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Path relinking is a population-based heuristic that explores the trajectories
in decision space between two elite solutions. It has been successfully used as
a key component of several multi-objective optimizers, especially for solving
bi-objective problems. Its unique characteristic of performing the search in
the objective and decision spaces makes it interesting to study its behavior
in many objective optimization. In this paper, we focus on the behavior of
pure path relinking, propose several variants of the path relinking that vary
on their strategies of selecting solutions, and analyze its performance using
several many-objective NK-landscapes as instances. In general, results of the
study show that the path relinking becomes more effective in improving the
convergence of the algorithm as we increase the number of objectives. Also,
it is shown that the selection strategy associated to path relinking plays an
important role to emphasize either convergence or spread of the algorithm. This
study provides useful insights for practitioners on how to exploit path relinking
to enhance multi-objective evolutionary algorithms for complex combinatorial
optimization problems.

1. Introduction

Multi-objective optimization is the process of simultaneously finding the set of
solutions to problems with two or more objectives. It is often called as many
objective optimization when there are at least four objectives. In recent years,
many-objective optimization has attracted the interest of many researchers be-
cause of the poor performance of the state-of-the-art multi-objective evolutionary
algorithms (MOEAs) that are known to be efficient in solving multi-objective
problems. One main reason for the inability of MOEAs to generate good solu-
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tions is the substantially large number of solutions in every Pareto front levels
when the number of objectives of the problem is high 1)–3). Since most of these
MOEAs use ranking by Pareto dominance, ranking becomes coarser, thus weak-
ening their convergence property as they assign the same ranks to a good many
solutions 4)–7).

Several approaches have been proposed to improve the performances of
MOEAs. Most of them introduce improvements that are either based on ranking
improvement, dimensionality reduction, use of preference information or weighted
sums of objective functions 7), or objective space partitioning. To improve ranking
among solutions, one may modify the concept of Pareto dominance. Examples
of this strategy include the contracting or expanding the dominance area of so-
lutions 8) and using a relaxed form of Pareto dominance via ε-dominance 9) or
α-domination 10). In dimensionality reduction, the number of objectives are re-
duced by removing the objectives that are considered redundant using principal
component analysis 11),12) or using a mathematical model that seeks the minimum
objective subset while maintaining the dominance structure with a given error,
or that finds the objective subset with given size and having the least change in
dominance structure 13). Methods that use preference information aim to provide
MOEAs with a reference point so that it can focus its search on a specific region
of the Pareto front 14),15). One may also use weighted sums of objectives that
forms a scalarizing function as supplement to the fitness values of the individual
solutions or as a strategy to obtain the optimal solutions in the convex regions
of the search space 16),17). Recently, a strategy that performs the search on the
subspaces obtained by partitioning the objective space has been implemented 18).
All these approaches are focused mainly on the management of the objective
space taking no or just slight consideration of the decision space. In this paper,
we study the behavior of a population-based evolutionary procedure that creates
solutions by doing its search in both the objective and decision spaces. This
procedure is called path relinking 19).

Path relinking was originally proposed by Glover (1996) as a strategy that in-
tensifies the search between elite solutions obtained by a tabu search approach.
Because of its intrinsic characteristic of forming a sequence of solutions between
and around elite solutions, it has been used to solve several multi-objective combi-
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natorial optimization problems as strategy to enhance the performance of several
MOEAs. For example, it has been used effectively as the second phase of a
two phase algorithm. The first phase usually applies weighted sum-based meth-
ods to find efficient solutions. Using these efficient solutions, the second phase
applies path relinking to find other efficient solutions located around them or
between two efficient solutions 20)–22). In some other applications, path relinking
is embedded in ant colony approach 23), genetic algorithms 24) and memetic algo-
rithms 25) to either improve the solutions obtained by these methods or search for
more promising solutions. Path relinking has also been used as post-optimization
strategy that improves the solutions obtained by metaheuristic approaches 26).

Although the efficacy of path relinking in solving multi-objective problems has
been demonstrated, it has not been used as a stand-alone algorithm but only
as key component of different optimizers. For example, the results about the
contribution of path relinking reported in Ref. 24) and Ref. 23) were generated
also by local search procedures. Moreover, except for Ref. 27) where it considered
four-objective knapsack problems, it has not been applied to solve complex many-
objective optimization problems.

