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A scan-path test is one of the most important testing techniques, but it can
be used as a side-channel attack against a cryptography circuit. Scan-based
attacks are techniques to decipher a secret key using scanned data obtained
from a cryptography circuit. Public-key cryptography, such as RSA and elliptic
curve cryptosystem (ECC), is extensively used but conventional scan-based
attacks cannot be applied to it, because it has a complicated algorithm as well
as a complicated architecture. This paper proposes a scan-based attack which
enables us to decipher a secret key in ECC. The proposed method is based on
detecting intermediate values calculated in ECC. We focus on a 1-bit sequence
which is specific to some intermediate values. By monitoring the 1-bit sequence
in the scan path, we can find out the register position specific to the intermediate
value in it and we can know whether this intermediate value is calculated or
not in the target ECC circuit. By using several intermediate values, we can
decipher a secret key. The experimental results demonstrate that a secret key
in a practical ECC circuit can be deciphered using 29 points over the elliptic
curve E within 40 seconds.

1. Introduction

Smart cards used as credit cards and banking cards contain an LSI chip to
achieve secure communication and reject counterfeit cards. The LSI chip usually
includes cryptography circuits and encrypt/decrypt important data such as ID
numbers and electronic money information. However, there is a threat that a
secret key may be deciphered in the cryptography LSI chip. Scan-based attack is
a method to retrieve a secret key from the scanned data obtained from the scan
path in the cryptography LSI chip. Yang, et al. first showed a scan-based attack
against DES in 2004 and deciphered secret keys in DES 1). The scan-based attack
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against AES was also presented in 2006 2) and 2009 3).
Symmetric-key cryptosystems such as DES and AES are very popular and

widely used. They make use of the same secret key in encryption and decryption.
However, it may be difficult to securely share the same secret key, such as in
communicating on the Internet. Public-key cryptosystems, on the other hand,
make use of different keys to encrypt and decrypt so that it solves the key sharing
problem.

An elliptic curve cryptosystem (ECC) 4),5) is well known as a public-key cryp-
tosystem with low-cost and high throughput. Finite field arithmetic is used in
ECC where field multiplication requires most of the time in decryption and en-
cryption and thus many research have been done in field multiplication 6)–10). Also
many research on an ECC circuit implementation are reported as in Refs. 8)–16).
For instance, architectures including memories storing all ECC parameters and
field multipliers which can execute the arbitrary polynomial reduction are pro-
posed in Refs. 8), 10) for high-throughput ECC applications. On the contrary,
architectures including minimal memories storing fixed polynomial reduction and
a field-dedicated multiplier are proposed in Refs. 9), 15) for low-area and low-cost
ECC applications.

Deciphering a secret key in a security LSI chip by using a scan path, we have
to find out positions of registers storing the secret key in the scan path. There
are, however, many architectures and implementations as above in ECC and
then there can be many scan-path structures as well. This means that it is very
difficult to find out positions of registers storing a secret key in a scan path in
the ECC circuit. In other words, it is very difficult to retrieve a secret key from
the scanned data. For that reason, scan-based attacks against symmetric-key
cryptosystem succeed as reported in Refs. 1)–3), but a scan-based attack against
public-key cryptosystem such as ECC has not been proposed yet.

In this paper, we propose a scan-based attack against ECC which is almost
independent of a scan-path structure �1. The proposed method is based on de-
tecting intermediate values calculated in an ECC circuit. We focus on a 1-bit
sequence which is specific to some intermediate values. Then we check whether

�1 The preliminary version of this paper appeared in Ref. 17).
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48 Scan Vulnerability in Elliptic Curve Cryptosystems

data dependent on this intermediate value is included in the scanned data. As
long as a scan path is implemented on the ECC circuit and it includes at least
1-bit of each intermediate value, we can decipher a secret key in the target ECC
circuit even if we do not know a scan path structure. The proposed method
reveals the vulnerability of a scan path in the ECC circuit.

The purpose of our proposed method is, not to break-through secure scan ar-
chitecture but to decipher a secret key using scanned data in an ECC LSI with
as few limitations as possible. In fact, our scan-based attack method without
any modification might not work against ECC LSIs using some secure scan ar-
chitecture.

