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Suenaga, et al. have developed a type-based framework for automatically
translating tree-processing programs into stream-processing ones. The key in-
gredient of the framework was the use of ordered linear types to guarantee that
a tree-processing program traverses an input tree just once in the depth-first,
left-to-right order (so that the input tree can be read from a stream). Their
translation, however, sometimes introduces redundant buffering of input data.
This paper extends their framework by introducing ordered, non-linear types
in addition to ordered linear types. The resulting transformation framework
reduces the redundant buffering, generating more efficient stream-processing
programs.

1. Introduction

Suenaga, et al. 1),2) have proposed a framework for automatically translating
tree-processing programs into stream-processing ones. By using the framework,
a user can write a tree-manipulating program in an ordinary functional language,
and then the program is translated into a stream-processing program and exe-
cuted. The framework allows efficient processing of tree-structured data, while
keeping the readability and maintainability of functional programs. Based on the
framework, they have implemented an XML stream-processing program genera-
tor X-P 3).

The key ingredient of their framework was an ordered linear type system. The
type system classifies tree data into those of ordered linear types (which model
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trees stored in streams) and those of non-linear types called buffered trees (which
model trees stored in memory), and ensures that trees of ordered linear types
are accessed only once, in the left-to-right, depth-first preorder, so that they
can be read from a stream. By performing type inference 2), one can automat-
ically transform an ordinary functional, tree-processing program into another
tree-processing program that is well-typed in the ordered linear type system.
The latter program can then be further transformed into a stream processing
program in a straightforward manner.

Figure 1 shows an example of the two-step transformations. The source pro-
gram deals with binary trees which store an integer value at each leaf. The type
of the binary trees can be described by the following datatype definition of ML.

datatype tree = leaf of int | node of tree ∗ tree.

The program takes a binary tree t as input, conducts pattern matching on the
tree and returns node(t2, f t1) if the tree is a branch. The program accesses
t2 before t1, so that the access order restriction mentioned above is violated.
(We assume the call-by-value, left-to-right evaluation order.) Suenaga, et al.’s
framework automatically finds the violation and inserts buffering primitives into
the program. In this case, t1 is converted to a buffered tree by the buffering
primitive s2m. Buffered trees can be freely accessed, so that the translated
program conforms to the access order restriction. Then, the program is translated
into the stream-processing program by replacing tree operations with stream
operations.

A shortcoming of the framework of Suenaga, et al. 1) was that too many buffer-
ing commands were sometimes inserted in the first step of the transformation,
resulting in less efficient stream-processing programs than hand-optimized pro-
grams. That is mainly due to the severe restriction on the access order imposed
by the ordered linear type system. For example, consider the following function,
which takes an XML tree representing a record of a person as an input, and
returns the first and last names.

name(t)
def≡ (get firstname t, get lastname t)

Here, we assume that a person record has the following structure:
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767 Ordered Types for Stream Processing of Tree-Structured Data

Source program:
let rec f t = case t of

leaf n ⇒ leaf n

| node(t1, t2) ⇒ node(t2, f t1)

Intermediate program:
let rec f t = case t of

leaf n ⇒ leaf n

| node(t1, t2) ⇒ let t1 = s2m(t1) in node(t2, f t1)

Target program:
let rec f () = case read() of

leaf ⇒ write leaf ; write (read())
| node ⇒ let t1 = s2m() in

write node; copy (); copymem (f t1)

Fig. 1 Suenaga, et al.’s translation framework.

<p><f>Ryosuke</f><l>Sato</l><s>. . . </s>. . . </p>

which has various fields other than first and last names. Since the function
name accesses t twice, a buffering command is inserted in the first step of the
transformation, as follows.

name(t)
def≡ let t′ = s2m(t) in

(get firstname t′, get lastname t′)

The stream processing program generated from the intermediate program is not
so efficient as it could be, because (i) the whole tree t is copied on memory,
though only the first and the last names of t are used later, and (ii) the memory
space for t′ can be reclaimed only by garbage collection.

We overcome the shortcoming mentioned above, by extending the ordered linear
type system with ordered, non-linear types (which will be just called ordered
types below). Trees of ordered types can be accessed more than once, but have
to conform to a certain restriction on the access order. We use ordered types
for describing hybrid trees, trees that are currently being read from a stream. A

Fig. 2 Hybrid tree during execution.

program stores a part of a hybrid tree on memory and the rest in a stream. By
using ordered types and hybrid trees, s2m in the program above is replaced by
s2h:

name(t)
def≡ let t′ = s2h(t) in

(get firstname t′, get lastname t′)

The tree t′ is now a hybrid one. Figure 2 illustrates how the state of t′ changes.
In this figure, the solid arrows represent pointers to nodes of the binary tree
constructed on memory and the dotted arrows represent pointers to the head
of the input stream. In the figure, <f> and <l> stand for <firstname> and
<lastname>. The tree t′ is constructed on memory only lazily, when requested.
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For example, just after the evaluation of s2h, a pointer to the input stream is
created and t’ is bound to the pointer. Then, when get firstname(t′) is evaluated,
the part <p><f>Ryosuke</f> is read from the input stream and constructed on
memory. The evaluation of get lastname(t′) proceeds similarly. The hybrid tree
t′ is automatically deallocated after the execution of get lastname. Thus, unlike
in the previous framework, the part <s>. . .</s> shown in Fig. 2 is never copied
to memory, and the memory space for the hybrid tree t′ can be immediately
reclaimed after being used.

In the rest of this paper, we first formalize the intermediate language and the
new ordered linear type system (which consists of unrestricted types, ordered
types and ordered linear types that we mentioned above) and discuss soundness
of the type system in Section 2. Once the intermediate language and its type
system are defined, then the translations into/from this language can be formal-
ized by extending the authors’ previous work 1),2) with ordered types. We briefly
sketch those translations in Section 3. Section 4 reports preliminary experiments.
Section 5 discusses related work and Section 6 concludes the paper.

2. Intermediate Language LI and Type System

This section introduces a functional tree-processing language LI , equipped with
an ordered type system. The language makes distinction among four kinds of
trees: (i) ordered linear trees, which can be accessed only once in the depth-first
preorder, (ii) hybrid trees, which can be accessed more than once, but only until an
ordered linear tree is accessed, (iii) buffered trees, which can be accessed without
any order or linearity restrictions, and (iv) output trees, which are the result of
a program and are never destructed in the program. The ordered linear type
system guarantees that well-typed programs conform to such access restrictions
on trees.

