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In service composition environments, users and service entity hosts are always
geometrically distributed. Therefore the performance of the service response
might be poor when users invoke services that are physically far from them.
Such issues are difficult to be solved with traditional caching technologies in the
areas of contents delivery network because service providers do not always allow
their service entities to be copied to all service entity hosts. In this paper, we
deal with the service invocation control problem considering the above issues.
First, we formally model the service invocation problem in service composi-
tion environments. Then we design several dynamic service invocation control
mechanisms to improve the response performance of atomic services and com-
posite services. The evaluation results show that (1) the mechanism for atomic
services that considers both potential users for most service invocation requests
and potential users for continuous requests can best improve the response per-
formance; (2) the mechanism for composite services that considers the group
characteristics of atomic services can improve the response performance more
than other mechanisms; and (3) our proposed dynamic mechanisms can bring
a stable response performance from the perspective of users.

1. Introduction

Service composition environments enable people to create, manage services, and
share their services with each other, while users can get additional value of ser-
vices by composing them based on various requirements. In such environments,
service users and service entity hosts are always geometrically distributed, while
service providers have different policies to provide their services. The Language
Grid 1) is a typical example of such kind of service composition environment in
the domain of language services. It uses the collective intelligence approach to
gather service users and providers together, and coordinate their incentives.

The features of the service composition environments also bring several prob-
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lems. First, since users and service entity hosts are distributed in different areas,
the invocation response of services might be very slow if users invoke services
that are physically far from them. Moreover, when a user invokes a composite
service that consists of several atomic services, the invocation response is always
much slower if all those atomic services are located in service entity hosts that
are far from each other. Second, service providers always have their own poli-
cies to provide services, among which the most typical one is about the service
license issues. Therefore, it is difficult to apply some previous approaches like
caching technologies in the areas of contents delivery network (CDN) 2) to the
service composition environments since service entities are not always allowed to
be copied to all service entity hosts due to license constraints.

This paper aims to deal with the service invocation problem to improve the
service response performance in the service composition environments. To achieve
this goal, we consider the following research issues in this paper.

(1) Modeling the service invocation problem
To clarify the problems, we first propose a formal model of the service in-

vocation problem in the service composition environment considering different
stakeholders, different types and status of services, and so on. We further de-
fine several response performance indexes for evaluating the average invocation
response time for services and the service response stability.

(2) Designing dynamic service invocation control mechanisms
We aim to design dynamic service invocation control mechanisms to improve

the response performance of services while considering service license constraints.
We propose the approach of dynamically controlling (switching) service entity
hosts for executing services based on the invocation request from users. Then, we
further design a series of mechanisms for the dynamic service invocation control
of both atomic services and composite services.

The rest of the paper is organized as follows: Section 2 provides a formal
model of the service invocation control problem based on an example in the
Language Grid. In Section 3, dynamic service invocation control mechanisms are
proposed for both atomic services and composite services. Section 4 introduces
the evaluation and analysis with a series of experiments. Section 5 introduces
some related work, followed by the conclusion in the final section.
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425 Designing Dynamic Control Mechanisms for Service Invocation

2. Service Invocation Problem

2.1 An Example of Service Invocation Problem
We first use an example of the Language Grid 1) to show the service invocation

problem. The Language Grid provides a service composition environment for
users to share, create and combine Web services in language domains (language
services). One reason why we use the Language Grid as an example is that it is an
existing environment from which we can get real data and conduct experiments
for our proposed approaches. What is more important is that the Language
Grid satisfies our research target very well: multiple service users and multiple
service entity hosts are geometrically distributed in the Language Grid; service
providers have their own policies to provide services especially the policies on
service licenses. Therefore, although using the example of the Language Grid,
this research is suitable for all other similar service composition environments.

To investigate the response performance, experiments have been conducted by
a Language Grid user from Thailand. The user invokes an atomic service and a
composite service which is composed of three atomic services on the Language
Grid. Each service is invoked for 10 times from both the service entity host in
Thailand that is close to the user and the service entity host in Japan that is
far from the user. The result shows that it takes 2.54 times and 4.87 times of
response time for invoking an atomic service and a composite service respectively
on the host in Japan than on the host in Thailand for the Thai user. Similar
experiments have been conducted between Language Grid users in Japan and in
Denmark. When invoking an atomic service on the service entity host in Japan,
the user from Denmark receives the response 5.39 times slower than the user from
Japan. Therefore, it is necessary to consider how to improve the performance of
the service invocation response in service composition environments.

