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parameters and graph clas$égd®2)
This study is motivated by the research on bandwidth of AT-free gt&pHsTo see
Approximating the path-distance-width for k-cocomparability graphs the motivation, let us briefly review the history of the research on bandwidth for interval
graphs and AT-free graphs. One may expect that if we restrict our input graphs to inter-

Yora Oracur! | TosHiki Sarron*? , KATSUHISA YAMANAKA™S | val graphs or AT-free graphs, then we would be able to find easily its chain-like structure
Suun Kumva*™ |, Yostio Okamoro*™® |, Hirotaka Ono*® (such as its interval representation or a dominating pair), and then from the chain-like
Yusur Uno*” and Koicar Yamazakr*® structure we might be able to compute the bandwidth. It had not been known, however,

whether the bandwidth can be computed for interval graphs in polynomiafingat
then it turned out that the decision problem can be solved in polynomial tim&¥fsee
Since interval graphs are AT-free graphs, it would be natural to ask whether or not the
bandwidth decision problem for AT-free graphs can be solved in polynomial time. Un-
fortunately, the bandwidth decision problem for AT-free graphs is NP-conififéte
The path-distance-width is a graph parameter to measure how close a graph is tblowever, it is known that for AT-free graphs, the bandwidth can be approximated within
a pati¥29, There are several other such graph parameters including pathwidth anda factor 2 inO(mn) time'¥, wherem andn denote the number of edges and the number
bandwidth. Roughly speaking, the classes of graphs of bounded path-distance-widthof vertices, respectively.
bounded bandwidth, and bounded pathwidth rehain-like structureslt is known that In a sense, bandwidth and path-distance-width have some common features. In fact,
for any connected graph, pathwidthbandwidth< 2 - path-distance-widf®2?. By this there is a similarity between the problem of computing the path-distance-width and the
relation, many useful properties for bounded pathwidth graphs and bounded bandwidtiproblem of computing the bandwidth: both problems do not admit any PTAS even for
graphs also hold for bounded path-distance-width graphs. There are other graph classteed'%. Hence, it would be reasonable to ask the computational complexity of comput-
which also have chain-like structures, such as interval graphs, AT-free graphk; and ing the path-distance-width for AT-free graphs. Unfortunately, as we will prove in this
cocomparability graphs. It is known that there are relationships among those graplpaper, the path-distance-width decision problem for AT-free graphs is also NP-complete.
More precisely, we will show that the problem is NP-complete for cobipartite graphs.
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1. Introduction
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AT-free graphs, which has a better running time and a better approximation ratio. We All-pairs shortest paths

also show that the problem is solvable for cochain graphs. The complexity for interval

graphs and proper interval graphs remains open.
2. Preliminaries

In this paper, graphs are finite, simple, and connected.

Graph

Let G be a graph. We denote B(G) andE(G) the vertex set and the edge seG)f
respectively. Thalistance between two verticesve V(G) in G, denoted byds(u, v),
is the length of a shortestv path inG. We define thelistance between a vertex subset
S C V(G) and a vertex \e V(G) in G asdg(S, V) = minys ds(u, v). ForS c V(G), we
define thediameter of S in Gs diang(S) = max,yes ds(U, V). Thediameter of a graph
G is defined as dian®) = diams(V(G)).

The (open) neighborhoodf a vertexv in G, denoted byNg(v), is the set of vertices
adjacent tov; that isNg(v) = {u | {u,v} € E(G)}. Theclosed neighborhoodf v in
G, denoted byNg(Vv), is the sef{v} U Ng(v). The(open) neighborhooof a vertex set
S C V(G) in G, denoted byNg(S), is the set of vertices not i and adjacent to some
vertexu € S; that iSNg(S) = Uyes Ng(V) \ S.

The compliment of a graph @ the graphG such that (G) = V(G) and two distinct
vertices are adjacent @ if and only if they are not adjacent {@.

Path-distance-width

A sequencel(s, Lo, ..., L;) of subsets of vertices isdistance structuref a graphG
if Uit Li = V(G) andL; = {ve V(G) | ds(v, L1) =i — 1} for each 1< i < t. EachL;
is called aleveland speciallyL; is called theinitial set The width of (4, L,,..., L),
denoted by pdy (G), is defined as maxi [Li|. Thepath-distance-widtiof G, denoted
by pdw(@G), is defined as migyv(g) pdws(G).

