof a graphG

if
∪

1≤i≤t Li = V(G) andLi = {v ∈ V(G) | dG(v, L1) = i − 1} for each 1≤ i ≤ t. EachLi

is called aleveland speciallyL1 is called theinitial set. The width of (L1, L2, . . . , Lt),
denoted by pdwL1

(G), is defined as max1≤i≤t |Li |. Thepath-distance-widthof G, denoted
by pdw(G), is defined as minS⊆V(G) pdwS(G).

If the initial set of a distance structure ofG is a set consists of only one vertex, then
we say that it is arooted distance structureof G. Therooted path-distance-widthof G,
denoted by rpdw(G), is the minimum width over all its rooted distance structures; that
is, rpdw(G) = minv∈V(G) pdw{v}(G). Obviously, the rooted path-distance-width can be
computed in polynomial time (see Lemma 2.1 for more details).

All-pairs shortest paths
Theall-pairs shortest paths problemis literally the problem of finding a shortest path

between each pair of vertices in a graph withn vertices andm edges. In some cases,
all-pairs distances are needed instead of actual shortest paths. We consider this variant
here; that is, we want to computedG(u, v) for all pairsu, v ∈ V(G). Clearly, by run-
ning breadth-first search from every vertex, the problem can be solved inO(mn) time.
The problem has been studied extensively, and there are some nontrivial improvements
(see3) and the references therein). Seidel17) proved that the problem can be solved in
O(M(n) logn) time by using fast matrix multiplication, whereM(n) is the time complex-
ity to multiply two n×n matrices. The current fastest algorithm for matrix multiplication
by Coppersmith and Winograd5) implies that Seidel’s algorithm runs inO(n2.376) time.
Recently, Chan3) has presented a new algorithm for the all-pairs shortest path problem
that runs ino(mn) time.

For a graphG with n vertices andm edges, let apd(m,n) be the time complexity for
computing the all-pairs distances and outputting the distance for each vertex pair. We
can use any one of the above algorithms for the all-pairs distances. Note that apd(m,n) =
Ω(n2) since we must output the distances for all

(
n
2

)
pairs.

Lemma 2.1. The rooted path-distance-width of a connected graph G with n vertices
and m edges can be computed in O(apd(m,n)) time.

Proof. First, we computedG(u, v) for all pairsu, v ∈ V(G) in O(apd(m,n)) time. By
using the distance matrixdG, we can compute rpdw(G) in O(n2) time. Since apd(m,n) =
Ω(n2), the total running time isO(apd(m,n)). �

Graph Classes
An interval graph is a graph whose vertices can be mapped to distinct intervals in

the real line such that two vertices are adjacent in the graph if and only if their corre-
sponding intervals overlap. We call the set of intervals representing a graph aninterval
representationof the graph. An interval representation isproper if no interval properly
contains other intervals in it. A graph is aproper interval graphif it has a proper interval
representation.

An independent set of three vertices is called anasteroidal tripleif every two of them
are connected by a path avoiding the neighborhood of the third. A graph isasteroidal
triple-free(AT-freefor short), if it contains no asteroidal triple.
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A graphG is acomparability graphif there exists a linear ordering< onV(G) such that
for any three verticesu < v < w, {u, v} ∈ E(G) and{v,w} ∈ E(G) implies{u,w} ∈ E(G).
A graphG is acocomparability graphif G is the compliment of a comparability graph.
It is known thatG is a cocomparability graph if and only if it has acocomparability
ordering; that is, there exists a linear order< on V(G) such that for any three vertices
u < v < w, {u,w} ∈ E(G) implies{u, v} ∈ E(G) or {v,w} ∈ E(G).

Chang, Ho, and Ko4) generalized cocomparability graphs tok-cocomparability graphs.
LetG be a graph, and letk be a positive integer. Ak-cocomparability ordering(k-CCPO)
of G is an ordering onV(G) such that for any three verticesu < v < w, dG(u,w) ≤ k
impliesdG(u, v) ≤ k or dG(v,w) ≤ k. A graph is ak-cocomparability graphif it admits a
k-CCPO. Note that a 1-cocomparability ordering is just a cocomparability ordering.