This paper is organized as follows: Section 2 briefly explains an elliptic curve
cryptosystem; Section 3 describes an intermediate-value-analysis attack against
an ECC circuit and points out the critical problem when applying it to a scan-
based attack. Section 4 proposes our scan-based attacking method against the
ECC circuit based on the discussion on Section 3; Section 5 demonstrates exper-
iments on a practical ECC architecture; and Section 6 gives several concluding
remarks.

2. Elliptic Curve Cryptosystem

An elliptic curve cryptosystem makes use of the difficulty in solving the discrete
logarithm problem defined in the elliptic curve additive group. This problem is
called the elliptic curve discrete logarithm problem (ECDLP). The 160-bit key
in ECC provides the equivalent security level as the 1024-bit key in RSA 18). An
ECC circuit can have higher throughput and smaller area than an RSA circuit.
This section briefly explains ECC 4),5).

2.1 Elliptic Curve Arithmetic
An elliptic curve E with non-supersingular over a field F2m is defined by Eq. (1).

E : y2 + xy = x3 + ax2 + b. (1)
Let E(F2m) be a group of points on the elliptic curve E. E(F2m) has the four
properties shown below and forms a group.
( 1 ) Identity. ∞ ∈ E(F2m) is called the identity and it satisfies P + ∞ =

∞ + P = P for all P ∈ E(F2m).
( 2 ) Negatives. If P = (x, y) ∈ E(F2m), then (x, y) + (x, x + y) = ∞. The point

Fig. 1 Point Addition
P1 + P2 = Q.

Fig. 2 Point Doubling
2P = Q.

(x, x + y) is denoted by −P and is called the negative of P .
( 3 ) Point addition. Let P1 = (x1, y1) ∈ E(F2m) and P2 = (x2, y2) ∈ E(F2m),

where P1 �= ±P2. Then P1 + P2 = (x3, y3) = Q ∈ E(F2m), where
x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

with λ = (y1 + y2) / (x1 + x2). Figure 1 shows the point addition.
( 4 ) Point doubling. Let P = (x1, y1) ∈ E(F2m), where P �= −P . Then 2P =

(x3, y3) = Q ∈ E(F2m) where

x3 = λ2 + λ + a = x2
1 +

b

x2
1

y3 = x2
1 + λx3 + x3

with λ = x1 + y1/x1. Figure 2 shows the point doubling.
2.2 Point Multiplication
Let k be an m-bit integer and denoted as k = km−12m−1 + km−22m−2 + · · · +

k12 + k0. A point multiplication is defined by computing kP with k and P ∈
E(F2m). The point multiplication is calculated in polynomial time by using
point addition and point doubling. Given P , Q, where Q is a result of the point
multiplication with k and P . To determine an integer k satisfying the equation
[kP ≡ Q mod f(z)] �1 is an elliptic curve discrete logarithm problem (ECDLP).

�1 f(z) is an irreducible polynomial.
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Solving the elliptic curve discrete logarithm problem requires exponential time. If
the integer k is large enough, the point multiplication Q = kP can be calculated
easily. However determining k from the point P and Q ∈ E(F2m) requires very
long time. Q can be used as a public key and k can be used as a secret key in
ECC.

The point multiplication kP dominates the execution time of ECC so that
several efficient algorithms have been proposed. Montgomery method 19) is one
of point multiplication algorithms. This algorithm has two advantages. One is
that it does not require any extra storage with a low calculation time. The other
is that the same operations are performed in every iteration of the main loop,
therefore it has a resistance against power analysis attacks 20).

The Montgomery method is first proposed in Ref. 19) and shown in Algo-
rithm 1. It converts affine coordinate (x, y) into projective coordinates (X,Y,Z)
to reduce total calculation amount. Algorithms in Refs. 21)–24) are also based on
the original Montgomery method. In this algorithm, the secret key k is written
as 2m−1 + km−22m−2 + · · · + k12 + k0. km−1 will be always one to achieve the
same number of iterations in the main loop.

3. Attack Against Elliptic Curve Cryptosystem

A scan path connects registers in an circuit serially so that a tester can observe
the register values inside the circuit easily. The scan path is widely used in recent
circuit implementations due to its testability and easiness.