If the initial set of a distance structure Gfis a set consists of only one vertex, then
we say that it is aooted distance structuref G. Therooted path-distance-widtbf G,
denoted by rpdw), is the minimum width over all its rooted distance structures; that
is, rpdw@G) = minwey(g) pdw,,(G). Obviously, the rooted path-distance-width can be
computed in polynomial time (see Lemma 2.1 for more details).

Theall-pairs shortest paths probleis literally the problem of finding a shortest path
between each pair of vertices in a graph withrertices andn edges. In some cases,
all-pairs distances are needed instead of actual shortest paths. We consider this variant
here; that is, we want to computig(u, v) for all pairsu,v € V(G). Clearly, by run-
ning breadth-first search from every vertex, the problem can be solv@¢hin) time.

The problem has been studied extensively, and there are some nontrivial improvements
(se@® and the references therein). Seldgbroved that the problem can be solved in
O(M(n) log n) time by using fast matrix multiplication, wheh(n) is the time complex-

ity to multiply two nxn matrices. The current fastest algorithm for matrix multiplication

by Coppersmith and Winogr@dmplies that Seidel's algorithm runs @(n?>376) time.
Recently, Chath has presented a new algorithm for the all-pairs shortest path problem
that runs ino(mn) time.

For a graphG with n vertices andn edges, let apdf, n) be the time complexity for
computing the all-pairs distances and outputting the distance for each vertex pair. We
can use any one of the above algorithms for the all-pairs distances. Note thaf@p€(

Q(n?) since we must output the distances for@)lpairs.
Lemma 2.1. The rooted path-distance-width of a connected graph G with n vertices
and m edges can be computed i(a@dfn, n)) time.

Proof. First, we computeals(u, V) for all pairsu,v € V(G) in O(apdf, n)) time. By
using the distance matrik, we can compute rpdv@) in O(n?) time. Since apdf, n) =
Q(n?), the total running time i©(apdfm, n)). m|

Graph Classes

An interval graphis a graph whose vertices can be mapped to distinct intervals in
the real line such that two vertices are adjacent in the graph if and only if their corre-
sponding intervals overlap. We call the set of intervals representing a graptearal
representatiorof the graph. An interval representationpi®per if no interval properly
contains other intervals in it. A graph igeoper interval graphif it has a proper interval
representation.

An independent set of three vertices is calledhateroidal tripleif every two of them
are connected by a path avoiding the neighborhood of the third. A gragétasoidal
triple-free (AT-freefor short), if it contains no asteroidal triple.
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A graphG is acomparability graphf there exists a linear orderingonV(G) such that

k-cocomparability (k > 2): 2k + 1

for any three vertices < v < w, {u, v} € E(G) and{v,w} € E(G) implies{u,w} € E(G). NP-hard
A graphG is acocomparability graphf G is the compliment of a comparability graph.

It is known thatG is a cocomparability graph if and only if it hascacomparability AT-free: 3

ordering that is, there exists a linear orderon V(G) such that for any three vertices Unknown

u<v<w,{uw}e E(G)implies{u,v} € E(G) or {v,w} € E(G).

Chang, Ho, and Kb generalized cocomparability graphskceocomparability graphs. Cocomparability: 3 AT-free n claw-free: 3 @
LetG be a graph, and lé&tbe a positive integer. K-cocomparability orderingk-CCPQ
of G is an ordering o’V(G) such that for any three vertices< v < w, dg(u,w) < k
impliesdg(u,Vv) < kordg(v,w) < k. A graph is &-cocomparability graplif it admits a
k-CCPO. Note that a 1-cocomparability ordering is just a cocomparability ordering.

A graphG = (U,V;E) is a cobipartite graphif (U,V) is a nonempty partition of Proper interval: 2 Cobipartite: 2
V(G) and bothU andV induce cliques. Thus a cobipartite graph is the complement of Subclass: approx. ratio
a bipartite graph. This implies that cobipartite graphs are cocomparability graphs, since
bipartite graphs are comparability graphs. A cobipartite gkaph(X, Y; E) is acochain
graphif the elements oiX andY can be ordered ag, X, ..., Xx; andyi, Yo, ..., Vv
respectively, so thallg[x1] € Ng[Xx2] € -+ € Ng[Xx] and Ng[y1] € Ng[y2] € --- C
Na[yv]-

It is known that cochain graphs proper interval graphs interval graphs- cocom- NP-complete problem.
parability graphs- AT-free graphsc 2-cocomparability graphs, arkdcocomparability Problem: Ser Cover® [SP5] _ . -
graphsc (k + 1)-cocomparability graphs for arly(se@®). It is easy to see that any ~ Instance: SetC = {cy,..., ), family " = {Fy, ..., Fm) C 27, positive integeh < n.

