大村道郎^{†1} 瀬能浩史^{†2,*1} 上田真琴^{†2}

近年の大規模集積回路における製造技術の進歩にともない,MCMに加えて,回路 素子自体を 3 次元に集積化するものや,複数のダイを貼り合わせて 3 次元化する 3 次 元 VLSI に関する研究が発表されるようになってきている.これらの LSI では,3 次 元の配線が重要になってくる.格子スタイナー木は,LSI 概略配線設計等にも応用さ れる重要な問題の 1 つであり,ナノ CMOS 時代の配線に関しては,折れ曲がり(ビ ア)が増えると,配線遅延が増え回路の性能を落とす等,様々な悪影響を及ぼす.し かし,最小限の折れ曲がりを持つ格子スタイナー木では障害物を柔軟に避けることが できない.本論文では,空間上に 3 次元座標を持つ点 S の集合,それらを結ぶユーク リッド最小全域木,障害物が与えられたとき,木の枝を X 軸,Y 軸,および Z 軸に 平行な線分に置き換え,最小 +1 の折れ曲がりを使うことにより,配線長が短く,障 害物がある場合は柔軟に避ける,3 次元最小格子スタイナー木を求める並列遺伝的ア ルゴリズムを提案する.本手法では評価基準に,層を積み重ねる Z 軸方向の長さに重 みを付けた木の長さの合計と木の直径の線形和を用いた.本論文では提案する.本

Parallel Genetic Algorithm for 3-D Rectilinear Steiner Tree

Michiroh Ohmura,^{†1} Hirofumi Senou^{†2,*1} and Makoto Ueda^{†2}

As manufacturing technology has advanced in recent years, 3-D VLSI in which circuits or dies are piled on top of each other, MCM and so on have been the focus of attention. A rectilinear Steiner tree is one of the most important problems that are applied to the global routing in LSI or other designs. In the routing design, wire bends (vias) had various bad influences such as propagation delay and therefore degrade circuit performance. However, rectilinear Steiner trees with the minimum number of bends cannot avoid obstacles flexibly. In this paper, we propose a parallel genetic algorithm which can obtain a rectilinear Steiner tree with short wire length and can avoid obstacles flexibly by using minimum+1 bends. In our method, given a set of points S in the space, a Euclidean minimum spanning tree for S, and obstacles, each edge of the Euclidean spanning tree is replaced by the segments which are parallel to the X-axis, the Y-axis, or the Z-axis. For the evaluation criteria, a linear sum of the wire length and diameter of the rectilinear Steiner tree is used. The experimental results to show the effectiveness of the proposed method are also shown.

1. はじめに

最小格子スタイナー木¹⁾を求める問題は,LSI 概略配線設計等にも応用される重要な問題 の1つである.この問題は一般的に,現実的な時間で解決することが困難な NP 困難²⁾と 呼ばれる問題に属するため,様々なヒューリスティック手法が用いられる.障害物が与えら れる場合もますます重要な問題となっており,これまで多くの手法が提案されているが,通 常の最小格子スタイナー木よりさらに難しい問題となるため,多項式時間の最適アルゴリズ ムは存在しそうにない^{3),4)}.

障害物を考慮した2次元の格子スタイナー木に関する研究として,文献3)ではトラック グラフと蟻コロニー最適化アルゴリズムに基づいた手法を提案しており,ビア数の最小化に ついても考慮している.しかし,3次元のスタイナー木については議論していない.

文献 4) では CDCTree を提案することにより, 文献 3) より短い配線長を求めている.文献 5), 6) は迷路法に基づいており, 文献 7) では OARG というグラフを提案し, 3 ステップで効率良く配線長の短い格子スタイナー木を求めている.また, 文献 8) では Geosteiner に基づき,最適解を求めている.文献 4)-8) では, 3 次元のスタイナー木や, ビア数に対応する折れ曲がり数の制限は考慮していない.

文献 9) では層ごとの配線方向を設定し,各層に2次元の障害物が存在する多層配線モデ ルを用いており,ビア数の最小化についても考慮している.しかし,通常の3次元スタイ ナー木にそのまま適用することは難しい.

Faculty of Engineering, Hiroshima Institute of Technology

 †2 広島工業大学大学院工学研究科 Graduate School of Engineering, Hiroshima Institute of Technology
*1 現在,新川電機株式会社

^{†1} 広島工業大学工学部

Presently with Shinkawa Electric Co., Ltd.

遺伝的アルゴリズムに基づく手法としては,文献 10),11)等がある.文献 10)では格子 スタイナー木のセットを求めており,エルモア遅延も取り入れている.文献 11)では平面上 に与えられた各点を結ぶ全域木を求め,その枝を1本の水平配線と1本の垂直配線に置き 換えることで,格子スタイナー木を求めている.文献 10),11)では,3次元のスタイナー 木や,ビア数に対応する折れ曲がり数の制限は考慮していない.また,文献 3)-11)のいず れの文献においても,アルゴリズムの並列化に関しては議論されていない.