Scan path test needs to replace standard flip-flops (FFs) with scan flip-flops
(SFFs). An SFF usually consists of an FF and a multiplexer. The multiplexer
output pin is connected to the FF input pin. It selects one from its two inputs.

Fig. 3 Scan path model.

Fig. 4 System mode (Control = 0).

Fig. 5 Test mode (Control = 1).

When the select line of the multiplexer is 0, it outputs the combinational circuits
output. When the select line of the multiplexer is 1, it outputs the SFF output.
A scan path model is shown in Fig. 3. Control pin is used to choose between
the system mode or the test mode. While Control pin is 0, normal operation is
performed in the system mode as shown in Fig. 4. While Control pin is 1, SFFs
are connected serially and we obtain scanned data stored in each FF from the
scan out as shown in Fig. 5. By using a scan-in pin in the test mode, a test
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pattern is inputted to the SFFs.
The purpose of a scan-based attack is to decipher a secret key from scanned

data in an ECC circuit. Scan-based attack here requires several assumptions as
in the previous research in Refs. 1)–3) which are summarized as shown below:
( 1 ) Attackers can input an arbitrary point P = (x, y) ∈ E(F2m) into a target

ECC circuit.
( 2 ) Attackers can obtain scanned data from the target circuit.
In this section, we explain the scan-based attack against ECC.

3.1 Deciphering a Secret Key Using Intermediate Values During the
Point Multiplication

In order to decipher a secret key k, we have to solve the discrete logarithm
problem in the elliptic curve additive group. If the bit length of secret key
k is more than 160, it is impossible to solve this problem within realistic time.
However, if we know all the “intermediate values” during the point multiplication
in Algorithm 1, we can decipher a secret key k in a polynomial time 25).

Let k = km−12m−1+km−22m−2+ · · ·+k12+k0. Assume that all the intermedi-
ate values in Algorithm 1 are obtained. Let Q0(i) and Q1(i) be the intermediate
values of Q0 and Q1 at the end of loop i in Algorithm 1, respectively.

Assume also that km−1, km−2, · · · , ki+1 are already deciphered. An attacker
tries to reveal the next bit ki. In this case, if and only if ki = 0, either Q0(i− 1)
or Q1(i − 1) is equal to Eq. (2) below:⎛

⎝
m−1∑
j=i

kj2j−i+1 + 1

⎞
⎠ P. (2)

Similarly, if and only if ki = 1, either Q0(i − 1) or Q1(i − 1) is equal to Eq. (3)
below:⎛

⎝
m−1∑
j=i

kj2j−i+1 + 3

⎞
⎠ P. (3)

In Ref. 25), differential power analysis attack is proposed based on the above
ECC properties. Notice that, Q0(i − 1) �= Q1(i − 1) for any 1 ≤ i ≤ m − 1 and
that Q0(i − 1) �= Q0(j − 1) and Q1(i − 1) �= Q1(j − 1) for 1 ≤ i, j ≤ m − 1 and
i �= j.

Table 1 Intermediate values at the end of i-th loop of Algorithm 1 with input P and
k = 1010.

i Q0 Q1

3 P 2P
2 2P 3P
1 5P 6P
0 10P ∗1 11P

*1: The result of the point multiplication.

Based on the above discussion, we employ V (i) defined by Eq. (4) as a selective
function:

V (i) =
m−1∑
j=i

kj2j−i+1 + 1. (4)

When using the selective function above, we have to know km−1, km−2, · · · , ki+1.
In addition to that, we assume that ki = 0. V (i) �= V (j) always holds true
for i �= j for 1 ≤ i, j ≤ m − 1. Given a point P over the elliptic curve E and
km−1, km−2, · · · , ki+1, we assume that ki = 0 and check whether V (i)P appears
somewhere in intermediate values. If it appears in them, we determine ki as zero.
If not, we determine ki as one.

Finally, the LSB of a secret key k is determined by using the final point multi-
plication result. Since a point multiplication result Q = kP is a public key itself,
it must be obtained easily.