2.2 Definitions of Service Invocation Problem
To clarify the problem, we describe several definitions in this section.
Definition 1 Service composition environment is defined by a tuple SC =

(U, S,H,H∗,W, P, PC, T ) where
(1) U = {u1, u2, . . . , un} is a finite set of users that invoke services;
(2) S = {s1, s2, . . . , sm} is a finite set of atomic services;

(3) H = {h1, h2, . . . , hk} is a finite set of service entity hosts where services are
executed;
(4) H∗ = {< u1, h

∗(u1) >,< u2, h
∗(u2) >, . . . , < un, h∗(un) >} is a finite set of

the nearest service entity hosts to each user with the fastest response;
(5) W = {w1, w2, . . . , wj} is a finite set of composite services, where each com-
posite service wi is composed of a set of atomic services {s1, s2, . . . , sl};
(6) P = {p1, p2, . . . , pq} is a finite set of service providers;
(7) PC = {PCp1 , PCp2 , . . . , PCpq

} is the set of policies from all service providers,
where the policy set of each service provider pi consists of policies for providing its
atomic services PCpi

= {< s1, policy1 >,< s2, policy2 >, . . . , < sv, policyv >};
(8) T = {t1, t2, . . . , to} is a set of invocation time periods.

As for policies of service providers, we mainly focus on the policy of providing
services with limited service licenses.

Definition 2 Current service entity hosts. Let n be the maximum license
number available for an atomic service s which is described as the policy of
its provider, the set of current service entity hosts for s is defined as Hc(s) =
{hc

1(s), h
c
2(s), . . . , h

c
n(s)} where the service entity of s is currently deployed and

is invocable by users in the service composition environment.
Definition 3 Invocation request sequence. During a certain invocation time

period t, the invocation request sequence to an atomic service s is represented by a
set of sequential vectors Rt

s={< rt
s(1), ua1 >;< rt

s(2), ua2 >; . . . ;< rt
s(n), uan

>}
where uai

and uaj
can be the same user or different users, and each invocation

request is represented by rt
s(i) (i = 1, 2, . . . , n).

Definition 4 Invocation response time. We use c(u, s, h) to denote the in-
vocation response time for an atomic service s from a user u when s is exe-
cuted in the service entity host h. Let Rt

s={< rt
s(1), ua1 >;< rt

s(2), ua2 >; . . . ;
< rt

s(n), uan
>} be the invocation request sequence to an atomic service s in

the invocation time period t and let hc
i (s) be the nearest service entity host

that s is available to be executed in the ith invocation for user uai
, we use

c(rt
s(i)) (i = 1, 2, . . . , n) to define the response time of each invocation, and we

have c(rt
s(i)) = c(uai

, s, hc
i (s)).

Based on Definition 3, the invocation request sequence to a composite service
w in the invocation time period t can be represented by Rt

w in the same form
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as the atomic service. Each composite service w is composed of a group of
atomic services {s1, s2, . . . , sk} with some control flows between them such as
the sequential relation, the parallel relation, the selective relation and so on.
Therefore, the invocation request to an atomic service s might be a request of
s itself or a request of the composite service w where s is among the atomic
services that compose w. The invocation response time of a composite service w

can be gained from the aggregation of the invocation response time of the atomic
services that compose it. In this research, we use the aggregation approach based
on workflow patterns 3),4). For example, we can calculate the response time of
each invocation to the composite service w as c(rt

w(i)) =
∑k

j=1 c(uai
, sj , h

c
i (sj))

if the composite service is composed by a sequential pattern. If the pattern is
a parallel one (AND-AND), we can calculate the response time as c(rt

w(i)) =
max{c(uai

, s1, h
c
i (s1)), c(uai

, s2, h
c
i (s2)), . . . , c(uai

, sk, hc
i (sk))}.