The language LI serves as the intermediate language of the transformation
framework sketched in Section 1. As discussed in Section 3, once the ordered
type system for this language has been set up, the first step of the transformation
can be achieved through type inference for the ordered type system, and the
second step can be achieved by replacing (functional) tree operations with the
corresponding stream operations in a straightforward manner.

d (modes) ::= 1 | � | ω | +
M (terms) ::= n | x | fix(f, x,M) | M1 M2 | M1 + M2 | m2s(x)

| let x = s2m(y) in M | let x = s2h(y) in M

| leafd M | noded(M1,M2)
| cased x of leaf y ⇒ M1 | node(x1, x2) ⇒ M2

V (trees) ::= leaf � n | leafω n | leaf+ n

| node�(x1, x2) | nodeω(x1, x2) | node+(V1, V2)
v (values) ::= x | n | fix(f, x,M) | V

E (evalċtx.) ::= [ ] | E M | v E | E + M | v + E | m2s(E)
| leaf+ E | node+(E,M) | node+(v,E)
| leafω E | nodeω(E,M) | nodeω(v,E)

τ (types) ::= int | τ1 → τ2 | treed

Fig. 3 The syntax of LI and types.

2.1 Language
Figure 3 shows the syntax of the language LI . The language is a functional

programming language extended with primitives for binary trees. The meta-
variables n and x range over the sets of integers and variables, respectively.
fix(f, x,M) is a recursive function that takes an argument x. f is bound to the
function itself inside M .

leafd and noded are constructors for binary trees. Here, d, called a mode,
is either 1, �, ω, or +, which describes ordered-linear, hybrid, buffered, or output
trees, respectively. Each tree has the different restrictions on access order as
mentioned before.

The term let x = s2m(y) in M copies the ordered linear tree y to a buffered
one, binds x to it and evaluates M . m2s(x) converts a buffered tree to an
output tree. let x = s2h(y) in M converts an ordered linear tree y to a hybrid
tree, binds x to it and evaluates M . For the sake of simplicity, we allow only
variables as arguments of s2m, m2s, and s2h. The cased expression performs
case analysis on each kind of trees. Here, d must not be +, as output trees cannot
be destructed.
Example 1. The following program takes a tree as an input, and returns (the
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tree representation of) a list obtained by replacing the left subtree of each node
with the sum of the values of the leftmost and second leftmost leaves.

fix(f, t,

case t of
leaf n ⇒ leaf 0

| node(t1, t2) ⇒
let t′1 = s2h t1 in
let n = leftmost t′1 + secondleftmost t′1 in

node(leaf n, f t2)

Here, leftmost and secondleftmost take a hybrid tree and return its leftmost and
second leftmost elements, respectively. The expression let n = M in N is a
syntax sugar for fix(f, n,N) M .

Figure 4 shows the operational semantics of the language, defined as a rewrit-
ing relation of configurations of the form (M,B,H, S). Here, M is the term that
is being evaluated. B is a heap on which buffered trees are constructed. H is a
map from variables to hybrid trees. S is a sequence of bindings from variables
to ordered linear trees (therefore the order of bindings matters). S represents
trees stored in the input stream, where the leftmost binding corresponds to the
tree stored at the head of the input stream. In Fig. 4, Allocω(B, x, V ) allocates
a tree V on a heap B and let x refer to the tree V . Alloc�(H,x, V ) is defined in
a similar manner. ToTree(B, x) takes a heap B and a variable x and returns a
tree referred to by x. V d represents the tree obtained by replacing every mode
annotation in V with d. For example, (leaf1 1)+ represents the tree leaf+ 1.

Note that we use the three tree environments B,H and S in order to express
the difference on access restrictions among the different kinds of trees. When a
variable in S is accessed (in rules E-StoM, E-StoH, E-Case1, and E-Case2),
the variable must be at the head of S; furthermore, the hybrid trees stored in H

are discarded. Those restrictions reflect the intuition of the intermediate language
explained in Section 1.

2.2 Ordered Type System
We next introduce an ordered type system for the language LI . The type

system guarantees that well-typed programs access trees in a valid order.

Allocω(B, x, leafω n) = B[x �→ leafω n]

Allocω(B, x, nodeω(V1, V2)) = B[x �→ nodeω(x1, x2)] ∪ Allocω(∅, x1, V1) ∪ Allocω(∅, x2, V2)

(x1 and x2 are fresh.)

Alloc�(H, x, leaf� n) = H[x �→ leaf� n]

Alloc�(H, x, node�(V1, V2)) = H[x �→ node�(x1, x2)] ∪ Alloc�(∅, x1, V1) ∪ Alloc�(∅, x2, V2)

(x1 and x2 are fresh.)

ToTree(B[x �→ leafω n], x) = leafω n

ToTree(B[x �→ nodeω(x1, x2)], x) = nodeω(ToTree(B, x1), ToTree(B, x2))

(fix(f, x, M) v, B, H, S) −→
([f �→ fix(f, x, M), x �→ v]M, B, H, S)

(E-App)

n is the sum of n1 and n2

(n1 + n2, B, H, S) −→ (n, B, H, S)
(E-Plus)

z is fresh

(let x = s2m(y) in M, B, H, (y �→ V ; S)) −→ ([x �→ z]M, Allocω(B, z, V ), ∅, S)
(E-StoM)

z is fresh

(let x = s2h(y) in M, B, H, (y �→ V ; S)) −→ ([x �→ z]M, B, Alloc�(∅, z, V ), S)
(E-StoH)

ToTree(B, x) = V

(m2s(x), B, H, S) −→ (V +, B, H, S)
(E-MtoS)

x′ is fresh

(leafω n, B, H, S) −→ (x′, B[x′ �→ leafω n], H, S)
(E-Leaf)

x′ is fresh

(nodeω(x1, x2), B, H, S) −→ (x′, B[x′ �→ nodeω(x1, x2)], H, S)
(E-Node)

(case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, (x �→ leaf1 n; S)) −→
([x1 �→ n]M1, B, ∅, S)

(E-Case1)

(case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, (x �→ node1(V1, V2); S)) −→
(M2, B, ∅, (x2 �→ V1; x3 �→ V2; S))

(E-Case2)

B(x) = leafω n

(caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, S) −→ ([x1 �→ n]M1, B, H, S)
(E-MCase1)

B(x) = nodeω(x′
2, x′

3)

(caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, S) −→ ([x2 �→ x′
2, x3 �→ x′

3]M2, B, H, S))
(E-MCase2)

H(x) = leaf� n

(case� x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, S) −→ ([x1 �→ n]M1, B, H, S)
(E-HCase1)

H(x) = node�(x′
2, x′

3)

(case� x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2, B, H, S) −→
([x2 �→ x′

2, x3 �→ x′
3]M2, B, H, S)

(E-HCase2)

(M, B, H, S) −→ (M′, B′, H′, S′)
(E[M ], B, H, S) −→ (E[M′], B′, H′, S′)

(E-Context)

Fig. 4 Operational semantics of LI .
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Figure 3 gives the syntax of types. The type int describes integers and τ1 → τ2

describes functions from τ1 to τ2. We have four kinds of tree types. treeω is the
type of buffered trees. tree� is the type of hybrid trees. tree1 and tree+ are the
types of input trees and output trees respectively.