Example 1 Let us consider that the 4-bit secret key k = 1010 = 10102, i.e.,
k3 = 1, k2 = 0, k1 = 1, k0 = 0, and m = 4 but assume that we do not know k

except for its bit length. The intermediate values Q0(i) and Q1(i) in Algorithm 1
are summarized in Table 1.
Now we try to decipher the 4-bit secret key k using intermediate values. Since
we know that k has four bits, k can be written as k = xxxx, where x shows the
unknown bit. In Algorithm 1, MSB of k is defined by one. Then k = 1xxx.
Next we try to decipher the second bit k2 (i = 2) of k. The MSB of k is one
by definition (k3 = 1). We assume here that k2 = 0. Then V (1) is calculated
as V (1) = 5. Since 5P appears in Table 1, then k2 is deciphered as zero, i.e.,
k = 10xx.
After that we try to decipher the third bit k1 (i = 1) of k. We have already
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known that k3 = 1 and k2 = 0. We assume here that k1 = 0. V (0) is calculated
as V (0) = 9. Since 9P does not appear in Table 1, then k1 is deciphered as one,
i.e., k = 101x.
Finally, we can have the point multiplication result 10P as in Table 1. If k =
1010, then kP = 10P . If k = 1011, then kP = 11P . Since the result is 10P ,
then we can have k = 1010.

3.2 Problems to Decipher a Secret Key Using a Scan Path
If we decipher an m-bit secret key using an exhaustive search, we have to try 2m

possible values to do it. On the other hand, the method explained in Section 3.1
deciphers a secret key one-bit by one-bit from MSB to LSB. It tries at most 2m

possible values to decipher an m-bit secret key. Further, the method just checks
whether V (i)P is in intermediate values of Algorithm 1.

In order to apply this method to a scan-based attack, we have to know which
registers store intermediate values, i.e., we have to know correspondence between
scanned data and (Q0, Q1).

However, a scan path is usually designed automatically by CAD tools so that
nearby registers are connected together to shorten the scan path length. Only
designers can know the correspondence between scanned data and registers and
thus retrieved scanned data can be considered to be “random” for attackers.
Therefore, it is very difficult to find out the values of V (i)P in scanned data
for attackers. As indicated before, an ECC circuit have very complicated archi-
tecture, its scan path can include too many registers other than those storing
intermediate values.

We have to find out only V (i)P somehow in the scanned data to decipher a
secret key k using the method in Section 3.1.

4. Analysis Scanned Data Obtained from an ECC Circuit

In order to solve the problem that attackers do not know the correspondence
between registers of the scanned data and ones storing intermediate values during
point multiplication, we focus on the general property on a scan path below:

Property 1 A bit position of a particular register r in a scanned data when
giving one input data is exactly the same as that when giving another input data.
This property is clearly true, since a scan path is fixed in an LSI chip and the

order of connected registers in its scan path is unchanged.
If we execute point multiplication for each of n points on an ECC circuit, a bit

pattern of a particular bit position in scanned data for these n points gives n-bit
data. Based on the above property, this n-bit data also may give a bit pattern of
a particular bit in some intermediate values when we give each of these n points
to the ECC circuit.

By using the same n points we can calculate V (i)P from km−2 down to k1 of
the secret key k. By picking up a particular bit (LSB, for example) in each of
V (i)P values for n points, we also have an n-bit data. If n is large enough, this
n-bit data gives information completely unique to V (i)P . We can use this n-bit
data as a discriminator Di to V (i)P in scanned data.

Our main idea in this section is that we find out a discriminator Di to V (i)P
in scanned data to decipher the secret key k from km−2 down to k1. If an n-bit
discriminator Di appears in the scanned data for n points, ki is determined as
zero. If not, it is determined as one.

In the rest of this section, we firstly propose a discriminator Di to V (i)P .
Secondly we propose an overall method to decipher a secret key k using discrim-
inators. Thirdly we analyze the probabilities of successfully deciphering a secret
key by using our method.

4.1 Calculating a Discriminator to V (i)P
Assume that n points P1, · · · , Pn over the elliptic curve E are given. Also

assume that we have already known km−2, · · · , ki+1 for a secret key k. Assuming
that ki = 0, we can calculate V (i)Pr for 1 ≤ r ≤ n. As Fig. 6 shows, we
define a discriminator Di to be a set of LSBs of V (i)Pr

�1. If n is large enough,
the discriminator Di must give information unique to V (i)Pr for 1 ≤ r ≤ n.
Consequently, if Di appears in scanned data, ki is determined as zero. If not, ki

is determined as one. After ki is determined, we can continue to determine next
bit of the secret key k in the same way.