. . . Question: Is thereX € ¥ such that Jg .x Fi = C and|X| = h?

graphG is akg-cocomparability graph for some large enough< diam@G). ) ' . .

Summary of results In any instance of & Cover, we can assume without loss of generality that for every

. . . . . . ¢ € C, there is a subsétj € ¥ such that; € Fj, since otherwise the instance has no
In this paper, we present some algorithms approximating the path-distance-width for i : S
. . . cpver. We also assunme> 1 andh < m, since otherwise the problem is trivial.
k-cocomparability graphs and their subclasses such as AT-free graphs and proper interva i . .
. o g Our intermediate problem is as follows.
graphs. Every algorithm has a constant approximation ratiagif fixed constant), and
inO(apdn. n)) or O(m+ n) time. SeeFig, 1 Problem: ParmiaL Cover IN Bigrapus (PCB)

runs inO(apdfn. : gL Instance: Bipartite graphG = (U, V; E), positive integek < |V|.
Question: Is thereY c U such thatNg(Y)| = k?

Kobayashi® pointed out that PCB is NP-complete. Here, we provide a full proof.

Before we present approximation algorithms, we show that the problem for determin-_Lemma 3.1. PCB is NP-complete even|\f| > k + 2 and G has no isolated vertex.
ing the path-distance width is NP-hard even for a very restricted graph class, the class of
cobipartite graphs. To this end, we first prove the NP-completeness of an intermediat®roof. From an instanceQ, #,h) of Ser Cover, we first construct a bipartite graph
problem, by constructing a polynomial time reduction from the following well-known G = (U,V;E) as follows:U = {u,...,Un}, V = {v1,..., W}, andE = {{u;, v;} | ¢j € Fi}.

élnterval: 3

Superclass. approx. ratio

Fig.1 Summary of results.

3. NP-hardness for cobipartite graphs
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The vertex sett) andV corresponds to the famil§ and the ground s&t, respectively. U’ [ Ueeee ag T QQQO’PJ
The edge seE represents the containment relation between the elemefsantl the aiiva
subsets inF. Next, by addingh + 1 pendant vertices to each € U, we construct a
bipartite graphH = (U, V’; E’). Clearly, this construction can be done in polynomial
time. Note thatV’| = n+ (n+ 1)m> n+ (n+ 1)h + 2 sincen > 1 andm > h. Also note
thatH has no isolated vertex. \4 [\/6 ede e 6 sie P S 'Y, b j
Letk = n+ (n+ 1)h. We shall prove tha has a coveX C ¥ of size|X| = hif and
only if there is a se¥ C U such thatNy(Y)| = k.
(=) Assume that there X C ¥ such that g .x Fi = C and|X| = h. We setY =

=@
@
@
@

Fig.2 Cobipartite graptd = (U’,V’; E’).

{ui | Fi € X}. SinceXis a cover ofC, [Ny (Y)NV| = |V| = n. SincelNy(Y)\V| = (n+1)h, SinceG has no isolated vertex, dial] = 2. It is easy to see thflt’| = 2|U| + 2|V| -
INHY) = INH(Y) O V] + INk(Y)\ V| =n+ (n+ 1h =k k-1andV’| = [V| + U] + k+ 1. HenceV(H)| = |U’| + [V’| = 3(U| + [V]). We shall
( <) Assume that there exis¥6C U such thatNy(Y)| = k. We first proveY| = h. show that G, k) is a yes instance of PCB if and only if pdW) = |U| + |V|. Note that
If Y] = h+ 1, then|Ng(Y)| = INu()\ V| = (n+ 1)(h+ 1) > k. If [Y] < h-1, then pdw(H) > |[V(H)|/(diam#H) + 1) = U] + |V].
INHW)I < IVI+ INHI)I\ V< n+ (n+1)(h-1) < k. Thus|Y| = h. Now we have (=) Assume that there exis¥sC U such thafNg(Y)| = k. LetX = YU T’, where
INH(Y) N V] =Nk = INt()\VI=k=(n+1h=n. T’ is any subset of such thaiT’| = |U| + |[V| = |Y|. Let (L = X, L, L3) be the level
Therefore, if we seK = {F; | u; € Y}, then|X| = handX covers the ground sél. structure with the initial seX. Clearly,|L;| = |X| = |U| + |V|. The size of the second
From the above observation the problem is NP-hard. Since the problem clearly belevel is
longs to NP, the lemma holds. O Lol = U\ X+ IN(Y) N V| + INH(T) N V| = U] + |V]. Q)