Trees of type tree1 must be accessed in the left-to-right, depth-first manner
by traversing each node exactly once. Trees of type treeω can be accessed in
an arbitrary manner. Though trees of type tree� can be accessed an arbitrary
number of times, they cannot be accessed after another tree of type tree1 is
accessed.

A type judgment is of the form Γ | Ψ | Δ � M : τ . Here, Γ is a non-
ordered type environment, Ψ is an ordered type environment and Δ is an or-
dered linear type environment. A non-ordered type environment is a set of
the form {x1 : τ1, . . . , xn : τn}, where x1, . . . , xn are different from each other
and treed ∈ {τ1, . . . , τn} implies d = ω. An ordered type environment is a
set of the form {x1 : tree�, . . . , xn : tree�}, where x1, . . . , xn are different from
each other. An ordered linear type environment is a sequence of the form
x1 : tree1, . . . , xn : tree1, where x1, . . . , xn are different from each other. We
assume that Γ,Ψ, and Δ do not share variables.

In the judgment Γ | Ψ | Δ � M : τ , the type environments express how trees
are accessed during the evaluation of M . The ordered linear type environment
x1 : tree1, . . . , xn : tree1 specifies not only that x1, . . . , xn are bound to trees,
but also that each of x1, . . . , xn must be accessed exactly once in this order and
that each of the trees bound to x1, . . . , xn must be accessed in the left-to-right,
depth-first preorder. The ordered type environment {x1 : tree�, . . . , xn : tree�}
specifies that x1, . . . , xn can be accessed several times and there is no restriction
on the access order among x1, . . . , xn. However, if a variable in Δ is accessed,
the variables in Ψ can no longer be accessed (i.e., ordered). For example, if
Ψ = x1 : tree�, x2 : tree� and Δ = y : tree1, then the access sequences x1;x1; y
and x2;x2;x1; y are legitimate, while x1; y;x2 is not.
Definition 1 (Concatenation). A partial operation (Ψ1 | Δ1); (Ψ2 | Δ2) is de-
fined as follows.

(Ψ1 | Δ1); (Ψ2 | Δ2) =

{
(Ψ1 ∪ Ψ2 | Δ1,Δ2) if Δ1 = ∅ or Ψ2 = ∅
undefined (otherwise)

Intuitively, (Ψ | Δ) = (Ψ1 | Δ1); (Ψ2 | Δ2) are environments that allow trees
to be accessed according to Ψ1 | Δ1 and then to Ψ2 | Δ2 sequentially. (Ψ1 |
Δ1); (Ψ2 | Δ2) is defined only when Δ1 = ∅ or Ψ2 = ∅ because variables in Ψ2

cannot be accessed after an ordered linear tree is accessed.
Figure 5 shows the typing rules. We explain important rules below.
• In the rules T-StoM,T-StoH and T-Case, the program is accessing an

ordered linear tree, so that it is not allowed to access hybrid trees, thus the
ordered type environment in the conclusion has to be empty. Note also that
the ordered linear tree variable that is being used has to be at the head of
the ordered linear type environment to ensure the order condition.

• In the rule T-StoH for let x = s2h(y) in M , x is in the ordered type
environment in the premise because y is converted to a hybrid tree, named
x and used in M .

• T-HCase is for case� expressions. Because a hybrid tree can be freely ac-
cessed until another variable in the ordered linear type environment is ac-
cessed, the variable x in the ordered type environment in the conclusion part
also can be used as a hybrid tree in M1 and M2. In M2, the children of x

(x2 and x3) can also be used as hybrid trees.
• In the rules T-Fix1, T-Fix2, and T-Fix3, both the ordered linear and the

ordered type environment have to be empty to avoid hybrid trees and ordered
linear trees being captured in the closure.

• In the rules T-App, T-Plus, and T-Node, the ordered linear and the or-
dered type environments of M1 and M2 are concatenated in this order in
the conclusion. On the other hand, M1 and M2 share the same non-ordered
type environment since there is no restriction on usage of the variables in a
non-ordered type environment.

• T-Case is the rule for destructors for ordered linear trees. If x matches
node1(x2, x3), subtrees x2 and x3 have to be accessed in this order to
enforce the left-to-right depth-first order restriction. This is expressed by
x1 : tree1, x2 : tree1,Δ, the ordered linear type environment of M2.
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Γ | Ψ | ∅ � n : int (T-Int) Γ | Ψ | x : tree1 � x : tree1 (T-Var1)

Γ | x : tree�, Ψ | ∅ � x : tree� (T-Var2) Γ, x : τ | Ψ | ∅ � x : τ (T-Var3)

Γ, f : τ1 → τ2, x : τ1 | ∅ | ∅ � M : τ2

Γ | ∅ | ∅ � fix(f, x, M) : τ1 → τ2
(T-Fix1)

Γ, f : tree� → τ2 | x : tree� | ∅ � M : τ2

Γ | ∅ | ∅ � fix(f, x, M) : tree� → τ2
(T-Fix2)

Γ, f : tree1 → τ2 | ∅ | x : tree1 � M : τ2

Γ | ∅ | ∅ � fix(f, x, M) : tree1 → τ2
(T-Fix3)

Γ | Ψ1 | Δ1 � M1 : τ1 → τ2 Γ | Ψ2 | Δ2 � M2 : τ1

Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � M1M2 : τ2
(T-App)

Γ | Ψ1 | Δ1 � M1 : int Γ | Ψ2 | Δ2 � M2 : int

Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � M1 + M2 : int
(T-Plus)

Γ, x : treeω | ∅ | Δ � M : τ

Γ | ∅ | y : tree1, Δ � let x = s2m(y) in M : τ
(T-StoM)

Γ | x : tree� | Δ � M : τ

Γ | ∅ | y : tree1, Δ � let x = s2h(y) in M : τ
(T-StoH)