Our proposed method has two advantages compared to conventional scan based
attacks 1),2). One is that our method is effective in the case of partial scan archi-

�1 Since V (i)Pr shows the point in XZ-plane, it has its X-coordinate and Z-coordinate. In our
method, we just pick up LSB of its X-coordinate as in Fig. 6.
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Fig. 6 Discriminator Di. Fig. 7 Scanned data.

tecture. As long as a scan path includes at least 1-bit of each intermediate value,
we can check whether the discriminator whether exists or not in the scanned
data.

The other is that our method can crack the secure scan technique by Ref. 26),
which inserts inverters into the internal scan path to complicate the scan struc-
ture. It protects Yang’s method 1),2) with low area cost. However, the value of
a 1-bit register sequence is only changed to its inverted value. The variation of
scanned data obtained by Ref. 26) is not enough to prevent our proposed method
from deciphering a secret key. The detailed discussion will be described in Sec-
tion 5.4.

4.2 Scanned Data Analysis Method
First we prepare n points P1, · · · , Pn over the elliptic curve E and give them

to an ECC circuit. For each of these points, we obtain all the scanned data
from the scan out of the ECC circuit until the ECC circuit outputs the point
multiplication result. As Fig. 7 shows, the size of scanned data for each of these
points is (“scan path length” × “number of point multiplication cycles”.)

Now we check whether a discriminator Di to V (i)P appears in the obtained

scanned data under the assumption that we do not know a secret key k in the
ECC circuit as follows:
( 1 ) Prepare n points P1, P2, · · · , Pn ∈ E(F2m), where Pr �= Ps for 1 ≤ r, s ≤ n

and r �= s.
( 2 ) Input Pr (1 ≤ r ≤ n) into the target ECC circuit and obtain scanned data

every one cycle during point multiplication until the ECC circuit outputs
the result. Let sdr denote the obtained scanned data for the point Pr

(1 ≤ r ≤ n).
( 3 ) Calculate V (m − 2)Pr assuming km−2 = 0 for each Pr (1 ≤ r ≤ n) and

obtain the discriminator Dm−2 to V (m − 2)Pr.
( 4 ) Check whether the discriminator Dm−2 exists in the scanned data

sd1, · · · , sdn. If it exists, then we can find out that km−2 is equal to 0,
and if it does not exist, then we can find out that km−2 is equal to 1.

( 5 ) We can determine km−3, km−4, · · · , k1 in the same way as Step 4.
( 6 ) k0 (LSB of a secret key k) is determined by comparing the expected kP

value with the point multiplication result outputted by the ECC circuit.
We show the example below to explain how the method above works.
Example 2 As in Example 1, let us consider that the 4-bit secret key k =

1010 = 10102, i.e., k3 = 1, k2 = 0, k1 = 1, k0 = 0, and m = 4 but assume that
we do not know k except for its bit length and k3 = 1. k can be written as
k = 1xxx, where x shows an unknown bit. Assume that the cycle counts of point
multiplication are 4 and the size of the scan path is 62 in the target ECC circuit.
First we prepare 8 points P1, P2, · · · , P8 ∈ E(F24), where Pr �= Ps for 1 ≤ r, s ≤ 8
and r �= s. The target ECC circuit executes the point multiplication as in Table 1.
We input Pr (1 ≤ r ≤ 8) into the target ECC circuit and obtain scanned data
every one cycle during point multiplication until the ECC circuit outputs the
result. Let sdr denote the obtained scanned data for the point Pr (1 ≤ r ≤ 8).
The total size of scanned data is 4 × 62 = 248 (see Fig. 8).
The MSB of k is one by definition (k3 = 1). Let us start to determine k2. We
calculate V (2)Pr = 5Pr assuming k2 = 0 for each Pr (1 ≤ r ≤ 8) and obtain
the discriminator D2 to 5Pr (see Fig. 9). As Fig. 9 shows, the discriminator D2

becomes “10011011”. Since we find out that the discriminator D2 exists in bit
patterns of scanned data sdr(1 ≤ r ≤ 8) in Fig. 8, we can determine that k2 is
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Fig. 8 Scanned data example. Fig. 9 Discriminator D2. Fig. 10 Discriminator D1.