We further define some performance indexes for service invocation.
Definition 5 Average invocation response time for service. Let Rt

s = {<
rt
s(1), ua1 >;< rt

s(2), ua2 >; . . . ;< rt
s(n), uan

>} be the invocation request se-
quence to an atomic service s in the invocation time period t, we use ct

s to
define the average invocation response time for the atomic service s, and we have
ct
s = 1

n

∑n
i=1 c(rt

s(i)). Similarly, we can define the average invocation response
time for composite service w as ct

w = 1
n

∑n
i=1 c(rt

w(i)).
Definition 6 Average invocation response time for a user. Let S be the fi-

nite set of atomic services (S = {s1, s2, . . . , sm}) and Rt
si

be the invocation
request sequence to an atomic service si in the invocation time period t, we
use ct

u to define the average invocation response time for a user u, and we have
ct
u = 1

z

∑m
i=1

∑
uai

=u c(rt
si

(i)) (z is the total number of invocation requests for
all services in the time period t from u).

Definition 7 Average invocation response difference rate for all users. Let
U be the finite set of users (U = {u1, u2, . . . , um}) and ct

ui
be the average invo-

cation response time for the user ui, we define the average invocation response
difference rate for all users in the invocation time period t as dt, and we have

dt =
∑m

i=1
|ct

ui
− 1

m

∑m

i=1
ct

ui
|∑m

i=1
ct

ui

.

The smaller the value of the average invocation response difference rate is, the

more stable service composition environment is for all users, i.e., the average
response time for all services is less different between users.

3. Dynamic Service Invocation Control Mechanisms

To improve the response performance of the service invocation, it is important
to make a user invoke service entities on nearer service entity hosts. However,
since service entities cannot be deployed in all service entity hosts due to the
license policies from the service providers, it is necessary to dynamically control
the service invocation on service entity hosts, more specifically, to switch the hosts
for requested service entities based on each request or each user. We propose
several dynamic service invocation control mechanisms in this section for an
atomic service and a composite service. We assume that the following information
can be acquired in service composition environments: (1) the nearest service host
to a user u with the fastest response; (2) the current nearest service host to a
user u where the service s can be invoked; (3) atomic services that compose a
composite service w; (4) the history request count for invoking an atomic service
s or a composite service w by a user u at the time period t; and (5) the request
reservation information for invoking an atomic service s or a composite service
w by a user u at the time period t.

3.1 Invocation Control for Atomic Service
3.1.1 Request-based Invocation Control
Invoking service entities on nearer service entity hosts can directly improve the

response performance. Therefore, the most straight approach for the invocation
control of an atomic service s is to dynamically make the service entity of s

available for invocation on the nearest service host to the user u for each request
rt
s(i), which is called request-based invocation control. With the limitation of the

maximum possible license number of service entities, it is necessary to control
the service entity hosts for executing the service entity. This can be realized by
the service entity migration 5),6) among service hosts or the license control using a
framework like the floating license 7). Every time a request for service invocation
comes, the requested service entity is always controlled to be available on the
nearest service entity host to the user as shown in Algorithm 1.

However, the biggest challenge of the request-based invocation control is that
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there might be frequent changes of service host of the service s by the service
migration or license control and therefore it always costs much time to control
the availability of the service entity among service hosts.

Algorithm 1 Request-based invocation control mechanism for atomic service
procedure AtomicServiceInvocation1 (s, t)
1: for all service request rt

s(i) do
2: h∗(uai

)← nearestServiceHost(uai
)

3: if h∗(uai
) /∈ Hc(s) then

4: hc
i (s)← currentNearestServiceHost(uai

, s)
5: Switch availability of s from service host hc

i (s) to h∗(uai
)

6: H(s)← (H(s) \ {hc
i (s)}) ∪ {h∗(uai

)}
7: end if

8: end for

3.1.2 User-based Invocation Control
Since invocation control of switching service entity hosts for executing services

always costs time, a more effective control mechanism is expected. Therefore, we
propose the user-based invocation control mechanism to reduce the switching fre-
quency among service hosts, where the availability of service entities is controlled
periodically based on the service invocation trends from users. Users are always
from different areas in service composition environments such as the Language
Grid. We have observed that the invocation requests from users vary during
different time periods. Based on the historical invocation request information
and the invocation request reservation information from users, we can anticipate
the service invocation request trend from users in different time periods. There-
fore, the user-based invocation control mechanism is designed to minimize the
frequency of switching service entity hosts for executing service entities. As is
described in Algorithm 2, based on the information of a possible invocation
request ut[ui][s] of users for each time period, service entities of a service s are
always dynamically controlled to be available on the service hosts which are near-
est to the users U∗(s) with the most possible invocation requests of s. Switching

service entity hosts for executing service entities always occur at the beginning
of each time period, while there is no switching of the service entity availability
during the time period.