Γ | Ψ | Δ � M : treeω

Γ | Ψ | Δ � m2s(M) : tree+
(T-MtoS)

Γ | Ψ | Δ � M : int d ∈ {ω, +}
Γ | Ψ | Δ � leafd M : treed

(T-Leaf)

Γ | Ψ1 | Δ1 � M1 : treed Γ | Ψ2 | Δ2 � M2 : treed d ∈ {ω, +}
Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � noded(M1, M2) : treed

(T-Node)

Γ, x1 : int | ∅ | Δ � M1 : τ Γ | ∅ | x2 : tree1, x3 : tree1, Δ � M2 : τ

Γ | ∅ | x : tree1, Δ � case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-Case)

Γ, x : treeω , x1 : int | Ψ | Δ � M1 : τ
Γ, x : treeω , x2 : treeω , x3 : treeω | Ψ | Δ � M2 : τ

Γ, x : treeω | Ψ | Δ � caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-MCase)

Γ, x1 : int | x : tree�, Ψ | Δ � M1 : τ
Γ | x : tree�, x2 : tree�, x3 : tree�, Ψ | Δ � M2 : τ

Γ | x : tree�, Ψ | Δ � case� x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-HCase)

Fig. 5 The typing rules.

.

.

.

Γ′, n : int | ∅ | ∅ � leaf n : tree+

.

.

.

Γ′ | t′1 : tree� | ∅ � leftmost t′1 : int

.

.

.

Γ′ | t′1 : tree� | ∅ � leftmostsecond t′1 : int

Γ′ | t′1 : tree� | ∅ � leftmost t′1 + leftmostsecond t′1 : int

.

.

.

.

.

.

Γ′ | t′1 : tree� | t2 : tree1 � M : tree+

Γ′ | ∅ | t1 : tree1, t2 : tree1 � let t′1 = s2h(t1) in M : tree+

Γ
′ | ∅ | t : tree

1 � case
1

t of leaf n ⇒ leaf n | node(t1, t2) ⇒ let t
′
1 = s2h(t1) in M : tree

+

Γ | ∅ | ∅ � fix(f, t, case1 t of leaf n ⇒ leaf n | node(t1, t2) ⇒ let t′1 = s2h(t1) in M) : tree1 → tree+

Fig. 6 A type derivation tree. Γ = {leftmost : tree� → int,
leftmostsecond : tree� → int}, Γ′ = Γ, f : tree1 → tree+.

Figure 6 shows a type derivation tree for the program presented in Section 2.
2.3 Type Soundness
We state the soundness of the type system in this section. The soundness

theorem guarantees that, well-typed programs access trees in a valid order. As
an illegal access order leads to a stuck state in our operational semantics, it is
sufficient to state that well-typed programs never get stuck.
Theorem 1 (Type soundness). If ∅ | ∅ | x : tree1 � M : tree+ and (M, ∅, ∅, x 
→
V ) −→∗ (M ′, B′,H ′, S′) then M ′ is a tree value and S′ = ∅, or there exist
M ′′, B′′,H ′′, and S′′ such that (M ′, B′,H ′, S′) −→ (M ′′, B′′,H ′′, S′′).

3. Translation

This section introduces the source language LS and the target language LT ,
and describes how a source program is translated into a well-typed intermediate
program, and then translated into a target program. Because a source program
may not respect the order restriction on an input tree, the algorithm first inserts
buffering primitives s2m, s2h and m2s to make the program well-typed. This
step is conducted by performing type inference for the type system introduced
in Section 2. Then, the algorithm generates a stream-processing program by
replacing each tree primitive with a corresponding stream primitive.

Figure 7 gives the syntax of the source language LS . The language differs
from LI in Section 2 in that LS does not have buffering primitives, and does
not make the distinction among leaf1/node1, leafω/nodeω, leaf �/node� and
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M (terms) ::= n | x | fix(f, x,M) | M1 M2 | M1 + M2

| leaf M | node(M1,M2)
| case x of leaf x′ ⇒ M1 | node(x1, x2) ⇒ M2

τ (types) ::= int | τ1 → τ2 | tree
Fig. 7 The syntax of LS and types.

leaf+/node+. Similarly, LS makes no distinction among tree1, tree�, treeω,
tree+. Thus, a user can write a source program without considering the order
and linearity restrictions. We assume that programs in LS are well-typed in the
standard type system for the simply-typed lambda-calculus, having int and tree
as base types. The types of tree primitives are given by:

leaf : int → tree
node : tree → tree → tree
case : ∀α.tree → (int → α) → (tree → tree → α) → α

(where case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 is interpreted
as case x (λx1.M1) (λx2.λx3.M2).)

3.1 Translation from LS to LI .
We describe an algorithm for translating a source program into a well-typed

intermediate program by inserting buffering primitives to the program. Following
Suenaga, et al. 2), we introduce type-based, non-deterministic translation rules.
Then the translation algorithm is obtained as a type inference algorithm in a
manner similar to Suenaga, et al. 2)

The non-deterministic translation is given by a judgment Γ | Ψ | Δ � M �
M ′ : τ . The judgment means:
( 1 ) M and M ′ are equivalent except for the representation of trees, and
( 2 ) Γ | Ψ | Δ � M ′ : τ holds.

Figure 8 shows the rules for the judgment Γ | Ψ | Δ � M � M ′ : τ . The
rules are non-deterministic in the sense that there may be more than one valid
transformation for each source program M . For example, there are three rules for
the term case x of . . . depending on whether the matched tree is translated into
an ordered linear, a hybrid or a buffered one. The key rules are Tr-StoM and

Γ | Ψ | ∅ � n � n : int (Tr-Int)

Γ | Ψ | x : tree1 � x � x : tree1 (Tr-Var1)

Γ | x : tree�, Ψ | ∅ � x � x : tree� (Tr-Var2)

Γ, x : τ | Ψ | ∅ � x � x : τ (Tr-Var3)

Γ, f : τ1 → τ2, x : τ1 | ∅ | ∅ � M � M′ : τ2

Γ | ∅ | ∅ � fix(f, x, M) � fix(f, x, M′) : τ1 → τ2
(Tr-Fix1)

Γ, f : tree� → τ | x : tree� | ∅ � M � M′ : τ

Γ | ∅ | ∅ � fix(f, x, M) � fix(f, x, M′) : tree� → τ
(Tr-Fix2)