近年の大規模集積回路における製造技術の進歩にともない, MCM¹²⁾ に加えて,回路素子 自体を3次元に集積化するものや,複数のダイを貼り合わせ,スルーシリコンビア(TSV) を用いてダイの間を接続する3次元 VLSI に関する研究が行われるようになってきてい る^{13),14)}. これらの LSI では3次元の端子位置を考慮した3次元の配線¹⁵⁾ が重要となって くるとともに,3次元の障害物も考慮する必要がある.また,ナノ CMOS 時代のこれらの 配線に関して,折れ曲がり数に対応するビア数が増えると,配線遅延が増え,回路の性能 を落とすと考えられ,ネットごとのビア数の最小化が重要になる¹²⁾.他にも製造歩留まり の低下,チップ面積の増加,コストの増加等の悪影響があるため,これまでビア数最小化 に関して多くの研究が発表されてきた¹⁶⁾.したがって,折れ曲がりを制限した格子スタイ ナー木の構成が有効であると考えられる.しかし最小限の折れ曲がりを持つ格子スタイナー 木¹¹⁾を単純に3次元化した手法では障害物を柔軟に避けることができない.

本論文では,空間上に3次元座標を持つ点Sの集合,それらを結ぶユークリッド最小全域 木,障害物が与えられたとき,木の枝をX軸,Y軸,およびZ軸に平行な線分に置き換え ることにより,3次元最小格子スタイナー木を求める並列遺伝的アルゴリズムを提案する. このとき最小+1の折れ曲がりを使い,共有部分が長くなりそうな分岐点を求めてそこで折 れ曲がることにより配線長を短くしようと試み,障害物がある場合はより柔軟に障害物を避 ける.本手法では評価基準として,層(2.1節参照)を積み重ねるZ軸方向の長さに重みを 付けた木の長さの合計と木の直径の線形和を用いた.

実験の結果,まず障害物がない場合,文献11)を単純に3次元化した従来手法に比べて, 提案手法では平均2.0%コストが小さい3次元格子スタイナー木を求めることができた.ま た小さいデータについて配線長の最適解と比較した場合,従来手法では平均2.6%増加した のに対し,提案手法ではわずか平均0.6%の増加に抑えることができた.さらに障害物があ る場合,従来手法に比べて,2.9%コストが小さい3次元格子スタイナー木を求めることが できた.本論文では,提案するアルゴリズムと性能評価のために行った実験結果について述 べる.

2. 準 備

初めに準備として,まず3次元 VLSI について述べ,次に本論文で問題の入力として仮定するユークリッド全域木,さらに問題の出力となる3次元格子スタイナー木について説明する. 2.1 3次元 VLSI

本論文で考える 3 次元 VLSI では,複数のダイを貼り合わせることにより 3 次元に積層 し,スルーシリコンビア(TSV)を用いてダイの間を接続する.以下では 1 枚のダイのこ とを単に層と呼ぶ.図1の例では 3 層が積み重なっており,TSV に対応する Z 方向の配線 はそれらの層を貫通することができる.ここでは,大まかな配線経路(概略配線)としての 格子スタイナー木を考えるので,単純化し,配線は十分細かい 3 次元の立方格子上で行うも のと仮定するが,以降では単に 3 次元空間と記す.

2.2 ユークリッド全域木

重み付き無向グラフを G = (V, E, w) で表す.ここで V は節点の集合, E は枝の集合, w は各辺 $e \in E$ に重みを割り当てる関数とする.

3次元空間上に点 v の集合 S が与えられるとする. 各点 v_i の座標を (x_i, y_i, z_i) とすると き, v_i , v_j 間のユークリッド距離 YD_{ij} を $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$ と定義する. また, S に含まれる点の総数を |S| と表す,

Sに属する任意の $2 \le v_i$, v_j 間のユークリッド距離 YD_{ij} をグラフ G の枝の重みに対応 させると, |S| 個の節点からなる完全グラフを構成することができる.このグラフ上での全 域木を, S に対するユークリッド全域木 (Euclidean spanning tree)と呼ぶ.

本論文では,ナノ CMOS 時代の高性能な配線を実現するため,空間上に与えられた3次 元座標を持つ点だけではなく,配線形状を考慮し,なんらかの基準で最小化された,それら

の点を結ぶユークリッド全域木が与えられると仮定する.

[例1] 本論文で仮定するユークリッド全域木の例を図2に示す.

2.3 格子スタイナー木

3次元空間上で2つの点を接続するX軸,Y軸,またはZ軸に平行な線分を,ここでは 単に,線分と呼ぶことにする.このとき,連結,非サイクルで,端点でしか交わらない線分 の集まりを格子木(rectilinear tree)と呼ぶ.また,3次元空間上にn個の点の集合Sが与 えられるとする.それらn個の点が,含まれるいずれかの線分の端点となる格子木を,格 子スタイナー木(rectilinear Steiner tree)と呼ぶ¹⁾.

格子スタイナー木において,木を構成する線分の長さの和を配線長 L と呼び,それが最小となるものを最小格子スタイナー木 (rectilinear Steiner minimum tree)と呼ぶ.

また,格子スタイナー木において,任意の2端子間に対する経路の長さの最大値を直径 ϕ と定義する.この直径は格子スタイナー木が表す配線のうち,遅延の最大値に関係し, ϕ が小さいと,端子間の遅延の差が減少する.配線長 L を最小化しただけでは,特定の端子間の配線にしわ寄せが行き,大きな遅延によって全体の性能を落とす可能性があるので,直径 ϕ を小さくすることによって遅延の差が大きくならないようにしている.本論文では,この格子スタイナー木について議論する.