A graphG = (U,V; E) is a cobipartite graphif (U,V) is a nonempty partition of
V(G) and bothU andV induce cliques. Thus a cobipartite graph is the complement of
a bipartite graph. This implies that cobipartite graphs are cocomparability graphs, since
bipartite graphs are comparability graphs. A cobipartite graphH = (X,Y; E) is acochain
graph if the elements ofX andY can be ordered asx1, x2, . . . , x|X| andy1, y2, . . . , y|Y|,
respectively, so thatNG[x1] ⊆ NG[x2] ⊆ · · · ⊆ NG[x|X|] and NG[y1] ⊆ NG[y2] ⊆ · · · ⊆
NG[y|Y|].

It is known that cochain graphs⊂ proper interval graphs⊂ interval graphs⊂ cocom-
parability graphs⊂ AT-free graphs⊂ 2-cocomparability graphs, andk-cocomparability
graphs⊂ (k + 1)-cocomparability graphs for anyk (see2),4)). It is easy to see that any
graphG is akG-cocomparability graph for some large enoughkG ≤ diam(G).

Summary of results
In this paper, we present some algorithms approximating the path-distance-width for

k-cocomparability graphs and their subclasses such as AT-free graphs and proper interval
graphs. Every algorithm has a constant approximation ratio (ifk is a fixed constant), and
runs inO(apd(m,n)) or O(m+ n) time. SeeFig. 1.

3. NP-hardness for cobipartite graphs

Before we present approximation algorithms, we show that the problem for determin-
ing the path-distance width is NP-hard even for a very restricted graph class, the class of
cobipartite graphs. To this end, we first prove the NP-completeness of an intermediate
problem, by constructing a polynomial time reduction from the following well-known

k-cocomparability (k ≥ 2): 2k + 1

AT-free: 3

Cocomparability: 3 AT-free ∩ claw-free: 3

Interval: 3

Proper interval: 2 Cobipartite: 2

Cochain

Superclass: approx. ratio

Subclass: approx. ratio

NP-hard

Unknown

P

Fig. 1 Summary of results.

NP-complete problem.
Problem: Set Cover9) [SP5]
Instance: SetC = {c1, . . . , cn}, family F = {F1, . . . , Fm} ⊆ 2C, positive integerh ≤ n.
Question: Is thereX ⊆ F such that

∪
Fi∈X Fi = C and|X| = h?

In any instance of Set Cover, we can assume without loss of generality that for every
ci ∈ C, there is a subsetF j ∈ F such thatci ∈ F j , since otherwise the instance has no
cover. We also assumen > 1 andh < m, since otherwise the problem is trivial.

Our intermediate problem is as follows.
Problem: Partial Cover in Bigraphs (PCB)
Instance: Bipartite graphG = (U,V; E), positive integerk ≤ |V|.
Question: Is thereY ⊆ U such that|NG(Y)| = k?

Kobayashi15) pointed out that PCB is NP-complete. Here, we provide a full proof.
Lemma 3.1. PCB is NP-complete even if|V| > k+ 2 and G has no isolated vertex.

Proof. From an instance (C,F , h) of Set Cover, we first construct a bipartite graph
G = (U,V; E) as follows:U = {u1, . . . ,um}, V = {v1, . . . , vn}, andE = {{ui , v j} | c j ∈ Fi}.
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The vertex setsU andV corresponds to the familyF and the ground setC, respectively.
The edge setE represents the containment relation between the elements ofC and the
subsets inF . Next, by addingn + 1 pendant vertices to eachui ∈ U, we construct a
bipartite graphH = (U,V′; E′). Clearly, this construction can be done in polynomial
time. Note that|V′| = n+ (n+ 1)m> n+ (n+ 1)h+ 2 sincen > 1 andm> h. Also note
thatH has no isolated vertex.

Let k = n+ (n+ 1)h. We shall prove thatC has a coverX ⊆ F of size|X| = h if and
only if there is a setY ⊆ U such that|NH(Y)| = k.

( =⇒ ) Assume that there isX ⊆ F such that
∪

Fi∈X Fi = C and|X| = h. We setY =
{ui | Fi ∈ X}. SinceX is a cover ofC, |NH(Y)∩V| = |V| = n. Since|NH(Y)\V| = (n+1)h,

|NH(Y)| = |NH(Y) ∩ V| + |NH(Y) \ V| = n+ (n+ 1)h = k.
( ⇐= ) Assume that there existsY ⊆ U such that|NH(Y)| = k. We first prove|Y| = h.