Γ, f : tree1 → τ | ∅ | x : tree1 � M � M′ : τ

Γ | ∅ | ∅ � fix(f, x, M) � fix(f, x, M′) : tree1 → τ
(Tr-Fix3)

Γ | Ψ1 | Δ1 � M1 � M′
1 : τ1 → τ2 Γ | Ψ2 | Δ2 � M2 � M′

2 : τ1

Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � M1M2 � M′
1M′

2 : τ2
(Tr-App)

Γ | Ψ1 | Δ1 � M1 � M′
1 : int Γ | Ψ2 | Δ2 � M2 � M′

2 : int

Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � M1 + M2 � M′
1 + M′

2 : int
(Tr-Plus)

Γ | Ψ | Δ � M � M′ : int d ∈ {+, ω}
Γ | Ψ | Δ � leaf M � leafd M′ : tree+ (Tr-Leaf)

Γ | Ψ1 | Δ1 � M1 � M′
1 : tree+ Γ | Ψ2 | Δ2 � M2 � M′

2 : tree+ d ∈ {+, ω}
Γ | (Ψ1 | Δ1); (Ψ2 | Δ2) � node(M1, M2) � noded(M′

1, M′
2) : tree+ (Tr-Node)

Γ, x1 : int | ∅ | Δ � M1 � M′
1 : τ Γ | ∅ | x2 : tree1, x3 : tree1, Δ � M2 � M′

2 : τ

Γ | ∅ | x : tree1, Δ � case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2
� case1 x of leaf x1 ⇒ M′

1 | node(x2, x3) ⇒ M′
2 : τ

(Tr-Case1)

Γ, x : treeω, x1 : int | Ψ | Δ � M1 � M′
1 : τ

Γ, x : treeω, x2 : treeω, x3 : treeω | Ψ | Δ � M2 � M′
2 : τ

Γ, x : treeω | Ψ | Δ � case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2
� caseω x of leaf x1 ⇒ M′

1 | node(x2, x3) ⇒ M′
2 : τ

(Tr-Case2)

Γ, x1 : int | x : tree�, Ψ | Δ � M1 � M′
1 : τ

Γ, | x : tree�, x2 : tree�, x3 : tree�, Ψ | Δ � M2 � M′
2 : τ

Γ | x : tree�, Ψ | Δ � case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2
� case� x of leaf x1 ⇒ M′

1 | node(x2, x3) ⇒ M′
2 : τ

(Tr-Case3)

Γ, x : treeω | ∅ | Δ � M � M′ : τ y is fresh

Γ | ∅ | x : tree1, Δ � M � let y = s2m(x) in [x �→ y]M′ : τ
(Tr-StoM)

Γ | x : tree� | Δ � M � M′ : τ y is fresh

Γ | ∅ | x : tree1, Δ � M � let y = s2h(x) in [x �→ y]M′ : τ
(Tr-StoH)

Γ | Ψ | Δ � M � M′ : treeω

Γ | Ψ | Δ � M � m2s(M′) : tree+ (Tr-MtoS)

Fig. 8 The rules for the judgment Γ | Ψ | Δ � M �M ′ : τ .
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Tr-StoH, which insert s2m and s2h into source programs. The rule Tr-StoH

says that, if a variable x is bound to an ordered linear tree before the evaluation
of M , and if x can be used as a hybrid tree in M ′, the result of the translation
of M , then one can convert x to a hybrid tree here by the s2h primitive. The
rule Tr-StoM can be read in a similar manner.

Note that there is at least one valid transformation for every simply-typed pro-
gram: every program in LS can be translated into one in LI that first buffers
every input tree on heap by s2m. A deterministic algorithm is obtained as a
type inference algorithm as in Suenaga, et al.’s work 2). By merging the three
(unordered, ordered, and ordered linear) type environments into one, we can
construct syntax-directed program transformation rules. The transformation al-
gorithm is then obtained as a constraint-based algorithm, which first extracts
constraints on modes based on the transformation rules and solves them. We
omit a detailed description of the algorithm in this paper.

We suppose the transformation rules are correct in the sense that a valid trans-
formation always exists, and that the source program evaluates to a value if and
only if the translated program evaluates to the same value. The proof would be
similar to the correctness proof of the transformation of our previous work 1).

3.2 Translation from LI to LT

Figure 9 shows the syntax of the target language LT , which is a stream-
processing impure functional language. read is a primitive for reading a token
(leaf , node, or an integer) from the input stream. write is a primitive for writing
a token to the output stream. leafω e and nodeω(e1, e2) are trees constructed
on memory. The term case e of leaf ⇒ e1 | node ⇒ e2 performs a case analysis
on the value of e. To express lazy reading of hybrid trees, we use locations which
are ranged over by a meta variable l. A location is a dummy pointer for a tree
that has not been accessed and thus has not been constructed yet. Such a tree
is constructed when the location is accessed. A hybrid tree is expressed as a
location, a leaf on memory or a branch whose children are hybrid trees. flush is
a primitive for discarding hybrid trees that are currently kept. caseω e of . . . and
case� e of . . . are pattern matching on buffered and hybrid trees, respectively.
We write e1; e2 for fix(f, x, e2)e1 where f and x are not free in e2.

The semantics of LT is expressed as a rewriting of configuration

e (terms) ::= n | x | l | leaf | node | () | fix(f, x, e) | e1 e2

| e1 + e2 | read() | write e

| leafω e | nodeω(e1, e2)
| let x = s2m() in e

| let x = s2h() in e

| flush()
| case e of leaf ⇒ e1 | node ⇒ e2

| caseω e of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2

| case� e of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2

V ω (trees on mem.) ::= leafω n | nodeω(x1, x2)
V � (hybrid trees) ::= l | leafω n | nodeω(l1, l2)
v (values) ::= n | leaf | node | fix(f, x, e) | V ω | V �

E (eval. ctx.) ::= [ ] | E M | fix(f, x, e) E | E + e | n + E

| read()E | write E | leafω E

| nodeω(E, e) | nodeω(V ω, E) | h2m(E)
| case E of leaf ⇒ e1 | node ⇒ e2

| caseω E of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2

| case� E of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2

Fig. 9 The syntax of LT .

(e,B,H,L, Si, So). e is the term that is being evaluated. B is a memory heap,
a mapping from variables to buffered trees. H is a hybrid heap, a mapping from
locations to hybrid trees. Si and So are the input and the output streams. A
stream is a sequence consisting of leaf , node, and integers. L is a sequence of
locations which have not been accessed yet.

We introduce an auxiliary function to define the semantics of LT .
Definition 2. [[V ]] is defined as follows.