[例2] 本論文で議論する格子スタイナー木の例を図3に示す.

問題の定式化

スタイナー木は,LSIの概略配線等に応用される.3次元の配線において,層に対して垂直(Z軸方向)に通過する配線は,同一層内(X軸,Y軸方向)の配線に比べてコストがかかると考えられる.そこで,本論文では,直径と配線長に対して,Z方向の配線に重みk(≥ 1)をかけることにより,このコストを考慮する.また,配線長と直径を同時に考慮す

るため,本論文では, $f = c1 \cdot L + c2 \cdot \phi$ を評価の基準とする.ただし,Lは総配線長, ϕ は直径,c1,c2は定数であり, $c1 \gg c2$ とする.

また,ナノ CMOS 時代のこれらの配線に関しては,折れ曲がり数に対応するビア数が増えると,配線遅延が増え,回路の性能を落とすと考えられる¹²⁾ため,折れ曲がりの少ない 配線が求められる.

一般に,ユークリッド全域木の枝が,X軸,Y軸,またはZ軸に平行な同一直線上にある 場合,その枝自身が,1本の線分となり,折れ曲がりなしで結ぶことができる.ユークリッ ド全域木の枝が,XY平面,YZ平面,またはZX平面に平行な同一面上にある場合,2本 の線分を用いて,折れ曲がり1回で結ぶことができる.一般に3次元のユークリッド全域 木の枝は,x線分,y線分,z線分の3本を用いて,折れ曲がり2回で結ぶことができる.

ユークリッド全域木の各枝 $\{s,t\}$ に対し,点s,t ($\in S$)を結ぶ線分の折れ曲がりを最小(2以下)に制限した場合,折れ曲がり点は図 4(a)に示す,s,tを囲む最小の直方体の角の部分に存在する.もし,折れ曲がりを1つ追加すれば,同図(b)に示すように,さらに柔軟に障害物(図中のr1,r2)を避けることができる.このとき節点s,tを含む最小の直方体の外を迂回しないとすると,折れ曲がり点は,直方体の辺上に存在する.これは,面内部や直方体内部で折れ曲がると3回の折れ曲がりでは接続できないことから明らかである. [問題 4ST]入力として,①3次元座標を持つ点Sの集合と,②それらを結ぶ3次元のユークリッド全域木,③直方体の障害物の集合Rが与えられる.このとき,以下の条件を満たし,目的関数を最小化する,3次元格子スタイナー木を求めよ.

(条件)①3次元格子スタイナー木を構成する線分は,障害物を通過しない.

② ユークリッド全域木の各枝 $\{s,t\}$ に対し,点s, $t \in S$)を結ぶ線分の折れ曲がり数は 最小 +1 以下.③ 線分は,s,tを囲む最小の直方体の外に出ない.

(目的関数) $f = c1 \cdot L + c2 \cdot \phi$ (ただし, L, ϕ は Z 方向の重みを考慮した配線長, 直径 であり, c1, c2 は定数で, $c1 \gg c2$ とする.)

4. 提案手法

4.1 コード化

提案する遺伝的アルゴリズムでは、与えられた3次元ユークリッド全域木の枝 $\{s,t\}$ を, x線分,y線分,z線分に置き換える.今s = (x1,y1,z1),t = (x2,y2,z2)とするとき, $x1 \neq x2$,かつ, $y1 \neq y2$,かつ, $z1 \neq z2$ である場合,x線分,y線分,z線分をそれぞれ 1本ずつ用いれば、折れ曲がり数最小(この場合2回)で置き換えることができる.この xyz,xzy,yxz,yzx,zxy,zyxの6通りの順列を遺伝子の前半とする.

問題の条件は,折れ曲がり数最小 +1 以下なので,もう1本線分を用いることができる. そこで,提案手法では,x線分,y線分,またはz線分のいずれか1本を2本に分割する.X 軸,Y軸,およびZ軸に平行な4つの線分の順列として,xが2回現れる場合,4!/2!=12 通りあるが,このうち,xxのように続く場合を除くと,次の6通りが得られる.①xyXz, ②xyzX,③xzXy,④xzyX,⑤yxzX,⑥zxyX . y,zが2回現れる場合について も同様で,計18通りの順列が考えられる.これを先ほどのx,y,z線分の6通りの順列を 表す遺伝子前半に対して,重複しないよう,3つずつ振り分け,遺伝子の後半に対応させる. 順列と遺伝子を表1に示す.ただし,図中,文中の太字は重複している文字を表す.

したがって,各個体の遺伝子は2つの部分から構成される.各遺伝子の前半は0~5の数字 で,基本的な6通りの線分の順列を表し,後半は0~2の数字で,分割した線分を用いた折れ 曲がり方を表す.これを使ってできるだけ線分を共有し,障害物がある場合はそれを避ける.

提案手法では,ユークリッド全域木の枝を折れ曲がりの少ない4つの線分に置き換えると き,すべての順列について置き換える代わりに,表1の遺伝子によって線分の順列を決め る.また,遺伝子では決まらない,1つの線分を分割する座標については,5章の最適解と の比較で説明する3次元のHanan グリッド上のあらゆる位置で線分を分割する代わりに, 4.2節で説明する分岐点を求めてそこで線分を分割する.