This also implieglLs| = [V(H)| — [L1| — |L2| = |U| + |V|. Therefore, pdw(H) = U] + |V].

( &) Assume that pdw(H) = |U| + |V| for someX < V(H). If X intersects both
U’ andV’, then the distance structure has at most two levels, and thug(pigw>
[V(H)|/2 > |U] + |V|. Hence X is included in eithet)’ or V’. SupposeX C V’. Since
Np(T) NV’ = {b}, all vertices inT belong to the same level. Singé > k + 2, this
implies pdw,(H) > |T| = [U| + 2|V| — k-2 > |U| + |V], which is a contradiction. Thus
we can conclude that c U’.

Proof. Clearly, the problem is in NP. Thus we prove the NP-hardness. From an instance Let (L; = X, Ly, L3) be the level structure with the initial s&& Since|V(H)| =
(G = (U,V; E),K) of PCB satisfying the conditions in Lemma 3.1, we construct a co- 3(U| + |V|) and pdw(H) = |U| + |V|, each leveL; has sizdL;| = |[U| + |V|. If a € X,
bipartite graphH = (U’,V’; E’) as follows (sedrig.2). Let S andT be two sets of thenS C L,. This implies|Ls| < [V’ \ S| = |V| + 1 < |U] + |V|, a contradiction. Hence,
sizes|S| = |U| + kand|T| = |U| + 2V| - k - 2, whereS, T, U, andV are pairwise XCUUT. LetY = XnU andT’ = XN T. Clearly,INy(T") nV’| = |{b}| = 1. Since

Now we prove the NP-hardness of the path-distance-width problem for cobipartite
graphs, by constructing a polynomial time reduction from PCB. We actually prove that
deciding whether pdv@®) = [V(G)|/3 is NP-complete for cobipartite graphs with diam-
eter 2.

Theorem 3.2. Given cobipartite graph H witdiam{) = 2, itis NP-complete to decide
whethempdwH) = [V(H)|/3.

non-intersecting. We set the vertex setéJas- UU T U {a} andV’ = VUSU{b}, where IX| = |U| + V]|, we havgU’ \ X| = |U| + |V| — k- 1. Since Eq. (1) also holds here, we

a andb are new vertices. I, bothU’ andV’ induce cliques. Every edge @ is also have|Ny (Y) N V’| = k. This impliesNg(Y) = k, and completes the proof. m]

in H. Additionally, a is adjacent to all vertices i, andb is adjacent to all vertices in

T. This construction can be done in polynomial time. Here, we note that there is a trivial factor 2 approximation algorithm for cobipartite
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graphs. It is easy to see that a connected cobipartite @eapds diameter 3, and thus  distance structure of lecocomparability graph. Thus we have an approximation guar-

pdw(G) = [[V(G)|/4]. For anyS ¢ V(G) with |S| = [[V(G)|/2], pdws(G) = TIV(G)I/2]. antee as follows.
Therefore, pdw(G) < [IV(G)I/2] < 2[|V(G)|/4] < 2pdw(G). Lemma 4.3. Let G be a connected k-cocomparability graph, and x be the first vertex
Proposition 3.3. For a cobipartite graph with n vertices and m edges, the path-distance- in a k-CCPO of G. Le{L4,..., L) be the distance structure of G with the initial set
width can be approximated within a fact@in O(m+ n) time. L; = {x}. Thendiams(L;) < 2k for all i.