In this study, we focus on pure path relinking and propose different variants
for implementing path relinking for complex combinatorial optimization prob-
lems having many objectives. The performances of the different path relinking
variants will be useful tools for describing the behavior of path relinking. We
also investigate how the different selection strategies associated to path relinking
can emphasize either convergence or spread of the algorithm.

To analyze the performance of path relinking on multi- and many-objective
combinatorial optimization problems, we use the MNK-landscape models 1),5) as
test instances. We study the behaviour of path relinking on landscapes with
2 ≤ M ≤ 10 objectives, N = 100 bits, and 0 ≤ Ki ≤ 50, i = 1, 2 . . . , M epistatic
interactions. We also assess the performance of path relinking using the results of
conventional NSGA-II 28) as reference. For each combination of M , N and Ki, 50
different landscape models are used. It is important to note that we do not aim to
propose a pure path relinking as alternative search procedure for many-objective
optimization problems. Rather, we study the performance of path relinking on
MNK-landscape to provide useful insights for practitioners on how to exploit the

strengths of path relinking to enhance existing MOEAs.

2. Many-Objective Optimization and MNK-Landscapes

Multi-objective optimization (MO) involves simultaneously optimizing a set of
two or more, and often conflicting, objective functions. Formally, it can be stated
as follows �1:

max
x∈X f(x) = (f1(x), f2(x), . . . , fM (x)) (1)

where X ⊂ RN is the feasible space, f : RN → RM is a vector-valued objective
function, fi denote the individual objective functions and M is the number of
objectives. When M is 4 or more, MO is commonly referred to as many-objective
optimization (MaO). Moreover, when X ⊂ ZN , MO is known as multi-objective
combinatorial optimization (MOCO).

In general, there are several optimal solutions, also called efficient, Pareto op-
timal or nondominated solutions, to MO problems. A solution x is nondomi-
nated if there exists no other feasible solution y such that fi(y) ≥ fi(x), for
i = 1, 2, . . . ,M and fi(y) > fi(x) for some i. If such solution y exists, then we
say that y dominates x (y � x). The image of the nondominated solutions in
the objective space is called Pareto front or efficient frontier.

Other dominance relations between any two feasible solutions x and y also
exist. For example, y strictly dominates x (y �� x) if f(y) > f(x) �2 and y

weakly dominates x (y � x) if f(y) ≥ f(x). These dominance relations can be
extended to approximation sets – sets whose elements do not weakly dominate
each other. For example, set A weakly dominates set B (A � B) if every element
of B is weakly dominated by at least one element of A.

The MNK-landscape is an extension of Kauffman’s NK-landscape models of
epistatic interaction 29) to multi-objective combinatorial optimization problems.
Formally, the MNK-landscape is defined as a vector function mapping binary
strings of length N into M real numbers f = (f1, f2, . . . , fM ) : ZN → RM , where
Z = {0, 1}. K = {K1,K2, . . . ,KM} is a set of integers where each Ki gives the
number of bits in the string that interact with each bit in the ith landscape. Each

�1 Throughout the paper, we assume maximization of the objective functions.
�2 The relation f(y) > f(x) means that fi(y) > fi(x) ∀i = 1, 2, . . . , M . Likewise, f(y) ≥

f(x) implies fi(y) ≥ fi(x) ∀i = 1, 2, . . . , M .
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fi(·) is given by the average of N functions by
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are the Ki bits interacting with xj in string x.

3. General Concepts of Path Relinking

Path relinking (PR) is a population-based search technique that generates a
sequence of solutions in the decision space by exploring the trajectories that con-
nect two high quality solutions called the initiating solution and guiding solution.
Starting from the initiating solution, it creates new solutions by performing moves
in the decision space that progressively incorporate the attributes (e.g., edges,
nodes and sequence positions) of the guiding solution 30) that are not present in
the initiating solution. Since there are usually several paths that can be formed
between any two solutions, a selection strategy that guide which path to realize
is necessary.

In general, PR requires the following: (i) neighborhood structure for the moves,
(ii) solution attribute, (iii) a metric that measures the difference in attributes be-
tween two solutions, (iv) selection criteria for initiating and guiding solutions,
and (v) selection criteria for the path. The neighborhood structure, solution
attribute and its metric are usually problem dependent while the initiating and
guiding solutions are characterized as high quality solutions. For the multi-
objective case, these solutions are usually drawn from the set of potentially ef-
ficient solutions 21)–24),27),31)–33). In Ref. 27), it considered solutions generated by
a multi-start approach that are not weakly dominated by a reference point as
initiating and guiding solutions. For the path selection strategy, one may use
scalarizing function 23)–25),33) or random selection from only among efficient or
promising candidate solutions 22).