4.2 分岐点と手法の概要

今, 共通の節点 *s* を持つユークリッド全域木の 2 つの枝 $a_i = \{s,t\}$, $a_j = \{s,u\}$ を, x, y, sたは z 軸に平行な線分で接続する場合を考える.ここでは遺伝子を考えず, 線分が通る可能性がある直方体のみに注目する.

節点s,tを含む最小の直方体と節点s,uを含む最小の直方体の位置関係は,以下の(a)~

表 1 順列と遺伝子 Table 1 Permutations and genes.						
後半 前半	0	1	2			
0 (xyz)	xy X z	xyzX	xyz y			
1 (xzy)	xz X y	xzyX	xzy Z			
2 (yxz)	yx y z	yxz y	yxzX			
3 (yzx)	yz y x	yzx y	yzx Z			
4 (zxy)	zx Z y	zxy Z	zxyX			
5 (zyx)	zy Z x	zyx Z	zyx y			

(d) に分けて考えることができる(図5参照).以下では線分をまったく共有できない(a)の場合を除く.

(a) 2 つの直方体が点 s のみで接している場合:線分をまったく共有できない.

(b) 節点 s を含む1辺のみで接している場合:最大で線分1本の共有ができる.

(c) 節点 s を含む面で接している場合:最大で線分2本の共有ができる.

(d) 節点 s を含む直方体どうしが重なる場合:最大で線分3本の共有ができる.

節点 s, t, u の座標をそれぞれ (xs, ys, zs), (xt, yt, zt), (xu, yu, zu) とする.x 座標に ついて非減少順にソートした結果を (x1, x2, x3), y 座標, z 座標についても同様であると すると, 2 つの枝 a_i , a_j に対する分岐点 D_{ij} を (x2, y2, z2) と定義する.

枝が a_i , a_j の2つしかなく分岐点 D_{ij} が与えられる場合を考える.このとき提案手法において,分岐点 D_{ij} は線分を分割する座標を与える.すなわち,x線分はx2で,y線分,z線分は,それぞれy2,z2で分割する.ただし,線分の順序は遺伝子に依存し, D_{ij} は遺伝子を考慮せずに決めているので, D_{ij} の位置で必ず分岐できるわけではない.

[例3] 図6において, $\{s,t\}$ の遺伝子が "xzyZ" でありz線分がz2の位置で分割され, $\{s,u\}$ の遺伝子が "xzXy" でありx線分がx2の位置で分割されるとき,折れ曲がる各線

Fig. 5 Relationship of the positions between two rectangular solids.

分の座標は,以下のようになる.ここで,zs < zu < ztよりz2 = zu,またxs < xt < xuよりx2 = xtとなる.この例では,実際に分岐する点(x2, ys, z2)は D_{ij} とは異なる.

 $\{s,t\}:\mathbf{x}$ 線分 (xs,ys,zs)–(xt,ys,zs), z 線分 (xt,ys,zs)–(xt,ys,z2) ,

y 線分 (xt,ys,z2)–(xt,yt,z2) , z 線分 (xt,yt,z2)–(xt,yt,zt)

 $\{s,u\}$: x 線分 (xs, ys, zs)–(x2, ys, zs), z 線分 (x2, ys, zs)–(x2, ys, zu),

x 線分 (x2, ys, zu) - (xu, ys, zu), y 線分 (xu, ys, zu) - (xu, yu, zu)

ー般に 1 つの枝 a_i に対し, 複数の枝 $a_m, \dots, a_j, \dots, a_n$ との間に複数の分岐点 $D_{im}, \dots, D_{ij}, \dots, D_{in}$ が求まる.1 つの枝 a_i に対し,分岐点 $D_{im}, \dots, D_{ij}, \dots, D_{in}$ に対する線分の分割をすべて行うと時間がかかる.そこで,提案手法では1 つの枝 a_i ごとに,

他の枝とは関係なく,1つの分割位置を決定したい.その分割位置を与える分岐点を D_i と

表す.以下に,分岐点 D_i の求め方を説明する.

今, 共通の節点 s の座標を (x_s, y_s, z_s) , D_{ij} の座標を (x_D, y_D, z_D) するとき, s, D_{ij} 間 の (3次元の)マンハッタン距離を $|x_s - x_D| + |y_s - y_D| + |z_s - z_D|$ と定義する.このとき s, D_{ij} 間のマンハッタン距離が大きくなるほど, 共有する線分を長くできる可能性がある.

今,ユークリッド全域木の枝の集合 A に属するすべての枝の組に対し,共通点 s と分岐 点間のマンハッタン距離が最も大きくなる分岐点を D_{pq} とする.このとき,枝の組 $\{a_p, a_q\}$ は分岐点 D_{pq} で線分の分割座標を与えると,共有線分を長くできる可能性がある.本手法 では a_p に対する分岐点 D_p を,他の枝に関係なく,この D_{pq} とする.また a_q に対する分 岐点 D_q も,他の枝に関係なく,この D_{pq} とする.また a_q に対する分 岐点 D_q も,他の枝に関係なく,この D_{pq} とする.枝の集合 A から a_p , a_q を除き,同様の 手順を繰り返し,1 つの枝 a_i に対する 1 つの分岐点 D_i を求める(手続き Find_D 参照).