If |Y| ≥ h + 1, then|NH(Y)| ≥ |NH(Y) \ V| ≥ (n + 1)(h + 1) > k. If |Y| ≤ h − 1, then
|NH(Y)| ≤ |V| + |NH(Y)| \ V| ≤ n+ (n+ 1)(h− 1) < k. Thus|Y| = h. Now we have

|NH(Y) ∩ V| = |NH(Y)| − |NH(Y) \ V| = k− (n+ 1)h = n.
Therefore, if we setX = {Fi | ui ∈ Y}, then|X| = h andX covers the ground setC.

From the above observation the problem is NP-hard. Since the problem clearly be-
longs to NP, the lemma holds. �

Now we prove the NP-hardness of the path-distance-width problem for cobipartite
graphs, by constructing a polynomial time reduction from PCB. We actually prove that
deciding whether pdw(G) = |V(G)|/3 is NP-complete for cobipartite graphs with diam-
eter 2.
Theorem 3.2. Given cobipartite graph H withdiam(H) = 2, it is NP-complete to decide
whetherpdw(H) = |V(H)|/3.

Proof. Clearly, the problem is in NP. Thus we prove the NP-hardness. From an instance
(G = (U,V; E), k) of PCB satisfying the conditions in Lemma 3.1, we construct a co-
bipartite graphH = (U′,V′; E′) as follows (seeFig. 2). Let S andT be two sets of
sizes|S| = |U | + k and |T | = |U | + 2|V| − k − 2, whereS, T, U, andV are pairwise
non-intersecting. We set the vertex sets asU′ = U ∪T ∪{a} andV′ = V∪S∪{b}, where
a andb are new vertices. InH, bothU′ andV′ induce cliques. Every edge inG is also
in H. Additionally, a is adjacent to all vertices inS, andb is adjacent to all vertices in
T. This construction can be done in polynomial time.

T

V

U . . .

. . .

U′

V′ S

a

b

Fig. 2 Cobipartite graphH = (U′,V′; E′).

SinceG has no isolated vertex, diam(H) = 2. It is easy to see that|U′| = 2|U | + 2|V| −
k − 1 and|V′| = |V| + |U | + k + 1. Hence,|V(H)| = |U′| + |V′| = 3(|U | + |V|). We shall
show that (G, k) is a yes instance of PCB if and only if pdw(H) = |U | + |V|. Note that
pdw(H) ≥ |V(H)|/(diam(H) + 1) = |U | + |V|.

( =⇒ ) Assume that there existsY ⊆ U such that|NG(Y)| = k. Let X = Y∪ T′, where
T′ is any subset ofT such that|T′| = |U | + |V| − |Y|. Let (L1 = X, L2, L3) be the level
structure with the initial setX. Clearly, |L1| = |X| = |U | + |V|. The size of the second
level is

|L2| = |U′ \ X| + |NH(Y) ∩ V′| + |NH(T′) ∩ V′| = |U | + |V|. (1)
This also implies|L3| = |V(H)| − |L1| − |L2| = |U | + |V|. Therefore, pdwX(H) = |U | + |V|.

( ⇐= ) Assume that pdwX(H) = |U | + |V| for someX ⊆ V(H). If X intersects both
U′ and V′, then the distance structure has at most two levels, and thus pdwX(H) ≥
|V(H)|/2 > |U | + |V|. Hence,X is included in eitherU′ or V′. SupposeX ⊆ V′. Since
NH(T) ∩ V′ = {b}, all vertices inT belong to the same level. Since|V| > k + 2, this
implies pdwX(H) ≥ |T | = |U | + 2|V| − k − 2 > |U | + |V|, which is a contradiction. Thus
we can conclude thatX ⊆ U′.