In most applications of PR to multi-objective case, the candidate solutions
that are considered efficient with respect to some heuristic bounds are allowed
to undergo local search procedure to generate better solutions 20)–23). Moreover,
some apply PR on many pairs of solutions in the potentially efficient set before

Fig. 1 Path relinking links the initiating solution (11110) and the guiding solution (11001)
by performing moves on the solution 11110 that progressively generate a path of in-
termediate solutions that are more similar to the solution 11001. The shaded cells
represent the difference between the solutions and the solution 11001 while the solid
line represents the path that is chosen by a path selection strategy.

updating this set with the newly found nondominated solutions.
Figure 1 provides an illustration for the path relinking. In this figure, we

assume that the solutions are represented as binary strings and the attributes
associated to them are their bit-values. Thus, the shaded cells are the positions
where the initiating and guiding solutions differ in their bit-values. Using a 1-
bit flip operator, the neighborhood solutions of the initiating solution (11110)
that have more similar attributes as the guiding solution (11001), i.e., solutions
that reduce the Hamming distance between the two solutions, are visited and
further explored. Since there may be several of these 1-bit neighbors, a path
selection strategy chooses one of them. The selected solution, which is 11100
in the example, then becomes the current initiating solution and the process
continues. The selected solutions, also referred to as intermediate solutions, form
a path from the initiating to guiding solution which is the solid line in Fig. 1.

At this point, it is worthy to mention that the crossover operator called deter-
ministic multi-step crossover fusion (dMSXF) 34) has resemblance to PR. Like
PR, dMSXF is carried-out between two parent solutions p1 and p2 and performs
the search by progressively tracking the neighborhood of p1 in the direction of p2.
Although dMSXF also performs moves on p1 that creates solutions more similar
to p2, it is different from PR since it allows moves that simultaneously introduce
two or more attributes of p2. However, it is possible to mimic the PR by further
restricting the moves associated to dMSXF.
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4. Path Relinking for Many-objective Optimization

4.1 General Flow of the Path Relinking
Like any other implementation of path relinking in multi-objective case, we

perform path relinking between two solutions that belong to the set P of poten-
tially efficient solutions. However, since we deal primarily with many-objective
problems where the size of P could be large, we propose selecting the initiating
and guiding solutions only from the extreme solutions. Moreover, we use several
forms of scalarizing functions to select intermediate solutions to form the path.
Whereas all applications perform local search procedures within path relinking
to intensify the search towards the optimal Pareto front, we do not implement
any such procedure in order to clearly reveal the behavior of pure path relinking
algorithm. Figure 2 provides the algorithmic framework for the path relinking
used in this study.

The proposed path relinking algorithm starts by creating a randomly generated

1: P ←Generate();
2: repeat {/*iteration loop*/}
3: I ←Define(P);
4: S ← {};
5: for all (is, gs) ∈ I do
6: repeat {/*Path Generation*/}
7: F ←PathRelink(is, gs);
8: x←PathSelect(F ,ω);
9: S ← S ∪ {x};
10: is ← x;
11: until γ(is, gs) < d0

12: end for
13: P ← Nondominated(P ∪ S);
14: P ←Select(P, l);

15: until termination condition is satisfied
16: return nondominated set P

Fig. 2 Path relinking algorithm.

distinct extreme solutions that initially forms the set P of potentially efficient
solutions via the Generate procedure. In every iteration, the procedure Define

then initializes the set I of pairs of initiating (is) and guiding (gs) solutions from
the set P ′ ⊂ P that only contains all the extreme solutions. It forms the is-gs

pairs via two proposed methods discussed in Section 4.2.
For each element (is, gs) of I, two procedures– PathRelink and PathSelect,

iteratively generate the set S of intermediate solutions until is have near “similar”
attributes as gs (Lines 6-11). Thus, if γ is a metric that measures the difference
in attributes between is and gs, then the generation of intermediate solutions
between the current is-gs pair terminates when the γ value between the two
solutions reaches a threshold given by d0. In many cases, d0 is set to 1 which
indicate that is is now one move closer to gs.