提案手法では,求まった D_i の座標を用いて各枝 a_i ごとに線分の分割座標を決める.す なわち枝 a_i に対する分岐点 D_i の座標を (x2, y2, z2) とすると, x 線分は x2 で, y 線分, z 線分は,それぞれ y2, z2 で分割する. a_i に対し分岐点 D_i が決められていない場合は,分 割位置を線分の終端とし(すなわち分割せず),単純に最小の折れ曲がりで接続する.手続 き Find_D を以下に示す.

[手続き Find_D]

ユークリッド全域木の枝の集合を A とする.

S1: A に属する任意の枝の組 $\{a_i, a_j\}$ に対し,もし共通の節点sを持ち,かつ, (a) でなければ,分岐点 D_{ij} を求める.

 S2: *s*, *D_{ij}* 間のマンハッタン距離の非増加順に *D_{ij}* をソートし,得られた系列を *E* とする.
S3: 系列 *E* の先頭から *D_{ij}* を取り出し, *a_i*, *a_j* がともに *A* の要素であれば S3.1, S3.2 を 実行する.

S3.1: D_{ij} を a_i に対する分岐点 D_i とし,同様に D_{ij} を a_j に対する分岐点 D_j とする. S3.2: 集合 A から a_i , a_j を,系列 E から D_{ij} を取り除く.

S4:系列 E が空であれば終了,そうでなければ S3 へ.

枝の総数を |A| とすると,枝の組の総数は $|A| \times (|A| - 1)/2$ となる.それらに対し定数 回の計算で分岐点 D_{ij} を求めるには $O(|A|^2)$ の計算時間がかかる.さらにそれらをソート し,定数回の計算で D_i を求めるには, $O(|A|^2 \log |A|^2)$,すなわち $O(|A|^2 \log |A|)$ の計算時間がかかる.

障害物がある場合は分割位置を移動して,それを避ける.2点*s*,*t*の座標を(*x*1,*y*1,*z*1), (*x*2,*y*2,*z*2)とし,遺伝子前半が"0"(*xyz*)の場合を考える.遺伝子後半も"0"のとき,置 き換える線分は,(*xyXz*)となり,x線分を,障害物に当たる手前の座標*xr*で分割する (図7(a)参照).*s*,*t*間の各線分は次のようになる.

 $\{s,t\}$: x 線分 (x1,y1,z1)–(xr,y1,z1), y 線分 (xr,y1,z1)–(xr,y2,z1),

x 線分 (xr, y2, z1)–(x2, y2, z1), z 線分 (x2, y2, z1)–(x2, y2, z2)

同様に,遺伝子が "01" (*xyzX*) のとき,および "02" (*xyzY*) のときの例を,それぞれ 図 7 (b), (c) に示す.

以下に提案する並列遺伝的アルゴリズム ST4B の概要を示す.なお,母集団の分割は島 モデル¹⁷⁾に基づいている.

S1:初期集団をランダムに生成する.

- S2:母集団を,島と呼ばれる複数のサブ母集団に分割する.
- S3:各島ごとに,与えられた世代数(50世代)に達するまで,以下のS3.1-S3.2を繰り返す. S3.1:与えられた回数(10回)だけS3.1.1-S3.1.7を繰り返す.
 - S3.1.1:手続き Find_D によってユークリッド全域木の各枝 *a_i* に対する分岐点 *D_i* を求める.
 - S3.1.2: ユークリッド最小全域木の2点s,t間を遺伝子に基づきX軸,Y軸,および Z軸に平行な線分の並びに置き換える.このとき分岐点D_iが決められている 場合は,その座標を使って線分を分割し,決められていない場合は分割位置を 線分の終端とする(すなわち分割しない).
 - S3.1.3:障害物をチェックする.線分が障害物を通過するとき,線分の分割座標を移動し それを避ける.もし避けることができなかったときは,配線長を無限大とする. S3.1.4:各個体の適応度を求める.
 - S3.1.5: 適応度により,次世代の個体を選択する.
 - S3.1.6: 交叉により,個体を2個ずつ組み合わせ,新しい個体を生成する.
 - S3.1.7:ある確率で突然変異させる.

S3.2:移住を行う(図8参照).

© 2011 Information Processing Society of Japan

情報処理学会論文誌 Vol. 52 No. 2 756-765 (Feb. 2011)

S4:すべての島において,最も適応度の高いスタイナー木の座標を出力し,終了する.

S3.1.3 の障害物チェックでは,各線分に対し,各障害物(直方体)の座標で比較して,X 座標,Y座標,およびZ座標で同時に重なりを持つかどうかを,1つずつ総当たりで調べる.ユークリッド全域木の節点数をnとすると,その枝数はn-1となり,ある遺伝子によって置き換えられる線分数は4(n-1)でO(n)となる.一方障害物の数をRとすると座標の数はその定数倍で,結局,ある1つの遺伝子に対し,障害物チェックにO(nR)の計算時間がかかる.ただし,平面走査法¹⁸⁾等を応用して探索範囲を制限すると,もっと効率良くチェックできると考えられる.