4. Approximating the path-distance-width Proof. Lety,ze L; for somei. Without loss of generality, we may assume thaty < z

In this section, we present our main results. Namely, approximation algorithms forin thek-CCPO. We show thals(y, 2) < 2k. Obviously,dg(x y) = ds(x.2). LetP be a
' P ] Y, app 9 shortestx—z path inG. Sincedg(x,y) = ds(X, 2), y is not inP. Clearly, there exists an

the path-dlstance-W|dth. Qur algorithms are ba§eq on a common .|dea.: bounding th%dge{v, W} in P such thaw < y < w. Sinceds(v,w) = 1 < k, we haveda(v,y) < k or
diameter of each level in distance structures. This yields the approximation guaranteesa (W) < k. If da(v.y) < k, thenda(x.y) < da(x.V) + k andda(y. 2) < da(v, 2) + k. This
The algorithms also have a special feature: we use rooted distance structures only. Thus. W=k Tehy =k Gey) = Celx el 2) = Gelvs '

. . . N implies
our algorithms are very simple, and clearly run in polynomial time.
We first establish a general lower bound, which will be the main tool to guarantee the
approximation ratios.

ds(x,Y) + ds(Y, 2) < ds(X, V) + ds(V, 2 + 2k = ds(X, 2) + 2k.
Thends(y, 2) < 2k, sinceds(X,y) = ds(X,2). The case ofig(y,w) < kis almost the

" . same.

Proposition 4.1. Let(Ly,..., L) be a distance structure of G. Ifail; and ve L, then .

des(u,v) > |i — j. Combining Lemmas 2.1, 4.2, and 4.3, we have the following general approximation
result.

Proof. Assumei < j without loss of generality. Letpo, ps, ..., pr) be a shortest—v
path, wherepy = u andp, = v. From the definition of distance structurespif € L,
thenpy.1 € Lh-1 U Lh U Lpsa. Sincepg € L, pe € Lj, andi < j, we need at leagt— i
indicesk such thatpy € Ly, andpy;1 € Lpyg. Thust > j —i. m]

Theorem 4.4. For a connected k-cocomparability graph G with n vertices and m edges,
the path-distance-width can be approximated within a fa2kor 1 in O(apdfm, n)) time.

4.2 Approximating the path-distance-width for AT-free graphs

Chang, Ho, and Kb showed that AT-free graphs are 2-cocomparability graphs.
Lemma 4.2. Let SC V(G). Then pdw(G) > |S|/(dians(S) + 1). Hence, by Theorem 4.4, the path-distance-width of a connected AT-free graph with
vertices andn edges can be approximated within a factor ®i@pdfmn, n)) time. The
aim of this subsection is to provide a better approximation algorithm for AT-free graphs
by using some properties of AT-free graphs. More precisely, we pres@inanan) time

Proof. Let (Ly,...,L) be an optimal distance structure Gf that is, pdw,(G) =
pdw(G). Denote byl the set of the indices of levels having non-empty intersec-

tion with .S; tha_t Is,1 = 1 € {1""’.t} LN S * 0}'. By Propo_smon 4.1, 3-approximation algorithm for AT-free graphs.d®minating pair(u, v) of a graphG is
max| —min < diam(S). Thus, the vertices @ are included in at most diagtS) + 1 a pair of verticesl, v € V(G) such that for any—v pathP in G, V(P) is a dominating set
levels{Lmini, Lmini+1, - - - » Lmax1 }. This implies that there exists a leugl i € |, such that P ’ ¥vp ' 9

of V(G); that is, each vertex € V(G) \ V(P) has a neighbor iv(P).

Theorem 4.5("®). Any connected AT-free graph has a dominating pair. A dominating
pair of a connected AT-free graph can be found in linear time.

Lemma 4.6. Let (u,v) be a dominating pair of an AT-free graph G, and (& =

4.1 Approximating the path-distance-width for k-cocomparability graphs {u},..., L) be the distance structure rooted at the vertex u. Then, for afigin(L;) <

By the property ok-CCPO, we are able to bound the diameter of each level in some 2.

ILi N S| > |S|/(diams(S) + 1). Hence, we have
pdw(G) = pdw (G) > [Li| > |Li N S| > [S|/(diams(S) + 1),
as required. m|
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Theorem 4.7. For a connected AT-free graph with n vertices and m edges, the path-

pj € L; for all j. From the definition of distance structures and dominating pairs, a distance-width can be approximated within a factor 3 G- n) time.

vertex in a level; must be adjacent to at least oneppf;, p;, andp;;1, and cannot be
adjacent to any otheyj, j ¢ {i—1,i,i+1}. Letx,y € L; for somei. We assum; ¢ {X, Y}
since otherwisels(x,y) < 2. Let (@1,...,q) is a shortest—x path, wherey; = u and
0 = x. Obviously,q; € L; for all j. We now have three cases ($&g. 3).