When all the is-gs pairs are done generating their intermediate solutions, the
set P is updated by removing its solutions that are dominated by S and taking
all solutions in S that are not weakly dominated by any other solutions in P and
S (Line 13).

Since the number of nondominated solutions in every Pareto front increases
dramatically with M 5), it is important to have an archiving strategy that controls
the size (say, less than l) of the set P (Line 14). The method Select performs
the archiving by selecting the M extreme solutions of P and randomly selecting
solutions from the remaining l −M solutions when P > l. Otherwise, Select
chooses all solutions of P. The value of l is set to 100.

4.2 Initiating and Guiding Solutions
In defining the is-gs pairs, we propose two methods called Cycle and Pair.

Since the is-gs pairs are to be drawn from the set P ′ of extreme solutions,
the two methods try to generate good extremes solutions and uniformly cover
the Pareto front. However, they differ in the way they sample the solutions.
Pair samples the extreme solutions as either is or gs in random manner while
Cycle uses all the extreme solutions both as is and gs according to some definite
rule. Thus, the stochastic nature of the Pair allows for a more aggressive search
between and around the regions of some of the pair of extreme solutions while
Cycle balances the search for better solutions between and around all pairs of
extreme solutions.
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(a) Cycle (b) Pair

Fig. 3 Concept diagram of selecting initiating and guiding solution via (a) Cycle and (b)
Pair. The head of the arrow points to the guiding solution and the tail corresponds
to the initiating solution.

Pair is loosely related to randomly selecting the is-gs pairs from the set P of
efficient solutions in the bi-objective case (e.g., Refs. 21), 31)). In every iteration,
Pair forms a set of distinct pairs of is and gs by iteratively drawing two distinct
solutions from P ′. In every draw, it assures that the two distinct solutions are
different from the previous draws. This process of iteratively drawing two distinct
solutions continues until it is no longer possible to obtain different pair of solutions
from P ′. It follows that Pair leaves one solution unmatched if |P ′| is odd. The
total number of pairs formed is �|P ′|/2�.

Cycle arranges the solutions of P ′ in random order. Then, the first and second
solutions are labeled as is and gs, respectively. For the succeeding pairs of
solutions, the initiating solution is the guiding solution of the previous pair and
the guiding solution is the next solution in P ′. The final is-gs pair are the
last and first solutions in P ′, respectively. The total number of pairs formed is
|P ′|. Thus, Cycle performs more path relinking processes than Pair. Figure 3
illustrates the two methods when M = 5.

4.3 Path Generation and Selection
The actual generation of the sequence of solutions or path from solution is to

gs consists of two procedures. The first procedure PathRelink (is, gs) returns
at each step the set F of neighborhood solutions of is that reduces the Hamming
distance γ from gs, i.e., F = {x ∈ N (is) : γ(x, gs) < γ(is, gs)} where N is
defined as the 1-bit neighborhood. Since each call of PathRelink may return
many solutions i.e., |F | ≥ 1, then several paths maybe formed. Hence, a path
selection mechanism provided by PathSelect is used to choose the preferred
path. PathSelect immediately chooses a single solution from F based on the

Fig. 4 Path relinking and selection. PathRelink() generates several solutions and
PathSelects() chooses one solution to be an intermediate solution of the path.

acceptance criteria given by the real-valued function ω expressed as the weighted
sum fitness function by

ω(x) = w · f(x) (3)
where w=(w1, w2, . . . , wM ) is a weight vector such that

∑M
j=1 wj = 1 and wj ≥

0 ∀j. The solution having the best value of ω is accepted. Note that the use of
fitness function is a common strategy in solving MO problems 35).

We define the initial setting of ω to be the objective function where the guiding
solution is best. Recall that the guiding solution is chosen from among the ex-
treme solutions found so far by the algorithm. Thus, if the guiding solution is the
best solution in the objective function fi, then we accept the solution having the
best value of ω(x) = fi(x), i.e., w = (0, 0, . . . , 1, . . . , 0), or wi = 1 and wj �=i = 0.
This strategy clearly prefers moves that are attractive relative to fi. Moreover,
it limits the search from the many objective standpoint to single objective opti-
mization. This is also a natural and novel way of extending the implementation
of path selection in single-objective optimization problems 30) to MaO problems.
The selected solution in PathSelect then becomes an intermediate solution of
the path and the next initiating solution for PathRelink. These two procedures
are illustrated in Fig. 4.