Let (L1 = X, L2, L3) be the level structure with the initial setX. Since |V(H)| =
3(|U | + |V|) and pdwX(H) = |U | + |V|, each levelLi has size|Li | = |U | + |V|. If a ∈ X,
thenS ⊆ L2. This implies|L3| ≤ |V′ \ S| = |V| + 1 < |U | + |V|, a contradiction. Hence,
X ⊆ U ∪ T. Let Y = X ∩ U andT′ = X ∩ T. Clearly,|NH(T′) ∩ V′| = |{b}| = 1. Since
|X| = |U | + |V|, we have|U′ \ X| = |U | + |V| − k − 1. Since Eq. (1) also holds here, we
have|NH(Y) ∩ V′| = k. This impliesNG(Y) = k, and completes the proof. �

Here, we note that there is a trivial factor 2 approximation algorithm for cobipartite
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graphs. It is easy to see that a connected cobipartite graphG has diameter 3, and thus
pdw(G) ≥ ⌈|V(G)|/4⌉. For anyS ⊆ V(G) with |S| = ⌈|V(G)|/2⌉, pdwS(G) = ⌈|V(G)|/2⌉.
Therefore, pdwS(G) ≤ ⌈|V(G)|/2⌉ ≤ 2⌈|V(G)|/4⌉ ≤ 2pdw(G).
Proposition 3.3. For a cobipartite graph with n vertices and m edges, the path-distance-
width can be approximated within a factor2 in O(m+ n) time.

4. Approximating the path-distance-width

In this section, we present our main results. Namely, approximation algorithms for
the path-distance-width. Our algorithms are based on a common idea: bounding the
diameter of each level in distance structures. This yields the approximation guarantees.
The algorithms also have a special feature: we use rooted distance structures only. Thus,
our algorithms are very simple, and clearly run in polynomial time.

We first establish a general lower bound, which will be the main tool to guarantee the
approximation ratios.
Proposition 4.1. Let (L1, . . . , Lt) be a distance structure of G. If u∈ Li and v∈ L j , then
dG(u, v) ≥ |i − j|.

Proof. Assumei ≤ j without loss of generality. Let (p0, p1, . . . , pℓ) be a shortestu–v
path, wherep0 = u and pℓ = v. From the definition of distance structures, ifpk ∈ Lh,
thenpk+1 ∈ Lh−1 ∪ Lh ∪ Lh+1. Sincep0 ∈ Li , pℓ ∈ L j , andi ≤ j, we need at leastj − i
indicesk such thatpk ∈ Lh andpk+1 ∈ Lh+1. Thusℓ ≥ j − i. �

Lemma 4.2. Let S⊆ V(G). Then,pdw(G) ≥ |S|/(diamG(S) + 1).

Proof. Let (L1, . . . , Lt) be an optimal distance structure ofG; that is, pdwL1
(G) =

pdw(G). Denote byI the set of the indices of levels having non-empty intersec-
tion with S; that is, I = {i ∈ {1, . . . , t} | Li ∩ S , ∅}. By Proposition 4.1,
maxI −min I ≤ diamG(S). Thus, the vertices ofS are included in at most diamG(S)+ 1
levels{Lmin I , Lmin I+1, . . . , LmaxI }. This implies that there exists a levelLi , i ∈ I , such that
|Li ∩ S| ≥ |S|/(diamG(S) + 1). Hence, we have

pdw(G) = pdwL1
(G) ≥ |Li | ≥ |Li ∩ S| ≥ |S|/(diamG(S) + 1),

as required. �

4.1 Approximating the path-distance-width for k-cocomparability graphs
By the property ofk-CCPO, we are able to bound the diameter of each level in some

distance structure of ak-cocomparability graph. Thus we have an approximation guar-
antee as follows.
Lemma 4.3. Let G be a connected k-cocomparability graph, and x be the first vertex
in a k-CCPO of G. Let(L1, . . . , Lt) be the distance structure of G with the initial set
L1 = {x}. Then,diamG(Li) ≤ 2k for all i.