[Case 1]{{X, pir1}. Y, Pira}l N E(G) # 0: By symmetry, we may assunig, pi,1} =
{gi, piz1} € E(G). Then, €,...,q, Pi+1,---» Pr) is au-v path. Hencey has a neighbor
in {0i-1, G, Pi+1}. Sinceqi = xand{qgi-1, 4}, (G, Pi+1} € E(G), we haveds(x,y) < 2.

[Case 2]{{x, pi},{y. pi}} NE(G) # 0: By symmetry, we may assunfe, pi} = {qj, pi} €
E(G). Then, €1,....q. pi, Pi+1.- - -» Pe) IS @ u~v path. Hencey has a neighbor in
{gi—1, 9, Pi» Piz1}- By Case 1, if{y, pis1} € E(G), thendg(x,y) < 2. Otherwisey
has a neighbor ifgi_1,q, pi}. Sinceq = x and{gi_1, gi}, {qi, pi} € E(G), we have
ds(x.y) < 2.

[Case 3]{{x, pi-1},{Y, pi-1}} N E(G) # 0: By Cases 1 and 2, it ¢ices to consider
the case ofx, pi}, (X, Pi+1}s {Ys Pi}- 1Y Pi+1} € E(G). Clearly, this assumption implies

{X, pi-1},{y. pi-1} € E(G), and henceds(x.y) < 2. o
UT\ UT

Pi-1 Gi-1 Xi-1 Pi-1 Xi-1
Pi oy X Pig x y X

Pi+1 g™ ' Xi+1 Pi+1 Xi+1
v‘ Casel v‘ Case 2 v‘ Case3

Fig.3 The cases in the proof of Lemma 4.6.

We now show that the factor 3 is the best possible even for interval graphs (thus for
AT-free graphs) if we use rooted distance structures.
Proposition 4.8. The approximation ratio 3 of the path-distance-width for interval
graphs cannot be improved if we select only one vertex as the initial set.

Proof. Thefriendship graph F is the graph with/(Fg) = {c} U {u,vi | 1 <i < d} and
E(Fq) = {{ui,vi} | 1 <i <d}U{{c,w} | we V(Fg) \ {c}}. For anyd, F4 is an interval
graph (sedig. 4).

Let c be the center oFzq, and letw € V(Fsq) \ {c}. Clearly, pdw,(Fss) = 6d and
pdw,,(Fsq) = 6d — 3. On the other hand, B = {u; | 1 <i < 2d}, then
pdwg(Faq) = max{l{u |1 <i<2d),{ctu{vi|1<i<2d},l{u,vi|2d+1<i<3d}f}

=maxX2d,2d + 1,2d} =2d + 1.

Thus, if we use only one vertex &f;y as an initial set, then the approximation ratio is
at least (6 — 3)/(2d + 1) = 3—6/(2d + 1). Since 6(2d + 1) can be arbitrarily small by

increasingd, the proposition holds. m]
up W1
Vg e uo uq uo u3 ug
V1 Vo V3 Vg
Ug Vo Cc
V3 u3

Fig.4 Friendship graplfr4 and its interval representation.

4.3 Approximating the path-distance-width for proper interval graphs
Since proper interval graphs are AT-free, the result in the previous section provides

Theorem 4.5 and Lemmas 4.2 and 4.6 imply the following better approximation resultan approximation algorithm for proper interval graphs as well. Fortunately, if we use

for AT-free graphs.

proper interval representations, then we get a better approximation ratio.