It is important to note that PathRelink and PathSelect have been expressed
as a local search that optimizes a lexicographic objective function Φ = (γ, ω) 25).
Since γ is the Hamming distance and ω is the fitness function, then Φ is clearly
composed of functions defined in both the decision and objective spaces.

4.4 Link Direction
In this study, we also consider re-initiating the process of path generation in the
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Table 1 Four variants of the path relinking algorithm. The symbol is ↔ gs (is → gs)
indicates that there is (no) reversal of roles between initiating and guiding solutions.

Cycle is → gs PRCycle1
is ↔ gs PRCycle2

Pair is → gs PRPair1
is ↔ gs PRPair2

opposite direction by interchanging the roles of initiating and guiding solutions.
Thus, once the termination criterion in Line 11 of Fig. 2 is satisfied, the roles of
initiating and guiding solutions are reversed. Consequently, two paths are formed,
thus increasing the number of intermediate solutions between the initiating and
guiding solutions. Moreover, these intermediate solutions are now the results of
the moves that are attractive relative to the objective function where either the
initiating or guiding solution is best. Therefore, this strategy aims to generate
better extreme solutions. This technique has been proposed in single objective
optimization 30) but it has been implemented only in the bi-objective case in
Ref. 27).

Combining the two strategies for forming the sets of initiating solutions (is)
and guiding solutions (gs), and whether to interchange the roles of is and gs

initially give us four variants of the PR algorithm. Table 1 summarizes these
variants.

5. Performance Measures

Three different performance metrics are used to evaluate the performances of
the different optimizers. These metrics are the hypervolume, coverage, and sum of
maximum objective values. They provide information about the different aspects
of the quality of approximation sets.

5.1 Hypervolume.
The hypervolumeH is a unary indicator that measures the volume of the objec-

tive space that is weakly dominated by an approximation set 36). It is considered
Pareto-compliant i.e., whenever an approximation set A is better than approxi-
mation set B then the hypervolume of A is greater than B 37). It can be expressed

as
H(A) = ∪|A|

i=1(Vi − ∩i−1
j=1ViVj) (4)

where Vi is the hypervolume rendered by the point xi ∈ A and a user-defined
reference point.

The hypervolume indicator is dependent on a reference point – any point dom-
inated by the approximation sets. For example, the contribution of the extreme
points to hypervolume is magnified when the reference point is far away from the
Pareto front. On the other hand, the central points on the Pareto front are given
more weight to the hypervolume if the reference point is near the Pareto front. In
this case, the hypervolume describes the convergence property or the closeness of
approximation sets towards the Pareto optimal solutions in the objective space.
In order to give a meaningful interpretation of the hypervolume, we use different
reference points O defined by the parameter α ∈ [0, 1]. If α equals zero then O
is the origin O = (0, 0, . . . , 0) and far away from the Pareto front. On the other
hand, as the value of α nears 1, O approaches the Pareto front, i.e., the point
W having as coordinates the worst objective values of the solutions found. If
α = 0.5, then O is the midpoint of the segment OW . To calculate H, we use the
algorithm presented in Ref. 38).

5.2 Set Coverage Metric.
The coverage C(A,B) metric is a binary quality indicator that gives the pro-

portion of approximation set B that is weakly dominated by approximation set
A 39). This metric provides complementary information on convergence and is
given by

C(A,B) =
|{b ∈ B : ∃a ∈ A where a � b}|

|B| . (5)

If A weakly dominates all members of B then the metric value C(A,B) is equal
to 1. On the other hand, if no member of B is weakly dominated by A, then
C(A,B) is zero.

5.3 Sum of Maximum Objective Values.
The sum of maximum objective values (Smax) measures the quality of the ex-

treme solutions and solutions around the M edges of the Pareto front 7). There-
fore, this metric provides information about the performance of an algorithm in
terms of diversity and extent or the spread of its extreme solutions. Like the H
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metric, Smax requires scaling and normalization in order to allow the different
objectives to contribute equally to its value. It is given by the formula

Smax(A) =
M∑

i=1

max
x∈A

fi(x) . (6)

6. Experimental Results and Analysis

6.1 Performance Varying the Number of Objectives
In this section, we show the performances of the PR variants presented in