[[leafωn]] = leaf ;n
[[nodeω(V1, V2)]] = node; [[V1]]; [[V2]].

[[V ]] represents a part of a stream that encodes a buffered tree V .
Figure 10 presents the semantics of LT . The rules for hybrid trees (E-Flush1,
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(fix(f, x, M) v, B, H, L, Si, So) −→ ([f �→ fix(f, x, M), x �→ v]M, B, H, L, Si, So) (E-App)

(n is the sum of n1 and n2)

(n1 + n2, B, H, L, Si, So) −→ (n, B, H, L, Si, So)
(E-Plus)

(read(), B, ∅, ∅, (v; Si), So) −→ (v, B, ∅, ∅, Si, So) (E-Read)

v is an integer, leaf , or node

(write v, B, H, L, Si, So) −→ ((), B, H, L, Si, (So; v))
(E-Write)

(flush(), B, H, ∅, Si, So) −→ ((), B, ∅, ∅, Si, So) (E-Flush1)

(flush(), B, H, (l; L), ([[V ]]; Si), So) −→ (flush(), B, ∅, L, Si, So) (E-Flush2)

x′ is fresh

(let x = s2m() in e, B, ∅, ∅, ([[V ]]; Si), So) −→ ([x �→ x′]e, Allocω(B, x′, V ), ∅, ∅, Si, So)
(E-StoM)

(let x = s2h() in e, B, ∅, ∅, Si, So) −→ ([x �→ l]e, B, ∅, l, Si, So) (l is fresh) (E-StoH)

(m2s(x), B, H, L, Si, So) −→ ((), B, H, L, Si, (So; [[ToTree(B, x)]])) (E-MtoS)

x is fresh

(leafω n, B, H, L, Si, So) −→ (x, Allocω(B, x, leafω n), H, L, Si, So)
(E-Leaf)

x is fresh

(nodeω(x1, x2), B, H, L, Si, So) −→ (x, Allocω(B, x, nodeω(x1, x2)), H, L, Si, So)
(E-Node)

(case1 leaf of leaf ⇒ e1 | node ⇒ e2, B, H, L, Si, So) −→ (e1, B, H, L, Si, So) (E-Case1)

(case1 node of leaf ⇒ e1 | node ⇒ e2, B, H, L, Si, So) −→ (e2, B, H, L, Si, So) (E-Case2)

B(x) = leafω n

(caseω x of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2, B, H, L, Si, So) −→
([x1 �→ n]e1, B, H, L, Si, So)

(E-MCase1)

B(x) = nodeω(x′
2, x′

3)

(caseω x of leaf x1 ⇒ e1 | node(x2, x3) ⇒ e2, B, H, L, Si, So) −→
([x2 �→ x′

2, x3 �→ x′
3]e2, B, H, L, Si, So)

(E-MCase2)

l /∈ dom(H)

(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H, (l′; L), (leaf ; n; Si), So) −→
(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H[l′ �→ leafω n], L, Si, So)

(E-HCase1)

l /∈ dom(H) l1 and l2 are fresh

(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H, (l′; L), (node; Si), So) −→
(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H[l′ �→ nodeω(l1, l2)], (l1; l2; L), Si, So)

(E-HCase2)

(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H[l �→ leafω n], L, Si, So) −→
([x �→ n]e1, B, H[l �→ leafω n], L, Si, So)

(E-HCase3)

(case� l of leaf x ⇒ e1 | node(x1, x2) ⇒ e2, B, H[l �→ nodeω(l1, l2)], L, Si, So) −→
([x1 �→ l1, x2 �→ l2]e2, B, H[l �→ nodeω(l1, l2)], L, Si, So)

(E-HCase4)

(e, B, H, L, Si, So) −→ (e′, B′, H′, L′, S′
i, S′

o)

(E[e], B, H, L, Si, So) −→ (E[e′], B′, H′, L′, S′
i, S′

o)
(E-Context)

Fig. 10 The operational semantics of the target language.

A(n) = n
A(x) = x
A(fix(f, x, M)) = fix(f, x,A(M))
A(M1 M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) + A(M2)
A(let x = s2m(y) in M) = flush(); let x = s2m() in A(M)
A(m2s(M)) = m2s(A(M))
A(let x = s2h(y) in M) = flush(); let x = s2h() in A(M)
A(leaf+ M) = write leaf ;write A(M)
A(node+(M1, M2)) = write node;A(M1);A(M2)
A(leafω M) = leafω A(M)
A(nodeω(M1, M2)) = nodeω(A(M1),A(M2))
A(case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2) =

case flush(); read() of
leaf ⇒ let x1 = read() in A(M1) | node ⇒ [()/x2, ()/x3]A(M2)

A(caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2) =
caseω x of leaf x1 ⇒ A(M1) | node(x2, x3) ⇒ A(M2)

A(case� x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2) =
case� x of leaf x1 ⇒ A(M1) | node(x2, x3) ⇒ A(M2)

Fig. 11 Translation algorithm.

E-Flush2, E-StoH, E-HCase1, . . . , E-HCase4) would require an explanation.
E-StoH is the rule for turning an input tree into a hybrid tree. Instead of
immediately copying a tree from Si to H, however, we create only a pointer (l in
the rule) to the first tree of Si, and record the pointer in L. The hybrid tree is
actually copied to H only when it is accessed by a case expression, as described
in the rules E-HCase1 and E-HCase2. In E-HCase2, only the root node is
copied, and the subtrees are kept in Si, with pointers (l1 and l2) to them being
added to L. E-Flush1 and E-Flush2 are the rules for discarding the current
hybrid tree. E-Flush2 discards a part of the hybrid tree that has not been
copied to H.

A well-typed LI program can be translated into an equivalent stream-
processing program using the algorithm A defined in Fig. 11. The algorithm
A converts output tree constructions into stream output operations and a case
analysis for ordered linear trees into stream input operations. Note that an in-
struction flush is inserted before s2m, s2h and case1 x of . This instruction
ensures that hybrid trees are indeed discarded before another ordered linear tree
is accessed.
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Fig. 12 Memory consumption (ex leftmost).

4. Preliminary Experiments

To evaluate the effectiveness of the new transformation framework, we have
implemented a prototype translator from the intermediate language LI to the
stream-processing language LT in Objective Caml. The current translator sup-
ports only binary trees that have integers or strings in leaves. An extension for
dealing with XML documents, as well as the implementation of a translator from
the source to the intermediate language are currently under development.