Algorithm 2 User-based invocation control mechanism for atomic service
procedure AtomicServiceInvocation2 (s, t)
1: for all user ui do
2: ut[ui][s]← historyRequest(ui, s, t)
3: if (hasReservedRequest(ui, s, t) = 1) then
4: ut[ui][s]← reservedRequest(ui, s, t)
5: end if

6: end for
7: Sort ut[ui][s] for all users
8: U∗(s)← φ

9: Add users with the |Hc(s)| maximum ut[ui][s] to U∗(s) (|Hc(s)| is service
entity number of s)

10: for all ui ∈ U∗(s) do
11: h∗(ui)← nearestServiceHost(ui)
12: if (h∗(ui) /∈ Hc(s)) then
13: hc

i (s)← currentNearestServiceHost(ui, s)
14: Switch availability of s from service host hc

i (s) to h∗(ui)
15: Hc(s)← (Hc(s) \ {hc

i (s)}) ∪ {h∗(ui)}
16: end if

17: end for
18: for all service request rt

s(i) do
19: Update historyRequest(uai

, s, t)
20: end for

However, although a minimum cost of switching of a service entity is required
in the user-based invocation control, it might lack some flexibility to deal with
the cases where real service invocation request situation is not the same as what
is anticipated.
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3.1.3 Hybrid Invocation Control
To consider both the switching cost of service hosts and the flexibility of han-

dling different service invocation request situations in real cases, we propose the
hybrid invocation control mechanism by combining the above two approaches for
different cases, which is shown in Algorithm 3.

Algorithm 3 Hybrid invocation control mechanism for atomic service
procedure AtomicServiceInvocation3 (s, t)
1: AtomicServiceInvocation2 (s, t)
2: H0(s)← Hc(s)
3: cr∗ ← 1
4: Set cr(s) (control bound of a continuous request for s from the same user)
5: for all service request rt

s(i) do
6: if (i > 1) then
7: if (uai

= uai−1) then
8: cr∗ ← cr∗ + 1
9: else
10: cr∗ ← 1
11: end if
12: end if
13: if cr∗ > cr(s) then
14: h∗(uai

)← nearestServiceHost(uai
)

15: if h∗(uai
) /∈ Hc(s) then

16: hc
i (s)← currentNearestServiceHost(uai

, s)
17: Switch availability of s from service host hc

i (s) to h∗(uai
)

18: Hc(s)← Hc(s) ∪ {h∗(uai
)} − {hc

i (s)}
19: end if
20: else if uai

∈ U∗(s) then
21: Switch availability of s so that the current set of service entity host

returns to H0(s)
22: end if

23: end for

For each time period, the service entity of a service s is initially controlled
based on the user-based invocation control mechanism where service entities are
switched to be available on the service hosts that are nearest to the users with the
most potential requests. During the time period, service invocation requests are
monitored in real time. If situations become different from what is anticipated,
the available service entities will be dynamically switched to the nearest service
host to the user that has continuous requests of the service when the request
number exceeds the control bound cr(s).

3.2 Invocation Control for Composite Services
3.2.1 Individual Invocation Control
Service composition environments provide users with additional values of var-

ious new services by composing atomic services. Composite services are always
used more frequently than atomic services. A simple invocation control mech-
anism for a composite service w can be realized by applying invocation control
mechanisms for all individual atomic services S(w) = {s1, s2, . . . , sn} that com-
pose the composite service w. The average response time for invoking a composite
service w can be expected to be reduced by applying an invocation control mech-
anism for each individual atomic service si(i = 1, 2, . . . , n). Algorithm 4 shows
the individual control using the hybrid invocation mechanism for each atomic
service.