© 2011 Information Processing Society of Japan



Vol.2011-AL-134 No.1

2011/3/7
IPSJ SIG Technical Report
Corneil, Kim, Natarajan, Olariu, and Spra§ufProposition 2.1(2)] showed that in min{pdw(G, X), pdw(G, Y)} < [IV(G)|/2]. Therefore,
the rooted distance structure of a proper interval graphs rooted at the left most interval, pdw(G) = min{pdw(G, X), pdw(G, Y)} .
every level is a clique. By symmetry, it is sfficient to show that pdv@&, X) can be computed i®(m+ n) time.
Proposition 4.9(9). Let G be a connected proper interval graph, and let ¥(G) be Let X = {Xq,...,Xp} andNg[x1] € Ng[x] € --- € Ng[xp]. By Theorem 5.1, such
the vertex with the left most starting point in some proper interval representation of G. an ordering can be computed in linear time. We also compute in linear Xmgy|,
Let L be the set of vertices of distance i from u; that is=L{v € V(G) | dg(u, V) = i}. and degreg(v) for eachv € V(G). LetYy = {y € Y | Ng(y) n X = 0}. Clearly,
Then, for any idiams(L;) = 1if L; # 0. Yo = {y € Y | degreg(y) = |Y| — 1}, and thugYy| can be obtained in linear time.
It is known that a proper interval representation of a proper interval graph can be To compute pdwg, X), we define pdwG, X, i) as follows:
computed in linear time (see €. Thus the left most vertexin the above proposition pdw(@G, X,i) = min{pdws(G) | S € X, i = maxj | X; € S}}.
and the rooted distance structure rooted a&in be found in linear time. Therefore, by ~ Forx € X, we denoteNg(x)NY by NX(x). Itis easy to see thall(x)| = degreg(x)—
Lemma 4.2, the next theorem holds. (IXI=1). Ifi = maxj | x; € S} for someS C X, thenNg(x) NY = Ng(S) n
Theorem 4.10. For a connected proper interval graph G with n vertices and m edges, Y sinceNg[xj] € Ng[x] for all j < i. Note thatNi(x) may be empty. We shall
the path-distance-width can be approximated within a factor 2(im® n) time. prove that pdw@, X,i) can be computed in constant time by usiXg |Y], Y|, and
Since the complete grapK,, is a proper interval graph, pd¥g,) = n, and INE()I. This will imply pdw(G, X) can be computed in linear time, since p@X) =
rpdw(Kzn) = 2n - 1, we can conclude that the factor 2 in the above theorem cannot minii<p pdw(@G, X i).
be improved by any algorithm using rooted distance structures only. LetS C {x1,..., X} andx € S, and letD be the distance structure with the initial set
Proposition 4.11. The approximation ratio 2 of the path-distance-width for proper in- S. We have the following three cases ($ég. 5):
terval graphs cannot be improved if we select only one vertex as the initial set. (S, (X\S)UNZ(), YANL()) if NE(x) # 0,
5. Linear-time algorithm for cochain graphs D=1( X\S, V) if N&(x) = 0 andY, = 0,

) ) ) ) ) ) ) (S, X\'S, Y\ Yy, Yo) if Né(xi) =0 andYy # 0.
In this section, we present a linear-time algorithm to determine the path-distance, any case, the average size of the first and second leve¥$4gN(x)])/2. Therefore,
width of cochain graphs. Recall that every cochain graph is a proper interval graph. by settingS| = min{i, r(|X|+|Né(>q)|)/2]}, we can minimize the dierence. One possible

11) X . ) : R
Theorem 5.1( )_. Given cochain graph G Wlt.h n vertices gnq.m edges, its b|part|t|on_ solution isS = {X} U {xv...., Xs_1}. Since pdw(G) can be computed in constant time
(X,Y) and orderings on X and Y (which satisfies the definition) can be computed inith 1SI, (X1, Y1, [Yol, anleg(Xa)I, the theorem holds. Observe that, in any case, the

O(m+ ) time. ) _ ) ) _ location of the vertices itY is solely determined by;. Thus the only thing we can do
Theorem 5.2. The path-distance-width of a connected cochain graph G with n vertices

i ) is to select the size @ arbitrarily from{d,...,i}. Obviously, minimizing the dference
and m edges can be computed i(nGr n) time. of sizes between the first and second levels is the best solution here, since the vertices in
X lie in these levels. O

Proof. AssumeG is a cochain graph with bipartitiorX(Y). By Theorem 5.1, such
a bipartition can be computed @(m + n) time. For convenience, let pd®(X) =

min{pdwg(G) | S ¢ X} and pdwG,Y) = minfpdwg(G) | S € Y} If S C We have considered the problem of determining the path-distance-width of graphs in
V(G) intersects bothX and Y, then pdw(G) > [IV(G)|/2]. It is easy to see that important graph classes. It turned out that the problem is NP-hard even for cobipartite

6. Concluding remarks
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