Table 1 which uses the initial setting of w in Section 4.3, under different numbers
of objectives M and a fixed value K = 7. It is known that higher number
of objectives translates to fewer but denser Pareto fronts 5). Figure 5 (a)∼(d)
provides the boxplots of the normalized hypervolume values or the average ratios
H(PR)/H(NSGA-II) for the PR variants. These figures show that NSGA-II
outperforms the PR variants when 2 ≤ M ≤ 4. Moreover, there is a dramatic
decrease in the hypervolume values when α is 0.99 and 2 ≤ M ≤ 3, indicating
poor convergence in the part of PR. This is supported by the C metric in Fig. 5 (e)
where it shows that NSGA-II weakly dominates all solutions of PR when M = 2
and covers most of the solutions when M = 3. The extreme solutions of NSGA-
II are also better compared to PR (see Fig. 5 (f)). These results are expected
since several studies have shown the effectiveness of NSGA-II in solving multi-
objective optimization problems. In addition, it is possible for PR to be trapped
early to locally optimal solutions at the extremes, thus preventing it to find better
solutions.

As M increases from 4 to 10, the performance of PR variants in terms of
convergence improves as shown by the improvements in H and C metrics. For
example when M ≥ 6, at least 75% of the runs of PR show improvement in H
(i.e., normalized H > 1) regardless of the values of α. Likewise, although they
weakly dominate few solutions of NSGA-II, almost none of their solutions are
covered by NSGA-II. On the other hand, the big difference in the performance
in H between α = 0.5 and α = 0.99 can be attributed to the better convergence
in the central region.

Among the different PR variants, it can be seen that the re-initiating strategy
or interchanging the roles of the is and gs is indeed beneficial in terms of im-

proving the extreme solutions but only for M ≤ 5. Figure 5 (f) shows that for
M ≤ 5, the median of the normalized Smax values of PRCycle2 and PRPair2
are significantly better than that of PRCycle1 and PRPair1. Likewise, the nor-
malized hypervolume when α equals 0 is higher in PRCycle2 and PRPair2 than
in PRCycle1 and PRPair1. For higher values of M , path relinking may require
other settings that may improve the quality of its extreme solutions.

Between Cycle and Pair strategies, the former shows significant edge over the
latter in terms of the Smax metric but only between PRCycle1 and PRPair1.
This edge is insignificant when the re-initiating strategy is implemented. This
suggests that reversing the roles of is and gs is more effective in improving the
quality of the extreme solutions for the path relinking.

In terms of convergence, there is no strong indication that one variant is better
than the others. This suggests that the manner of defining is and gs from the set
of extreme solutions and the re-initiating strategy do not have strong influence
in the convergence property of the path relinking.

6.2 Performance Varying the Path Selection Strategy
In this study, we analyze also the effects of varying the direction of the search

path given by the weight vector w. Since the re-initiating strategy provides the
better alternatives for PR and Cycle gives a balanced search for better solutions
as defined in Section 4.2, we choose PRCycle2 as the algorithmic framework.
Thus, the resulting new PR variants have the same configurations as PRCycle2
except in their definition of the vector w. Table 2 summarizes the new selection
strategies based on the corresponding fitness function ω. In the following, we
explain these strategies using Fig. 6 as illustration. In this figure, an interme-
diate solution is selected from among the 1-bit neighbors x1, x2, and x3 of is

depending on the weight vector w.
PRCycle2 w1.0. First, we define w as a unit vector such that wi = 1 if

and only if is is best in objective function fi. Thus, this strategy prefers moves
that are attractive in the direction of is in the objective space. It also prefers
the search for extreme solutions by considering a single objective function each
time. This strategy has been proposed only in the single objective problem 30).
In Fig. 6, its weight vector is given by wa since is is best in f2 objective. Thus,
it selects x1 since this solution provided the largest fitness function value for the
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(a) PRCycle1 (b) PRPair1 (c) PRCycle2

(e) PRPair2 (f) C metric (g) Smax metric

Fig. 5 (a)–(d) Normalized H metric (e) C metric (f) normalized Smax metric between PR variants and NSGA-II
for different M values and K = 7.

given weight vector wa.
PRCycle2 w0.5. Another method is to set wi to 0.5 if and only if either is or

gs is best in the objective function fi, and zero otherwise. This strategy is biased
towards the central portion of the particular subspace defined by the objective
functions where initiating and guiding solutions are best. Clearly, this strategy
performs the search by using two objective functions each time. In Fig. 6, its

weight vector is given by wc and selects the intermediate solution x2.
PRCycle2 aggr. The final strategy uses a scalarizing function that aggregates

all the objective functions using Eq. (3) without any reference to the initiating
and guiding solutions i.e., it is not strictly attracted in the direction to any of the
objective functions. The values of the weights are randomly changed for every
call of PathSelect (see Line 8 of the PR algorithm in Fig. 2). This strategy
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Table 2 Selection strategies for the path relinking algorithm using PRCycle2 variant.