Algorithm 4 Individual invocation control mechanism for composite service
procedure IndividualInvocation (w, t)
1: S(w)← servicesInWorkflow(w)
2: for all service si ∈ S(w) do
3: AtomicServiceInvocation3 (si, t)

4: end for

However, since the individual invocation control mechanism does not consider
the group characteristics of atomic services, applying optimal invocation control
mechanisms for atomic services individually does not guarantee that it is also
optimal for the whole composite service.
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3.2.2 Group Invocation Control
Since each composite service consists of a group of atomic services, we propose

the group invocation control mechanism for a composite service based on the
group characteristics of atomic services. That is to say, the group invocation
control considers the group of atomic services that compose a composite service
as an integral part instead of individuals. For example, if an atomic service sa,
an atomic service sb and an atomic service sc are used together in a composite
service w by users, then these three services can be considered as a service group
when the invocation control policies are decided in the service composition en-
vironment. If we only consider the composite service w, we can create the same
three algorithms as is described in Section 3.1 that are applied in sa, sb and sc si-
multaneously (we call CompositeServiceInvocation1 (w, t), CompositeServiceIn-
vocation2 (w, t) and CompositeServiceInvocation3 (w, t)). For example, Compos-
iteServiceInvocation1 (w, t) can be realized by Algorithm 5, which is modified
from AtomicServiceInvocation1 (s, t) (Algorithm 1). Similarly, we can real-
ize CompositeServiceInvocation2 (w, t) and CompositeServiceInvocation3 (w, t)
based on the modification of AtomicServiceInvocation2 (s, t) (Algorithm 2) and
AtomicServiceInvocation3 (s, t) (Algorithm 3).

Algorithm 5 Request-based invocation control mechanism for composite service
procedure CompositeServiceInvocation1 (w, t)
1: S(w)← servicesInWorkflow(w)
2: for all workflow request rt

w(i) do
3: h∗(uai

)← nearestServiceHost(uai
)

4: for all service sk ∈ S(w) do
5: if h∗(uai

) /∈ Hc(sk) then
6: hc

i (sk)← currentNearestServiceHost(uai
, sk)

7: Switch availability of sk from the service host hc
i (sk) to h∗(uai

)
8: H(sk)← (H(sk) \ {hc

i (sk)}) ∪ {h∗(uai
)}

9: end if
10: end for

11: end for

For the atomic services (sa, sb and sc) that compose the composite service,
they may be invoked by users as either atomic services separately or a composite
service w. Therefore, it is necessary to divide all the invocations to an atomic
service into two parts: one part is for the atomic service invocation and the other
is for the composite service invocation. For the composite service invocation part,
we use the composite service invocation that is applied to all composed atomic
services together. For the atomic service invocation part, we use the atomic
service invocation that is applied to all consisted atomic services separately. Al-
gorithm 6 shows the group control based on the hybrid invocation mechanism
for atomic services and composite services.

Algorithm 6 Group invocation control mechanism for composite service
procedure GroupInvocation (w, t)
1: S(w)← servicesInWorkflow(w)
2: for all service sk ∈ S(w) do
3: for all service request rt

sk
(i) do

4: if (rt
sk

(i) is an invocation request to the composite service w) then
5: CompositeServiceInvocation3 (w, t)
6: end if
7: if (rt

sk
(i) is an invocation request to the atomic service sk) then

8: AtomicServiceInvocation3 (si, t)
9: end if
10: end for

11: end for

Simply put, the difference between an individual invocation control mechanism
and a group invocation control mechanism lies in that the former applies a dy-
namic invocation control of atomic services separately while the latter considers
the group characteristics of atomic services and always executes a dynamic in-
vocation control for the atomic services simultaneously when the atomic services
are invoked as a composite service. That is to say, in the individual invocation
control mechanism, all the atomic services only apply AtomicServiceInvocation
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(AtomicServiceInvocation1, AtomicServiceInvocation2 or AtomicServiceInvoca-
tion3) whether they are invoked as atomic services or composite services. How-
ever, in the group invocation control mechanism, all the atomic services apply
AtomicServiceInvocation when they are invoked as atomic services whereas they
apply CompositeServiceInvocation when they are invoked as composite services.