equal to zero, i.e., k = 10xx.
Next let us determine k1. We calculate V (1)Pr = 9Pr assuming k1 = 0 for each
Pr (1 ≤ r ≤ 8) and obtain the discriminator D1 to 9Pr (see Fig. 10). As Fig. 10
shows, the discriminator D1 becomes “01010100”. Since we find out that the
discriminator D1 does not exist in bit patterns of scanned data sdr(1 ≤ r ≤ 8)
in Fig. 8, we can determine that k1 is equal to one, i.e., k = 101x.
Finally let us determine k0. If k = 1010, then kP = 10P . If k = 1011, then
kP = 11P . We calculate 10P1 and 11P1 and compare each of them with the
point multiplication result kP1. The point multiplication result obtained by the
ECC circuit is 10P1 and we can determine that k0 is equal to zero, i.e., k = 1010.
Therefore we can decipher the secret key k = 1010 = 10102.

4.3 Possibility of Successfully Deciphering a Secret Key
Given that the scan size is α bits and the cycle counts to obtain point multi-

plication is T . Assume that scanned data are completely random data.
Even though V (i)Pr for 1 ≤ r ≤ n is not calculated in the target ECC architec-

ture, its discriminator may exist in scanned data. When αT < 2n, the probability
that the discriminator Di to V (i)Pr exists in somewhere in bit patterns of scanned
data sdr (1 ≤ r ≤ n) is αT/2n despite V (i)Pr does not calculate.

Sufficiently large n can decrease the probability that we mistakenly find out
the discriminator Di in scanned data. For instance, If α is 2,520, T is 15,137,
and n is 32 �1, then the probability that we mistakenly find out the discriminator
Di in scanned data is 2520× 15137/232 � 8.88× 10−3, which is low enough. If α

�1 These values are derived from the experiments in Section 4.

is 25,200, T is 15,137, and n is 36, then the probability that we mistakenly find
out the discriminator Di in scanned data is 25200 × 15137/236 � 5.55 × 10−3,
which is also low enough.

5. Experiments and Performance Analysis

Let us analyze the number of points n required to decipher a secret key k by
using our proposed method. n must be large enough to be unique to V (i)Pr

(1 ≤ r ≤ n). But it must be small enough to make deciphering time as short as
possible.

In this section, we decipher some secret keys in the practical ECC architecture
to determine the appropriate number of points n by using our method. We gen-
erate randomly 1,000 secret keys and decipher each of them. Then we calculate
the number of points required to correctly decipher the secret keys.

5.1 Architecture of an Elliptic Curve Cryptography Circuit
Block diagram of the target ECC architecture for our scan-based attack is

shown as in Fig. 11 and Fig. 12. Its architecture is based on Refs. 11), 27) and
it executes point multiplication using the López’s method 22), an improved version
of the Montgomery method. The method requires only one inversion and reduces
the number of the multiplications compared with other point multiplication al-
gorithm. The ECC architecture has an adder, a multiplier and a square unit over
F2m . These computing units can operate in parallel so that they can improve
throughput effectively. Registers are used for input data, temporary data, and
parameters for ECC. The ECC architecture also has registers for a secret key k

and attackers cannot access these registers directly. In this ECC architecture, its
secret key k can be set to be an arbitrary value beforehand.

We have designed the ECC architecture in Verilog HDL and synthesized it
using Synopsys Design Compiler A-2007.12-SP3 with STARC 90 nm process li-
brary. A scan path has been implemented automatically using Synopsys DFT
Compiler. We have obtained scanned data from the gate-level ECC circuit using
HDL simulator Synopsys VCS-MX B-2008.12 �2.

�2 This work is supported by VLSI Design and Education Center (VDEC), the University of
Tokyo in the collaboration with Synopsys Corporation and with STARC.
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Fig. 11 Block diagram of the elliptic curve cryptosystem (Data path).