本手法で用いる遺伝的アルゴリズムでは,以下の遺伝的操作を用いる.まず,選択では, エリート保存戦略を用いる.次に交叉では,一点交叉を用いる.交叉確率は0.6 と設定した.さらに突然変異では,任意の確率により,0~5,および0~2の数字で表される遺伝子 を強制的に変化させる操作を行う.突然変異の起こる確率は0.05 に設定した.

5. 実験結果

提案する並列遺伝的アルゴリズムおよび従来手法を, Intel Core 2 Duo(2.4 GHz), 2 GByte メモリの計算機1台をサーバノード,同計算機2台(計4コア)を計算ノードとし, Pelican HPC v1.7 上で, Open MPI 1.2.3, GNU C++ 4.3.1 を用いてノード数4の島モデルとし て実現した.各手法におけるGAでは,個体数を20×4,世代数50とし,移住は10世代 ごとに行った(S3.1の回数=10).

まず,障害物がない場合について,折れ曲がり2回以下で接続する従来手法¹¹⁾を単純に 3次元化した手法と本手法を比較した.実験は節点数n = 5から150の,乱数を用いて作 成した3次元座標を持つユークリッド最小全域木それぞれ10個ずつに対し,配線長L,直 径 ϕ ,問題の目的関数に対応するコスト *Cost*,実行時間*Time*(sec)の各平均について比較 した.ここで,配線長のZ軸方向の係数は2.0,目的関数の係数は,c1 = 10.0,c2 = 1.0とした.実験の結果,従来手法に比べてコストで平均2.0%小さい3次元格子スタイナー木 を求めることができた(表2参照).これは,提案手法で手続きFind_Dを用いて決めた, 1つ余分な折れ曲がり座標を使うことにより,線分の共有部分を長くすることができ,結果 としてコストを小さくすることができたためと考えられる.

また,小さいデータについては配線長 L の最適解とも比較した.一般に格子スタイナー 木の最適解は,3次元以上についても Hanan グリッド上に存在する¹⁹⁾.そこで枝を置き換 える線分のすべての並びに対し,与えられたユークリッド全域木の節点座標から求めた3次

	表 2 障害物がない場合	
Table 2	Testing cases with no obstacles.	

	(Convent	ional metho	od		Proposed method		
11	L	φ	Cost	Time	L	φ	Cost	Time
5	318.4	266.2	3450.2	0.086	312.5	219.4	3344.4	0.151
6	398.5	273.0	4258.0	0.116	393.1	248.0	4179.0	0.171
7	443.5	312.5	4747.5	0.139	439.0	290.5	4680.5	0.219
8	466.6	349.6	5015.6	0.139	455.8	310.4	4868.4	0.245
9	551.2	374.3	5886.3	0.197	542.4	348.8	5772.8	0.297
10	583.1	366.9	6197.9	0.215	574.3	340.9	6083.9	0.331
15	772.6	475.8	8201.8	0.496	762.2	456.5	8078.5	0.582
50	1764.5	732.0	18377.0	10.258	1736.6	690.4	18056.4	10.544
100	2700.7	932.0	27939.0	76.801	2654.8	888.2	27436.2	77.105
150	3470.4	908.9	35612.9	255.156	3419.0	861.6	35051.6	256.591

表 3 最適解との比較 Table 3 Comparison with optimal solutions.

Opt. value		Convention	nal method	Proposed method		
L	Time	L	Time	L	Time	

5	238.1	0.167	245.4	0.077	239.8	0.133
6	290.4	11.518	296.7	0.077	291.8	0.193
7	328.7	753.339	335.7	0.131	331.3	0.239
8	345.4	37114.050	356.1	0.149	347.0	0.240

元の Hanan グリッドで線分を分割することにより最適解を求めた.ここで,配線長の Z 軸 方向の係数は 1.0 とした.なお,最適解は,同計算機 24 台(計 48 コア)を計算ノードとし た Pelican HPC v1.7 上で,48 ノードの並列計算で求めた.節点数 n = 5 から 8 の同様の データに対し,従来手法では最適解に比べて配線長で平均 2.6%の増加で 3 次元格子スタイ ナー木を求めていたのに対し,提案手法では最適解に比べて平均 0.6%の増加に抑えること ができた(表3 参照).問題の定式化では最小+1 の折れ曲がりを許しているが,+1 の折

表 4 障害物がある場合 Table 4 Testing cases with obstacles.

	(Conventional method				Proposed method		
П	L	φ	Cost	Time	L	φ	Cost	Time
5	319.7	266.5	3463.5	0.106	312.5	218.6	3343.6	0.230
6	398.9	273.4	4262.4	0.125	393.1	250.7	4181.7	0.250
7	445.2	315.7	4767.7	0.193	437.9	292.1	4671.1	0.276
8	475.4	360.8	5114.8	0.209	461.4	311.5	4925.5	0.298
9	560.3	382.4	5985.4	0.260	540.1	349.4	5750.4	0.359
10	586.3	369.7	6232.7	0.300	576.7	337.7	6104.7	0.394
15	784.5	481.9	8326.9	0.544	766.0	452.8	8112.8	0.682
50	1794.3	742.2	18685.2	10.438	1738.5	692.9	18077.9	10.844
100	2748.4	948.8	28432.8	77.236	2668.0	900.9	27580.9	77.664
150	3521.0	949.7	36159.7	255.574	3424.1	880.8	35121.8	257.517

れ曲がり座標には自由度があり,自明には求まらない.最適解ではすべての座標候補を試しており,節点数8では37,114秒,すなわち10時間以上かかっている.提案手法では,手続きFind_Dによってこの座標を求め,最適に近い解を得ている.一方,従来手法では自明で求まる最小の折れ曲がり座標の組合せのみで格子スタイナー木を構成したため,最適解からのずれが大きくなったと考えられる.