4. Experiments and Analysis

4.1 Experiment Settings
To simulate the target service composition environments, it is necessary to

satisfy the basic conditions: multiple service users and multiple service entity
hosts that are geometrically distributed, service license constraints based on the
policies of the service providers. Besides the above basic conditions, we also refer
to the real data from existing service composition environments, the Language
Grid. Therefore, we simulate the service composition environments by setting
the user number n = 100 and the service entity host number m = 20. For each
user ui, the invocation response time of an atomic service s on any service entity
host c(ui, s, hj) (ms) is randomly simulated with different probabilities as follows
which is similar with the response time distribution on the Language Grid: (1)
p(100 ≤ c(ui, s, hj) < 200) = 0.1; (2) p(200 ≤ c(ui, s, hj) < 500) = 0.2; (3)
p(500 ≤ c(ui, s, hj) < 1000) = 0.2; (4) p(1000 ≤ c(ui, s, hj) < 2000) = 0.4;
(5) p(2000 ≤ c(ui, s, hj) < 5000) = 0.1. For each atomic service, the time
cost for switching service entity hosts for executing service entities is randomly
decided between 1,000 ms and 5,000 ms since the time cost varies according to
the approaches (migration of service entity or license control) of switching service
entity hosts. During the experiments, we simulate 10 time periods for each service
and invoke the service for 5,000 times in each time period of simulation. Moreover,
for each invocation request to an atomic service or a composite service, we set 50%
as the probability that the current request is a continuous request from the same
user. For each atomic service si, the sequence of users for invocation requests
is totally random. Each composite service is set to be randomly composed by
three to five atomic services with the sequential patterns and parallel patterns.
The response time for a composite service w from ui can be aggregated by the
invocation response time of atomic services that constitute w.

4.2 Analysis
Based on the experiment settings, we conduct three measurements: the re-

sponse performance of an atomic service, the response performance of an compos-
ite service, and the stability of response performance. The response performance
of a service is evaluated by computing the average service invocation response
time from all users for ten time periods (10*5000 invocations), which is described
in Definition 5.

4.2.1 Response Performance of Atomic Services
For the response performance of atomic services, we conducted four types of

simulations. In each type, we have a different configuration for the percentage of
requests that are made by users who make the most amounts of requests (Max
Request User: 25%, 50%, 75%, random). For example, Max Request User: 25%
means that in this type of simulation, 25% of the total requests are from the
users with most amounts of requests in the time periods. In that case, the other
75% requests are randomly distributed among the rest of users.

From the results shown in Fig. 1, we have the following observations. First,
we find that the hybrid invocation control mechanism that considers both poten-
tial users for most service invocation requests and potential users for continuous
requests always improves the response performance and performs the best. The
reason lies in that the hybrid invocation control mechanism costs very little for
switching service entity hosts while it provides flexibility to consider the dynamic
changes of user requests as well. Second, the request-based invocation control
mechanism and the user-based invocation control mechanism decrease the re-
sponse performance when the requests from users are totally random because
the cost of switching service entity hosts is too much for the request-based in-
vocation control mechanism and there are no dominant users for the user-based
invocation control mechanism. However, when there exist dominant users (Max
Request User: 25%, 50%, 75%), the user-based invocation control mechanism can
improve the response performance in most cases, while the request-based invo-
cation control mechanism can improve the response performance only when the
original response time is large. Moreover, the response performance of user-based
invocation control mechanism approaches that of the hybrid invocation control
mechanism if the users who have the most amounts of requests for service invo-
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Fig. 1 Simulation result of response performance of atomic services.

cation are significantly dominant (Max Request User: 50%, 75%).
4.2.2 Response Performance of Composite Services
Since the hybrid invocation control mechanism for atomic service can bring

the best response performance of atomic services, we use it in the individual
invocation control mechanism and the group invocation control mechanism for
composite services. In Fig. 2, Service 1, Service 2 and Service 3 compose the
composite service we use for the experiments with sequential patterns.

The result in Table 1 shows that using the group invocation control for com-
posite service can get a better response performance comparing to the individual
invocation control. Second, the results in Fig. 2 show that using the group in-
vocation control for composite service may insignificantly decrease the response
performance for each atomic service. The reasons lie in that the individual in-
vocation control mechanism only considers the optimal invocation mechanism

Fig. 2 Influences of response performance of composite services on response performance of
atomic services.

Table 1 Simulation result of response performance of composite services.