The implementation result indicates that the delay time is 1.66 ns, the area
is 32.5 k gates and the total number of registers is 2,520 bits. Using this ECC
architecture, the point multiplication requires 15,137 cycles.

5.2 Target Scan Path Architecture
For simplicity, the scan path used by our experiment just includes all the reg-

isters in the target ECC architecture. This means that it also includes the shift
registers storing the secret key and registers for the controller in our experiment.
However, we assume that attackers just attack scanned data in the data path in
the ECC circuit. This is because of the following reasons:

Fig. 12 Block diagram of the elliptic curve cryptosystem (Controller).

A controller architecture depends on implementation approach and is essen-
tially unrelated to cryptography algorithm. For example, our ECC circuit uses
a state machine as a controller but the ECC architecture in Ref. 8) uses a user-
configurable circuit as a controller. Unlike cryptosystem algorithm, the controller
architecture does not have to be open, and it is very hard for attackers to know
what kind of controllers are used in a cryptosystem circuit. On the other hand,
a modern cryptosystem algorithm has to be open to check its security and we
need to know it to realize a secure communication. Attackers can easily know
cryptosystem algorithm used by a target cryptosystem LSI.

Our proposed attacking method is based on an ECC algorithm and attackers
know its algorithm using a target ECC LSI much easier than its controller ar-
chitecture. We can say that scan-based attacks analyzing a data path is more
practical than those analyzing a controller.

5.3 Results
We have implemented the analysis method proposed in Section 4 in C on the

SuSE Linux 9, Intel Xeon 3.4 GHz, and 4 GB memories and performed the fol-
lowing experiments.

First, we have generated 1,000 secret keys randomly. Each of the generated
secret keys has a bit length of 163. Next, we have given each of the 1,000 secret
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Fig. 13 Number of required points to decipher secret keys.

Table 2 The experimental results.

Key bit length bit 163
Number of deciphering keys 1,000
Number of required points (Average) 29
Number of required points (Worst) 36
Deciphering time second ≤40

keys into the target ECC circuit and obtained scanned data. Total size of the
obtained scanned data for each secret key is 2,520 × 15,137 = 38,145,240 bits.
Using these scanned data, we have deciphered each of the secret keys by using our
proposed analysis method. Figure 13 and Table 2 show the deciphering results.
Figure 13 shows a histogram which demonstrates the number n of required points
to decipher each secret key versus its frequency. For example, the 572th secret
key is 0x7e5f91be081095bf9eb1bc5d1e46f0001cb1d7b32. In order to decipher this
secret key, we need 28 points, i.e., n is 28. In this case, we can successfully
decipher the 572nd secret key using 28 points but fail to decipher it using 27
points or less. Throughout this experiment, the required number of points is 29
on average and 36 in the worst case. A deciphering time is at most 40 seconds
when analyzing one secret key.

5.4 Discussions
Some secure scan architecture without consideration of a 1-bit sequence which

is specific to some intermediate values cannot protect against our method. Here,
we consider secure scan architecture against our proposed scan-based attack pro-
posed so far.

Fig. 14 Scanned data modified by Ref. 26).

Firstly, the most straightforward method against our proposed scan-based at-
tack is to keep scan path open after testing the chip. However, scan path can be
reconnected and be accessed by cracking the package 28).

Secondly, the secure scan architecture proposed in Ref. 26) cannot protect
against our proposed method from deciphering a secret key. Reference 26) in-
serts some inverters into a scan path to invert scanned data as shown in Fig. 14.
However, since the value of a 1-bit register sequence is only changed to its in-
verted value, the variation of scanned data is not enough to prevent attackers
from checking whether the discriminator exists or not. For instance, assume
that the discriminator Di is 10100 . . . 1 and we check whether the discriminator
Di exists or not in the scanned data sd1, sd2, · · · , sdn modified by Ref. 26) as
shown in Fig. 14. If the discriminator Di exists in the modified scanned data, we
can successfully find out that ki is zero. If not, we check whether the inverted
discriminator Di−inv = 01011 . . . 1 exists or not. If the inverted discriminator
Di−inv exists in the modified scanned data, we can find out that ki is zero. If
the inverted discriminator Di−inv does not exist, we can find out that ki is one.