In this experiment, we wrote the following programs in LI , translated them
into LT by using our translator and gave automatically-generated well-formed
XML documents as input to each LT program.
• ex leftmost: a program in Example 1 which takes a tree as an input, and re-

turns (the tree representation of) a list obtained by replacing the left subtree
of each node with the sum of the values of the leftmost and second leftmost
leaves.

• ex bib: a program which takes a bibliography database and returns a list of
title and authors where the title contains a specific word.

Figures 12, 13, 14 and 15 show the result of the experiment. Figures 12
and 13 compare the maximum memory consumption of the stream-processing

Fig. 13 Memory consumption (ex bib).

Fig. 14 Execution time (ex leftmost).

programs generated by our new translator with (1) naive tree-processing pro-
grams (which construct the whole input tree on memory) and (2) the stream-
processing programs generated by the previous framework 3). Figs. 14 and 15
show the running times for the same programs. The experiment is conducted on
Intel Xeon 5150 CPU with 4 MB cache and 8 GB memory.
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Fig. 15 Execution time (ex bib).

As shown in the figures, the stream-processing programs generated by the new
translator are more efficient than the ones generated by X-P, the translator de-
veloped in our previous work 1). The improvement was mainly gained by the lazy
construction of hybrid trees, which avoids copying the unnecessary part of the
input on memory.

As mentioned in Section 1, our transformation framework has another advan-
tage that the memory space for a hybrid tree can be immediately deallocated
when the next tree is read from the stream. That advantage is, however, not
exploited in the current implementation; since the target language of our current
translator is Objective Caml, we cannot control memory deallocation. It is left
for future work to replace the target language with a lower-level language (so
that hybrid trees can be explicitly deallocated) and conduct more experiments
to evaluate the advantage of deallocating hybrid trees.

5. Related Work

Besides Suenaga, et al.’s framework 1),2), there are other approaches to au-
tomatic transformation of tree-processing programs into stream-processing pro-
grams 4)–8). (An exception is Frisch and Nakano’s work 9), which will be addressed
later.) In those approaches, the source languages for describing tree-processing

programs are more restricted than ordinary programming languages (query lan-
guage 4), and attribute grammars 5)–8)). On the other hand, the source language
in our framework is an ordinary functional programming language. There are also
differences in how and when trees are buffered in memory between our frame-
work and other frameworks. A detailed comparison on this point is left for future
work.

Frisch and Nakano 9) proposed a framework that achieves stream processing for
a Turing-complete language based on term rewriting. The hybrid trees in our
approach are somewhat similar to input trees in their approach, in that tree data
are incrementally constructed, and discarded when they become unnecessary.
In fact, the L component of the run-time state of our target language LT is
a reminiscent of the parsing stack in Frisch and Nakano’s system. The main
differences are: (i) The evaluation order of their language is input-driven, while
that of our language is call-by-value. As discussed in Section 9 of their paper 9),
there is a trade-off in the choice of an evaluation order, and if necessary, one can
often rewrite a program to avoid some of the limitations of a particular evaluation
order. An obvious advantage of the call-by-value evaluation is, however, that it
is easy to extend the language with side effects. (ii) Our approach supports
ordered linear trees (which need no buffering at all) besides hybrid trees, while
Frisch and Nakano’s approach supports only a single kind of input trees that are
similar to our hybrid trees as mentioned above. Instead, they use sophisticated
run-time techniques to enable more memory-efficient buffering than our hybrid
trees. For example, in our approach, hybrid trees are discarded (by the operation
flush in LT ) only when all the current hybrid trees become unnecessary, while
Frisch and Nakano’s system eagerly inspects the run-time state and discards a
part of input trees. (iii) Our technique statically decides when and how a tree is
buffered and discarded) by using a static type system, while Frisch and Nakano’s
system decides it at run-time. There are obvious trade-offs: On one hand, in the
former approach, the run-time system is simple and easy to implement, and the
run-time overhead is kept small. On the other hand, the latter approach is more
flexible, potentially enabling better memory usage. Thus, a combination of the
static and dynamic approaches may be useful.

Ordered linear type systems have been first studied by Polakow 10), and later by
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Petersen, et al. 11) and ourselves 1),2). To the authors’ knowledge, this is the first
application of ordered but non-linear types in the context of program transfor-
mation. In a different area, non-commutative logic has been studied by Lambek
and applied to computational linguistic 12). It is not clear whether our type
system has some connection (in the spirit of Curry-Howard isomorphism) to a
non-commutative logic.

6. Conclusion

We have introduced an ordered type system to extend Suenaga, et al.’s type-
based framework 1),2) for transforming tree-processing programs into stream-
processing ones. The use of ordered but non-linear types enabled a more flexible
buffering (and hence more efficient stream-processing) of tree-structured data
than the previous framework. We have carried out very preliminary experiments
and confirmed the effectiveness of the new transformation framework. It is left
for future work to fully implement the proposed framework (as a new version of
X-P) and to carry out more serious experiments.
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Appendix

A.1 Proof of Theorem 1
Theorem 1 is a corollary of Lemma 1, Theorem 2 (progress), and Theorem 3

(preservation). We first define the type judgment for the environments.
Definition 3. Γ | Ψ | Δ � (B,H, S) holds if and only if the following conditions
hold:
• dom(Γ) = dom(B).
• dom(Ψ) = dom(H).
• If Δ = x1 : τ1, . . . , xn : τn and S = (y1 
→ V1); . . . ; (ym 
→ Vm), then n = m

and xi = yi for each i.
• For each x ∈ dom(B), Γ | ∅ | ∅ � B(x) : Γ(x).

Lemma 1 (Canonical form). If Γ | Ψ | Δ � v :τ , then exactly one of the following
holds.
( 1 ) τ = int and v = n for some n and Δ = ∅.
( 2 ) τ = τ1 → τ2 for some τ1 and τ2 and v = fix(f, x,M) for some f, x and M ,
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and Δ = ∅.
( 3 ) τ = treeω and v = x ∈ dom(Γ) and Δ = ∅ for some x

( 4 ) τ = tree� and v = x ∈ dom(Ψ) and Δ = ∅ for some x

( 5 ) τ = tree1 and v = x and Δ = x : tree1 for some x

( 6 ) τ = tree+ and ( 1 ) v = leaf+ n and Δ = ∅ for some n, or ( 2 ) v =
node+(V1, V2) and Δ = ∅ for some V1 and V2.

Proof. Case analysis on the derivation of Γ | Ψ | Δ � v : τ .