Proof. Let y, z ∈ Li for somei. Without loss of generality, we may assume thatx < y < z
in thek-CCPO. We show thatdG(y, z) ≤ 2k. Obviously,dG(x, y) = dG(x, z). Let P be a
shortestx–z path inG. SincedG(x, y) = dG(x, z), y is not in P. Clearly, there exists an
edge{v,w} in P such thatv < y < w. SincedG(v,w) = 1 ≤ k, we havedG(v, y) ≤ k or
dG(y,w) ≤ k. If dG(v, y) ≤ k, thendG(x, y) ≤ dG(x, v)+ k anddG(y, z) ≤ dG(v, z)+ k. This
implies

dG(x, y) + dG(y, z) ≤ dG(x, v) + dG(v, z) + 2k = dG(x, z) + 2k.
ThendG(y, z) ≤ 2k, sincedG(x, y) = dG(x, z). The case ofdG(y,w) ≤ k is almost the
same. �

Combining Lemmas 2.1, 4.2, and 4.3, we have the following general approximation
result.
Theorem 4.4. For a connected k-cocomparability graph G with n vertices and m edges,
the path-distance-width can be approximated within a factor2k+1 in O(apd(m, n)) time.

4.2 Approximating the path-distance-width for AT-free graphs
Chang, Ho, and Ko4) showed that AT-free graphs are 2-cocomparability graphs.

Hence, by Theorem 4.4, the path-distance-width of a connected AT-free graph withn
vertices andm edges can be approximated within a factor 5 inO(apd(m,n)) time. The
aim of this subsection is to provide a better approximation algorithm for AT-free graphs
by using some properties of AT-free graphs. More precisely, we present anO(m+n) time
3-approximation algorithm for AT-free graphs. Adominating pair(u, v) of a graphG is
a pair of verticesu, v ∈ V(G) such that for anyu–v pathP in G, V(P) is a dominating set
of V(G); that is, each vertexv ∈ V(G) \ V(P) has a neighbor inV(P).
Theorem 4.5(7),8)). Any connected AT-free graph has a dominating pair. A dominating
pair of a connected AT-free graph can be found in linear time.
Lemma 4.6. Let (u, v) be a dominating pair of an AT-free graph G, and let(L1 =

{u}, . . . , Lt) be the distance structure rooted at the vertex u. Then, for any i,diamG(Li) ≤
2.
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Proof. Let (p1, . . . , pℓ) be a shortestu–v path inG, wherep1 = u andpℓ = v. Clearly,
p j ∈ L j for all j. From the definition of distance structures and dominating pairs, a
vertex in a levelLi must be adjacent to at least one ofpi−1, pi , andpi+1, and cannot be
adjacent to any otherp j , j < {i−1, i, i+1}. Let x, y ∈ Li for somei. We assumepi < {x, y}
since otherwisedG(x, y) ≤ 2. Let (q1, . . . , qi) is a shortestu–x path, whereq1 = u and
qi = x. Obviously,q j ∈ L j for all j. We now have three cases (seeFig. 3).

[Case 1] {{x, pi+1}, {y, pi+1}} ∩ E(G) , ∅: By symmetry, we may assume{x, pi+1} =
{qi , pi+1} ∈ E(G). Then, (q1, . . . ,qi , pi+1, . . . , pℓ) is au–v path. Hence,y has a neighbor
in {qi−1,qi , pi+1}. Sinceqi = x and{qi−1,qi}, {qi , pi+1} ∈ E(G), we havedG(x, y) ≤ 2.

[Case 2]{{x, pi}, {y, pi}}∩E(G) , ∅: By symmetry, we may assume{x, pi} = {qi , pi} ∈
E(G). Then, (q1, . . . , qi , pi , pi+1, . . . , pℓ) is a u–v path. Hence,y has a neighbor in
{qi−1,qi , pi , pi+1}. By Case 1, if{y, pi+1} ∈ E(G), then dG(x, y) ≤ 2. Otherwise,y
has a neighbor in{qi−1,qi , pi}. Sinceqi = x and {qi−1,qi}, {qi , pi} ∈ E(G), we have
dG(x, y) ≤ 2.

[Case 3] {{x, pi−1}, {y, pi−1}} ∩ E(G) , ∅: By Cases 1 and 2, it suffices to consider
the case of{x, pi}, {x, pi+1}, {y, pi}, {y, pi+1} < E(G). Clearly, this assumption implies
{x, pi−1}, {y, pi−1} ∈ E(G), and hence,dG(x, y) ≤ 2. �
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Case 3Case 2Case 1

Xi−1

Xi

Xi+1

Xi−1

Xi

Xi+1

Xi−1

Xi

Xi+1

pi

pi−1

pi+1

pi

pi−1

pi+1

pi

pi−1qi−1

x= qi x= qi yxyy
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v
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Fig. 3 The cases in the proof of Lemma 4.6.