Reference 29) adds unrelated data to scanned data to confuse attackers as
shown in Fig. 15. However, a sequence of scanned data to which unrelated
data are added is fixed in each LSI chip and it just confuses only a part of
scanned data to achieve lower area overhead. In other words, unmodified bits
exist in the scanned data sd1, sd2, · · · , sdn modified by Ref. 29). In this case, if
the discriminator Di exists in the modified scanned data, we can successfully find
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Fig. 15 Scanned data modified by Ref. 29).

out that ki is zero. If not, we check whether the disicriminator D1
i calculated

when ki is one exists or not in the modified scanned data because a discriminator
is defined as not only when ki is zero but also when ki is one. If the discriminator
D1

i exists in the modified scanned data, we can successfully find out that ki is
one. Even if these discriminators do not exist in the modified scanned data,
we can use other discriminators like Di1,Di2, · · · as shown in Fig. 15, which are
defined as a set of other bits of V (i)Pr for 1 ≤ r ≤ n. If one of these other
discriminators exists in the modified scanned data, we can find out that ki is
zero. Consequently, Ref. 29) cannot completely protect against our method.

Thirdly, Refs. 30)–37) require authentication to transfer between system mode
and test mode, and their security depends on authentication methods. If au-
thentication would be broken-through and attackers could obtain scanned data,
a secret key in an ECC LSI could be deciphered by using our proposed method.
We consider that authentication strength is a different issue from the purpose of
this paper.

Yang’s method 2) limits transition between test mode and system mode to pre-
vent attackers from obtaining scanned data during encryption/decryption using
the secret key in their cryptography circuit. However, it could not support in-field
testing required for high reliable LSI.

Finally, Refs. 38)–40) use a compactor so as not to output scanned data corre-
sponding to registers directly. Reference 41) proposes AES-based BIST, whereby

there is no need for scan path test. However, applying these methods effectively
to an ECC LSI is quite unclear because these methods implement only an AES
circuit or just a sample circuit not for cryptography.

6. Conclusions

In this paper, we have focused on a scan-based attack against an ECC circuit.
Three scan-based attacks against symmetric-key cryptosystems are reported 1)–3)

but those against public key cryptosystem are not reported yet. Since public-key
cryptosystem are more complex than symmetric-key cryptosystem, scan-based
attacks against symmetric-key cryptography cannot directly applied to decipher
a secret key in public-key cryptosystem circuit.

Our proposed scan-based attack can effectively decipher a secret key k in an
ECC circuit, since we just focus on the variation of 1-bit of intermediate values.
By monitoring it in the scan path, we can find out the register position specific
to intermediate values. The experimental results demonstrate that a secret key
in a practical ECC circuit architecture can be deciphered by using 29 points over
the elliptic curve E within 40 seconds. We can say that the proposed method
reveals the vulnerability of a scan path in an ECC circuit.

In this paper, we deal with an elliptic curve cryptosystem over GF (2m). But
even if we deal with an elliptic curve cryptosystem over GF (p), where p is prime,
the intermediate values during the point multiplication are determined by its
inputs and a secret key, and consequently, our proposed method can decipher a
secret key in the similar way.

Suppose that we attack other public key cryptography algorithms using our
scan-based attack. For example, we pick up RSA, which is one of the most
important public key cryptography algorithms. It encrypts and decrypts data
with modular multiplication. Since its intermediate values may depend on a
secret key, our scan-based attack method might be able to decipher its secret key
in an RSA LSI.

However, architecture of RSA is quite different from that of ECC and we have
a wide variety of its architecture compared with ECC. It may be very hard to
know whether specific information unique to a secret key exists or not, unlike the
discriminator of our scan-based attack. Applying our scan-based attack method
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to other public key cryptography LSI is one of our future works.
Our future works are summarized as follows:

( 1 ) New scan-based attack against compressed scan data.
( 2 ) Countermeasures against the proposed scan-based attacking method.
( 3 ) New scan-based attack against multiple scan paths.
( 4 ) Experimental evaluation using our proposed method against scanned data

modified by Refs. 26), 29).
( 5 ) New scan-based attack by analyzing scanned data obtained from a con-

troller circuit.
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