次に同じデータに対し、乱数を用いて障害物を 150 個発生させた場合について実験を行った.これ以降、係数は再び、配線長の Z 軸方向は 2.0、目的関数は c1 = 10.0、c2 = 1.0 とした.従来手法に比べてコストは平均 2.9%小さく、障害物を避けた 3 次元格子スタイナー木を求めることができた(表4参照).これは提案手法において障害物がある場合においても、手続き Find_D と障害物の座標による移動で決めた 1 つ余分な折れ曲がり座標を使い、線分の共有部分を長くすることができたためと考えられる.図9 に与えられた節点数が 100のときの障害物と得られた格子スタイナー木を示す.ここで細い斜めの線は与えられたユークリッド全域木を、太い線は得られた 3 次元格子スタイナー木を表す.

さらに障害物を増やした場合について実験を行った(表5参照).障害物を増やしていくと,避けきれずに解が得られない場合が増えてくる.与えられるユークリッド全域木の節点数を150とし,障害物 R を 50 から 2,100 まで増やしたときに,それぞれ 10 個のデータに

図 9 障害物と格子スタイナー木 Fig. 9 Obstacles and rectilinear Steiner tree.

Convention	nal (n=150)	Proposed (n=150)		
R	Rate	R	Rate	
50	100%	150	100%	
100	100%	300	100%	
150	100%	500	90%	
200	70%	800	90%	
250	50%	1000	80%	
300	30%	1200	70%	
350	10%	1500	50%	
400	10%	1800	20%	
450	10%	2000	10%	
500	0%	2100	0%	

表 5 さらに障害物がある場合 Table 5 Testing cases with more obstacles.

	表 6 非並列との比較
Table 6	Comparison with non-parallel version.

n	I	Proposed	, Non-para	llel		Proposed, Parallel			
11	L	φ	Cost	Time	L	φ	Cost	Time	
5	312.5	219.3	3344.3	0.253	312.5	218.6	3343.6	0.230	
6	393.3	249.8	4182.8	0.316	393.1	250.7	4181.7	0.250	
7	438.1	292.6	4673.6	0.420	437.9	292.1	4671.1	0.276	
8	462.5	313.2	4938.2	0.506	461.4	311.5	4925.5	0.298	
9	540.8	343.1	5751.1	0.646	540.1	349.4	5750.4	0.359	
10	576.1	339.7	6100.7	0.759	576.7	337.7	6104.7	0.394	
15	766.4	448.3	8112.3	1.846	766.0	452.8	8112.8	0.682	
50	1745.3	692.4	18145.4	42.190	1738.5	692.9	18077.9	10.844	
100	2667.3	910.5	27583.5	310.029	2668.0	900.9	27580.9	77.664	
150	3428.1	886.6	35167.6	1019.445	3424.1	880.8	35121.8	257.517	

対し何個の解を得ることができたかを回避率 Rate として,実験を行った.従来手法では, 100%の回避率が得られたのは障害物の数が150までで,500以上では解がまったく得られ なかった.それに対し提案手法では,障害物の数が300まで100%の回避率が得られ,さら に2,000までは1つ以上解が得られた.これは提案手法において,手続き Find_D と障害物 の座標による移動で決めた1つ余分な折れ曲がり座標を使い,十分に障害物を回避するこ とができたためと考えられる.

最後に,提案手法における並列化の効果について実験を行った.なお,文献 11)では並列 化に関しては議論されていない.個体数を 20×4 ,世代数を $50 \ge 0$,10世代ごとに移住を 行った並列の場合と,個体数を 80,世代数を 50で非並列の場合を比較した(表 6 参照). 非並列の場合に比べて,並列の場合,10個のデータのうち 8 個のデータについて解がわず かに良くなったが,平均するとわずか 0.08%程度の違いであった.計算時間については,nが 10以下の小さいデータについては,すべて高速化率が 2.0未満,並列化効率が 0.5未満 であったが,n が 15以上のデータについてのみ平均をとると,高速化率が 3.6,並列化効 率が $0.9 \ge x$ 0, 非常に効率良く計算ができていることが確認できた.

以上の実験結果により,提案手法が有効であることを検証することができた.

6. まとめと今後の課題

本論文では,空間上に3次元座標を持つ点Sの集合,それらを結ぶユークリッド最小全 域木,障害物が与えられたとき,木の枝をX軸,Y軸,およびZ軸に平行な線分に置き換 え,最小+1の折れ曲がりを使うことにより,共有部分が長くなりそうな分岐点を求めてそ こで折れ曲がることにより配線長を短くしようと試み,障害物がある場合はより柔軟に障害 物を避ける,3次元最小格子スタイナー木を求める並列遺伝的アルゴリズムを提案した.