Theorem 4.5 and Lemmas 4.2 and 4.6 imply the following better approximation result
for AT-free graphs.

Theorem 4.7. For a connected AT-free graph with n vertices and m edges, the path-
distance-width can be approximated within a factor 3 in O(m+ n) time.

We now show that the factor 3 is the best possible even for interval graphs (thus for
AT-free graphs) if we use rooted distance structures.
Proposition 4.8. The approximation ratio 3 of the path-distance-width for interval
graphs cannot be improved if we select only one vertex as the initial set.

Proof. The friendship graph Fd is the graph withV(Fd) = {c} ∪ {ui , vi | 1 ≤ i ≤ d} and
E(Fd) = {{ui , vi} | 1 ≤ i ≤ d} ∪ {{c,w} | w ∈ V(Fd) \ {c}}. For anyd, Fd is an interval
graph (seeFig. 4).

Let c be the center ofF3d, and letw ∈ V(F3d) \ {c}. Clearly, pdw{c}(F3d) = 6d and
pdw{w}(F3d) = 6d − 3. On the other hand, ifS = {ui | 1 ≤ i ≤ 2d}, then
pdwS(F3d) = max{|{ui | 1 ≤ i ≤ 2d}|, |{c} ∪ {vi | 1 ≤ i ≤ 2d}|, |{ui , vi | 2d + 1 ≤ i ≤ 3d}|}

= max{2d,2d + 1, 2d} = 2d + 1.
Thus, if we use only one vertex ofF3d as an initial set, then the approximation ratio is
at least (6d − 3)/(2d+ 1) = 3− 6/(2d+ 1). Since 6/(2d + 1) can be arbitrarily small by
increasingd, the proposition holds. �

v1

v2

v3

v4

u4

u3

u2 u1 u2 u3 u4
v1 v2 v3 v4
c

u1

c

Fig. 4 Friendship graphF4 and its interval representation.

4.3 Approximating the path-distance-width for proper interval graphs
Since proper interval graphs are AT-free, the result in the previous section provides

an approximation algorithm for proper interval graphs as well. Fortunately, if we use
proper interval representations, then we get a better approximation ratio.

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-134 No.1
2011/3/7



IPSJ SIG Technical Report

Corneil, Kim, Natarajan, Olariu, and Sprague6) [Proposition 2.1(2)] showed that in
the rooted distance structure of a proper interval graphs rooted at the left most interval,
every level is a clique.
Proposition 4.9(6)). Let G be a connected proper interval graph, and let u∈ V(G) be
the vertex with the left most starting point in some proper interval representation of G.
Let Li be the set of vertices of distance i from u; that is, Li = {v ∈ V(G) | dG(u, v) = i}.
Then, for any i,diamG(Li) = 1 if L i , ∅.

It is known that a proper interval representation of a proper interval graph can be
computed in linear time (see e.g.6)). Thus the left most vertexu in the above proposition
and the rooted distance structure rooted atu can be found in linear time. Therefore, by
Lemma 4.2, the next theorem holds.
Theorem 4.10. For a connected proper interval graph G with n vertices and m edges,
the path-distance-width can be approximated within a factor 2 in O(m+ n) time.

Since the complete graphK2n is a proper interval graph, pdw(K2n) = n, and
rpdw(K2n) = 2n − 1, we can conclude that the factor 2 in the above theorem cannot
be improved by any algorithm using rooted distance structures only.
Proposition 4.11. The approximation ratio 2 of the path-distance-width for proper in-
terval graphs cannot be improved if we select only one vertex as the initial set.

5. Linear-time algorithm for cochain graphs

In this section, we present a linear-time algorithm to determine the path-distance-
width of cochain graphs. Recall that every cochain graph is a proper interval graph.
Theorem 5.1(11)). Given cochain graph G with n vertices and m edges, its bipartition
(X,Y) and orderings on X and Y (which satisfies the definition) can be computed in
O(m+ n) time.
Theorem 5.2. The path-distance-width of a connected cochain graph G with n vertices
and m edges can be computed in O(m+ n) time.