Theorem 2 (Progress). If Γ | Ψ | Δ � M : τ and Γ | Ψ | Δ � (B,H, S), then one
of the following holds.
( 1 ) M is a value.
( 2 ) (M,B,H, S) −→ (M ′, B′,H ′, S′) for some M ′, B′,H ′, S′.

Proof. By induction on the derivation of Γ | Ψ | Δ � M : τ . We show only
important cases.
• Case T-App: Γ | Ψ1 | Δ1 � M1 : τ1 → τ and Γ | Ψ2 | Δ2 � M2 : τ1 for some

Ψ1,Ψ2,Δ1,Δ2,M1,M2 and τ1. From the I.H., M1 and M2 satisfy one of the
conditions stated in the theorem.
– If M1 or M2 is reducible, then M is also reducible from E-Context.
– If M1 and M2 are values, then, from Lemma 1, M1 = fix(f, x,M ′

1) for
some f, x and M ′

1. Thus, by applying E-App, M is reducible.
• Case T-HCase: M = case� x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 and

(x:tree�) ∈ Ψ for some x, x1,M1, x2, x3 and M2. From Γ | Ψ | Δ � (B,H, S),
we have x ∈ dom(H). Thus, M is reducible from E-HCase1 or E-HCase2.

The following lemmas are used to prove Theorem 3.
Lemma 2 (Substitution). If Γ, x1 : τ1, . . . , xn : τn | Ψ | Δ � M : τ and Γ | Ψ | ∅ �
vi : τi for i ∈ {1, . . . , n} then Γ | Ψ | Δ � [x1 
→ v1 . . . xn 
→ vn]M : τ .

Proof. By induction on the derivation of Γ, x1 :τ1, . . . , xn :τn | Ψ | Δ � M :τ .

Lemma 3 (Renaming). Suppose x /∈ dom(Γ) ∪ dom(Ψ) ∪ dom(Δ).
• If Γ, y : τ | Ψ | Δ � M : τ then Γ, x : τ | Ψ | Δ � [y 
→ x]M : τ .
• If Γ | y : tree�,Ψ | Δ � M : τ then Γ | x : tree�,Ψ | Δ � [y 
→ x]M : τ .

• If Γ | Ψ | Δ1, y :tree1,Δ2 � M :τ then Γ | Ψ | Δ1, x:tree1,Δ2 � [y 
→ x]M :τ .

Proof. By induction on the derivations of typing judgments.

Lemma 4 (Weakening). If Γ | Ψ | Δ � M :τ and dom(Ψ′)∩(dom(Γ)∪dom(Ψ)∪
dom(Δ)) = ∅, then Γ | Ψ,Ψ′ | Δ � M : τ

Proof. Induction on the derivation of Γ | Ψ | Δ � M : τ .

Theorem 3 (Preservation). If Γ | Ψ | Δ � M : τ and Γ | Ψ | Δ � (B,H, S) and
(M,B,H, S) −→ (M ′, B′,H ′, S′), then Γ′ | Ψ′ | Δ′ � M ′ : τ and Γ′ | Ψ′ | Δ′ �
(B′,H ′, S′), for some Γ′,Ψ′ and Δ′.

Proof. By induction on the derivation of (M,B,H, S) −→ (M ′, B′,H ′, S′). We
show only Case E-App. The other cases immediately follow from the induction
hypothesis and the renaming lemma.
• Case E-App. By inversion of T-App, Γ | Ψ1 | Δ1 � fix(f, x,M1) : τ1 → τ

and Γ | Ψ2 | Δ2 � v : τ1 hold, where (Ψ | Δ) = (Ψ1 | Δ1); (Ψ2 | Δ2). The
last rule that derives Γ | Ψ1 | Δ1 � fix(f, x,M1) : τ1 → τ has to be T-Fix1,
T-Fix2 or T-Fix3. We perform case-analysis on the rule. Note that Ψ1 = ∅
and Δ1 = ∅ in every case, so that Ψ = Ψ2 and Δ = Δ2.
– If the last rule is T-Fix1, we have Γ, f : τ1 → τ, x : τ1 | ∅ | ∅ � M1 : τ .

From the fact that τ1 is in the unrestricted type environment, exactly
one of ( 1 ), ( 2 ) or ( 3 ) in Lemma 1 holds. In every case Δ = ∅, so that
we have Γ | ∅ | ∅ � [f 
→ fix(f, x,M1), x 
→ v]M1 : τ from Lemma 2.
From Lemma 4, we have Γ | Ψ | ∅ � M ′ : τ . The statement follows from
B′ = B, H ′ = H and S′ = S.

– If the last rule is T-Fix2, we have Γ, f : tree� → τ | x : tree� | ∅ � M1 : τ
and Γ | Ψ | Δ � v : tree�. From Lemma 1, we have v = y ∈ dom(Ψ)
and Δ = ∅ for some y. Thus, from Lemma 2 and Lemma 3, we have
Γ | y : tree� | ∅ � M ′ : τ . From Lemma 4, we have Γ | Ψ | ∅ � M ′ : τ ,
which finishes up this case.

– The case T-Fix3 can be proved in a similar way to the case T-Fix2.

Proof of Theorem 1. Induction on the definition of −→∗.
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• Suppose that (M, ∅, ∅, x 
→ V ) = (M ′, B′,H ′, S′). First, note that ∅ | ∅ |
x : tree1 � (∅, ∅, (x 
→ V )) holds. From ∅ | ∅ | x : tree1 � M : tree+ and
Theorem 2, M is either a value or (M, ∅, ∅, (x 
→ V )) is reducible. Suppose
M is a value. Then, from Lemma 1, M is a tree value. If (M, ∅, ∅, (x 
→ V ))
is reducible, the statement of the theorem obviously holds.

• Suppose (M, ∅, ∅, x 
→ V ) −→ (M1, B1,H1, S1) −→∗ (M ′, B′,H ′, S′). Then,
from Theorem 3, there exist Γ1,Ψ1 and Δ1 such that Γ1 | Ψ1 | Δ1 � M1 :
tree+ and Γ1 | Ψ1 | Δ1 � (B1,H1, S1). Thus, from I.H., M ′ is a tree value
or (M ′, B′,H ′, S′) is reducible.
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Editor’s Recommendation

The authors proposed a type-based method for automatic transformation of
tree-processing programs into efficient stream-processing ones. The proposed
methods produces a program that allows a finer control over memory allocation
of the tree structure, and therefore gives an improved memory efficiency in run-
time. The improvement is achieved by a refinement of ordered linear types.
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