実験の結果,文献11)を単純に3次元化した従来手法に比べて,障害物がない場合,最 適解と比較した場合,障害物がある場合,障害物が非常に多い場合のいずれでも,提案手法 が有効であることを検証した.また,並列化の効果も示した.今後の課題としては,アルゴ リズムの高速化等がある.

参考文献

- 1) Prömel, H.J. and Steger, A.: The Steiner Tree Problem: A Tour through Graphs, Algorithms and Complexity, Vieweg (2002).
- 2) Garey, M.R. and Johnson, D.S.: COMPUTERS AND INTRACTABILITY: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company (1979).
- Hu, Y., Jing, T., Hong, X., Feng, Z., Hu, X. and Yan, G.: An-OARSMan: Obstacle-Avoiding Routing Tree Construction with Good Length Performance, *Proc. ASP-DAC'05*, IEEE, pp.7–12 (2005).
- 4) Shi, Y., Jing, T., He, L., Feng, Z. and Hong, X.: CDCTree: Novel Obstacle-Avoiding Routing Tree Construction based on Current Driven Circuit Model, *Proc.* ASP-DAC'06, IEEE, pp.630–635 (2006).
- Hentschke, R.F., Narasimham, J., Johann, M.O. and Reis, R.L.: Maze Routing Steiner Trees with Effective Critical Sink Optimization, *Proc. ISPD'07*, ACM, pp.135–142 (2007).
- Li, L. and Young, E.F.Y.: Obstacle-avoiding Rectilinear Steiner Tree Construction, Proc. ICCAD'08, IEEE, pp.523–538 (2008).
- 7) Liu, C.-H., Yuan, S.-Y., Kuo, S.-Y. and Wang, S.-C.: High-performance obstacleavoiding rectilinear Steiner tree construction, *Trans. Design Automation of Electronic Systems*, Vol.14, No.3, pp.45:1–45:29 (2009).
- Li, L., Qian, Z. and Young, E.F.Y.: Generation of Optimal Obstacle-Avoiding Rectilinear Steiner Minimum Tree, *Proc. ICCAD'09*, pp.21–25 (2009).
- Liu, C.-H., Chou, Y.-H., Yuan, S.-Y. and Kuo, S.-Y.: Efficient Multilayer Routing Based on Obstacle-Avioding Preferred Direction Steiner Tree, Proc. ISPD'08,

pp.118–125 (2008).

- Wakabayashi, S.: A Genetic Algorithm for Rectilinear Steiner Tree Problem in VLSI Interconnect Layout, *IPSJ Journal*, Vol.43, No.5, pp.1315–1322 (2002).
- Hare, R.M. and Julstrom, B.A.: A Spanning-Tree-Based Genetic Algorithm for Some Instances of the Rectilinear Steiner Problem with Obstacles, *Proc. ACM* SAC'03, pp.725–729 (2003).
- 12) Sherwani, N., Bhingarde, S. and Panyam, A.: *Routing in the Third Dimension*, IEEE Press (1995).
- 13) Xie, Y., Cong, J. and Sapatnekar, S. (Eds.): *Three-Dimensional Integrated Circuit* Design – EDA, Design and Microarchitectures, Springer (2010).
- 14) Pavlidis, V.F. and Friedman, E.G.: *THREE-DIMENSIONAL INTEGRATED CIRCUIT DESIGN*, Morgan Kaufman (2009).
- 15) Tong, C.C. and Wu, C.-L.: Routing in a Three-Dimensional Chip, *IEEE Trans. Comput.*, Vol.44, No.1, pp.106–117 (1995).
- 16) Sarrafzandeh, M. and Wong, C.K.: AN INTRODUCTION TO VLSI PHYSICAL DESIGN, McGraw Hill (1994).
- 17) Whitely, D., Rana, S. and Heckendorn, R.B.: The Island Model Genetic Algorithm: On Separability, Population Size and Convergence, *Journal of Computing* and Information Technology, Vol.7, pp.33–47 (1998).
- 18) 築山修治: アルゴリズムとデータ構造の設計法,コロナ社 (2003).
- Snyder, T.L.: On the Exact Location of Steiner Points in General Dimension, SIAM J. Comput., Vol.21, No.1, pp.163–180 (1992).

(平成 22 年 6 月 14 日受付)(平成 22 年 11 月 5 日採録)

大村 道郎(正会員)

1985年広島大学工学部第二類(電気系)卒業.1991年同大学大学院工 学研究科博士課程後期単位修得後退学.同年広島工業大学工学部助手,講 師を経て,2000年同大学助教授(准教授).工学博士.VLSI設計自動化, VLSI設計教育に関する研究に従事.電子情報通信学会,IEEE,ACM 各 会員.

瀬能 浩史(正会員)

2008年広島工業大学工学部電気・ディジタルシステム工学科卒業.2010 年同大学大学院工学研究科博士前期課程修了.現在,新川電機株式会社勤務.在学中は,VLSI設計自動化に関する研究に従事.

上田 真琴

2010年広島工業大学工学部電気・ディジタルシステム工学科卒業.現 在,同大学大学院工学研究科博士前期課程在学中.VLSI設計自動化に関 する研究に従事.