Proof. AssumeG is a cochain graph with bipartition (X,Y). By Theorem 5.1, such
a bipartition can be computed inO(m + n) time. For convenience, let pdw(G,X) =
min{pdwS(G) | S ⊆ X} and pdw(G,Y) = min{pdwS(G) | S ⊆ Y}. If S ⊆
V(G) intersects bothX and Y, then pdwS(G) ≥ ⌈|V(G)|/2⌉. It is easy to see that

min{pdw(G,X),pdw(G,Y)} ≤ ⌈|V(G)|/2⌉. Therefore,
pdw(G) = min

{
pdw(G,X),pdw(G,Y)

}
.

By symmetry, it is sufficient to show that pdw(G,X) can be computed inO(m+ n) time.
Let X = {x1, . . . , xp} andNG[x1] ⊆ NG[x2] ⊆ · · · ⊆ NG[xp]. By Theorem 5.1, such

an ordering can be computed in linear time. We also compute in linear time|X|, |Y|,
and degreeG(v) for eachv ∈ V(G). Let Y∅ = {y ∈ Y | NG(y) ∩ X = ∅}. Clearly,
Y∅ = {y ∈ Y | degreeG(y) = |Y| − 1}, and thus|Y∅| can be obtained in linear time.

To compute pdw(G,X), we define pdw(G,X, i) as follows:
pdw(G,X, i) = min{pdwS(G) | S ⊆ X, i = max{ j | x j ∈ S}}.

For xi ∈ X, we denoteNG(xi)∩Y by NY
G(xi). It is easy to see that|NY

G(xi)| = degreeG(xi)−
(|X| − 1). If i = max{ j | x j ∈ S} for someS ⊆ X, then NG(xi) ∩ Y = NG(S) ∩
Y sinceNG[x j ] ⊆ NG[xi ] for all j < i. Note thatNY

G(xi) may be empty. We shall
prove that pdw(G,X, i) can be computed in constant time by using|X|, |Y|, |Y∅|, and
|NY

G(xi)|. This will imply pdw(G,X) can be computed in linear time, since pdw(G,X) =
min1≤i≤p pdw(G,X, i).

Let S ⊆ {x1, . . . , xi} andxi ∈ S, and letD be the distance structure with the initial set
S. We have the following three cases (seeFig. 5):

D =


(S, (X \ S) ∪ NY

G(xi), Y \ NY
G(xi)) if NY

G(xi) , ∅,
(S, X \ S, Y) if NY

G(xi) = ∅ andY∅ = ∅,
(S, X \ S, Y \ Y∅, Y∅) if NY

G(xi) = ∅ andY∅ , ∅.
In any case, the average size of the first and second levels is (|X|+ |NY

G(xi)|)/2. Therefore,
by setting|S| = min{i, ⌈(|X|+|NY

G(xi)|)/2⌉}, we can minimize the difference. One possible
solution isS = {xi} ∪ {x1, . . . , x|S|−1}. Since pdwS(G) can be computed in constant time
with |S|, |X|, |Y|, |Y∅|, and |NY

G(xi)|, the theorem holds. Observe that, in any case, the
location of the vertices inY is solely determined byxi . Thus the only thing we can do
is to select the size ofS arbitrarily from{1, . . . , i}. Obviously, minimizing the difference
of sizes between the first and second levels is the best solution here, since the vertices in
X lie in these levels. �

6. Concluding remarks

We have considered the problem of determining the path-distance-width of graphs in
important graph classes. It turned out that the problem is NP-hard even for cobipartite
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S

X \ S

Y \ NY
G(xi)

NY
G(xi)

L1

L2

L3

S

X \ S

L1

L2

L3 Y

S

X \ S

L1
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L4 Y∅

Y

X X X
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Fig. 5 Three cases in the proof of Theorem 5.2.

graphs, and thus for cocomparability graphs and AT-free graphs. However, using their
chain-like structures, we were able to present constant-factor approximation algorithms.
The algorithms are very simple and fast. We also present polynomial time (exact) al-
gorithms for cochain graphs. The computational complexity of the problem for interval
graphs and proper interval graphs remains open.
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