Simulation No Mechanism Individual Control Group Control
1–5,000 4,068 ms 2,890 ms 2,209 ms

5,001–10,000 6,490 ms 3,432 ms 1,788 ms
10,001–15,000 8,643 ms 3,098 ms 1,877 ms
15,001–20,000 3,897 ms 2,678 ms 2,216 ms
20,001–25,000 4,654 ms 2,766 ms 2,358 ms
25,001–30,000 4,357 ms 2,780 ms 2,197 ms
30,001–35,000 9,402 ms 4,222 ms 1,922 ms
35,001–40,000 6,543 ms 3,754 ms 2,302 ms
40,001–45,000 4,789 ms 3,243 ms 2,425 ms
45,001–50,000 6,778 ms 3,544 ms 1,876 ms

Average 5,962 ms 3,241 ms 2,117 ms

of individual atomic services and therefore it is not always optimal for the re-
sponse performance of a composite service, but optimal for each atomic service.
However, the group invocation mechanism always considers the optimal response
performance for the invocation of a composite service, and it is not always optimal
for each individual atomic service. Therefore, when using the group invocation
control mechanism, the response performance of each atomic service decreases as
shown in Fig. 2.

4.2.3 Stability of Response Performance
Table 2 shows the results by using the performance index of the average in-

vocation response difference rate (defined in Definition 7) for 100 users. The
results are based on 10*5000 simulations by comparing the invocation without
dynamic control and the hybrid invocation control mechanism. From the results,
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Table 2 Average invocation response difference rate for 100 users.

Simulation No Mechanism Hybrid Invocation Control
1–5,000 52.70% 23.09%

5,001–10,000 58.91% 19.82%
10,001–15,000 49.89% 21.78%
15,001–20,000 48.12% 25.24%
20,001–25,000 53.45% 20.12%
25,001–30,000 51.17% 19.21%
30,001–35,000 48.97% 21.89%
35,001–40,000 57.72% 24.51%
40,001–45,000 52.33% 21.23%
45,001–50,000 56.71% 17.93%

Average 53.00% 21.48%

we can see that the average invocation response difference rate for each 5,000
simulations ranges from 48.12% to 58.91% when the dynamic invocation control
mechanisms are not applied, which reflects the response time distribution we have
set for the simulation. However, the average invocation response difference rate
decreased to range from 17.93% to 25.24% when applying the hybrid invocation
control mechanisms, which means that the response performance becomes much
more stable.

5. Related Work

QoS-aware service composition has become an important topic in the area of
service composition. Zeng, et al. 8) propose a multidimensional QoS model for
Web service composition and several optimization approaches for service selection
in both static environments and dynamic environments. Although we do not deal
with all the QoS dimensions, we consider the real problems and constraints in
the service composition environments.

Dynamic service deployment and invocation has been discussed in the area of
grid computing, where the issue of efficient and reliable resources sharing is al-
ways the focus 5),9). However, services are always wrapped by resources provided
by various service providers for different purposes in service composition envi-
ronments. Therefore, policies of service providers might bring the constraints of
service license problems that we deal with in this research.

Research efforts on the dynamic service execution control can also be found in

some previous work. Liu, et al. 10) addresses the issue of improving the perfor-
mance of service-based applications. They propose a dynamic service execution
mechanism to explore implicit parallelism at runtime, which is different from
our research focus. One of our significant contributions is that we propose the
service invocation problems that consider the distribution of service users and
service entity hosts, and the policies of service providers.

6. Conclusion

This paper deals with the issues of the service invocation control in service
composition environments considering the service license constraints by service
providers. First, we proposed a formal model for the service invocation problem.
Then, we design dynamic service invocation control mechanisms for both atomic
services and composite service to improve the response performance. Further-
more, several performance indexes are defined to evaluate the response perfor-
mance of atomic services and composite services, and the stability of the response
performance. The experimental results shows that (1) For atomic services, the
hybrid invocation control mechanism that considers both potential users for most
service invocation requests and potential users for continuous requests can best
improve the response performance; (2) For composite services, the group invoca-
tion control can improve the response performance more but may insignificantly
decrease the response performance for each atomic service; and (3) Dynamic in-
vocation control mechanisms can bring a relatively stable response performance
from the perspective of users.

There are also several issues that should be further considered in our future
work. First, more experiments should be conducted by varying simulation con-
figurations to observe the important factors that might affect the performances.
Second, more complicated situations for composite services should be consid-
ered, such as how to deal with the problem that one atomic service might be
simultaneously requested by multiple composite services and so on.

Acknowledgments This work was supported by Strategic Information and
Communications R&D Promotion Programme (SCOPE) from the Ministry of
Internal Affairs and Communications of Japan.

IPSJ Journal Vol. 52 No. 2 424–433 (Feb. 2011) c© 2011 Information Processing Society of Japan



433 Designing Dynamic Control Mechanisms for Service Invocation

References

1) Ishida, T.: Language grid: An infrastructure for intercultural collaboration,
IEEE/IPSJ Symposium on Applications and the Internet (SAINT-06 ), pp.96–100
(2006).

2) Pathan, M. and Buyya, R.: A taxonomy of CDNs, Content Delivery Networks,
pp.33–78 (2008).

3) Jaeger, M., Rojec-Goldmann, G. and Muhl, G.: QoS aggregation for Web service
composition using workflow patterns, Proc. 8th IEEE International Conference on
Enterprise Distributed Object Computing, IEEE Computer Society Washington,
DC, USA, pp.149–159 (2004).

4) Van Der Aalst, W., Ter Hofstede, A., Kiepuszewski, B. and Barros, A.: Workflow
patterns, Distributed and Parallel Databases, Vol.14, No.1, pp.5–51 (2003).

5) Byun, E. and Kim, J.: DynaGrid: A dynamic service deployment and resource mi-
gration framework for WSRF-compliant applications, Parallel Computing, Vol.33,
No.4-5, pp.328–338 (2007).

6) Casati, F. and Shan, M.: Dynamic and adaptive composition of e-services, Inf.
Syst., Vol.26, No.3, pp.143–163 (2001).

7) Bontis, N. and Chung, H.: The evolution of software pricing: From box licenses
to application service provider models, Internet Research: Electronic Networking
Applications and Policy, Vol.10, No.3, pp.246–255 (2000).

8) Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J. and Chang, H.:
QoS-aware middleware for web services composition, IEEE Trans. Softw. Eng.,
Vol.30, No.5, pp.311–327 (2004).

9) Friese, T., Smith, M. and Freisleben, B.: Hot service deployment in an ad hoc grid
environment, Proc. 2nd International Conference on Service Oriented Computing,
ACM, pp.75–83 (2004).

10) Liu, H., Wang, X., Luo, T., Song Li, X. and Li, W.: Improving the performance
of service-based applications by dynamic service execution, 16th Euromicro Con-
ference on Parallel, Distributed and Network-Based Processing, pp.174–182 (2008).

(Received May 31, 2010)
(Accepted November 5, 2010)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.19, pp.52–61.)

Donghui Lin was born in 1982. He received his M.E. degree
in computer science and engineering at Shanghai Jiao Tong Uni-
versity in 2005, and Ph.D. degree in social informatics at Kyoto
University in 2008. He is a researcher of National Institute of In-
formation and Communications Technology, Japan. His research
interests include services computing, multiagent systems and in-
tercultural collaboration. His current work focuses on the QoS

issues in service composition environments, which has been presented in ICSOC
and SCC, the major international conferences in the area of services computing.

Yohei Murakami was born in 1978. He received his Ph.D.
in informatics degree from Kyoto University in 2006. He is a re-
searcher of National Institute of Information and Communications
Technology, Japan. He currently leads the research and develop-
ment of Language Grid project, the purpose of which is to share
language resources as Web services and enable users to create new
services. His research interests lie in services computing and mul-

tiagent systems. He founded the Technical Committee on Services Computing in
the IEICE in 2009.

Masahiro Tanaka was born in 1981. He earned his Ph.D. in
informatics from Kyoto University in 2009. He is a researcher
of National Institute of Information and Communications Tech-
nology, Japan. He is currently working on services computing,
focusing on runtime execution management of Web services. His
achievements about runtime execution framework for composite
Web services have been published at major international confer-

ences in services computing. He also has experiences on development of infras-
tructures for Web service composition and service-based applications.

IPSJ Journal Vol. 52 No. 2 424–433 (Feb. 2011) c© 2011 Information Processing Society of Japan