Fitness Function Path relinking

ω(x) = fi(x) PRCycle2 w1.0
ω(x) = 0.5fi(x) + 0.5fj(x) PRCycle2 w0.5

ω(x) =
∑M

i=1 wifi(x) PRCycle2 aggr

Fig. 6 An intermediate solution is selected depending on the selection strategy given by the
weight vector.

is commonly used in the bi-objective case 21)–25). In Fig. 6, it selects x2 if the
generated weight vector lies in the gray area (middle) while x1 (resp. x3) is
chosen if the weight vector falls in the dark gray (resp. light gray) area.

Note that the initial setting of w as used by original PRCycle2 and analyzed
in Section 6.1 is given by wb since gs is best in f1 objective thereby selecting the
intermediate solution x3.

It can be seen in the boxplots in Fig. 7 (a)∼(d) that the normalized H val-
ues for the different selection strategies improve as M increases. Remarkably,
PRCycle2 aggr posted the biggest improvement. For example when α = 0.99,
the median H value of PRCycle2 aggr is at least 100% greater than that of the
NSGA-II when M = 6 and 250% greater when M = 10. This increase in H value
translates to higher number of solutions of NSGA-II being weakly dominated by
PRCycle2 aggr. Figure 7 (e) shows that roughly between 40% to 60% of the so-
lutions of NSGA-II are covered by PRCycle2 aggr when M ≥ 6, while NSGA-II
covers nothing of PRCycle2 aggr.

The good convergence of PRCycle2 aggr as shown by its performance in H
and C metrics expectedly sacrifices the quality of its extreme solutions and its

solutions around the edges since the normalized Smax metric (see Fig. 7 (f)) shows
that PRCycle2 aggr is totally outperformed by NSGA-II. It is PRCycle2 and
PRCycle2 w1.0 that perform well in terms of Smax with the latter obtaining the
best extreme values. PRCycle w1.0 even outperforms NSGA-II when M ≥ 6.
All these results suggest that the manner of selecting the intermediate solutions
or creating the path is a valuable factor when implementing PR. The different
selection strategies exhibit a trade-off between convergence and spread.

6.3 Performance Varying the Degree of Epistastic Interactions
It was demonstrated in Ref. 5) that the number of solutions in the top Pareto

fronts reduces with K for all values of M . Moreover, the optimal solutions
and their true Pareto fronts become more “discontiguous”, and more non-convex
regions appear in the fronts with K. To study the behavior of PR under different
number of epistatic interactions, we consider the performances of PRCycle2 and
PRCycle2 aggr when K ranges from 0 to 50.

Figure 8 shows the boxplots of the normalized H given different values of M

and K, and α = 0.99. It can be observed that for all values of K, the H values of
PR are better than NSGA-II only when M is high. However, increasing the level
of epistatic interaction diminishes the edge of PR over NSGA-II. For example
when K = 0 and M = 10, the average normalized H values of PRCycle2 and
PRCycle2 aggr are 1.4627 and 2.9325, respectively. When K increases to 50, the
averages fall to 1.0531 and 1.8041. These results also indicate that PRCycle2 aggr
still performs better than PRCycle2 in terms of the H metric.

Figure 9 (a) shows that NSGA-II covers almost all the solutions of PR for all
K and M = 2. But, PRCycle2 and PRCycle2 aggr weakly dominated more so-
lutions of NSGA-II than NSGA-II can cover them when M > 4. PRCycle2 aggr
also has higher coverage of NSGA-II compared to PRCycle2. However, the cov-
erage of PRCycle2 and PRCycle2 aggr over NSGA-II decreases as K increases.

In terms of the quality of solutions at the extremes, PRCycle2 still performs
better than PRCycle2 aggr but both don’t find extreme solutions that are good
as NSGA-II as demonstrated by the normalized Smax in Fig. 9 (b). However, as K

increases, there is an improving trend for the normalized Smax of PRCycle2 aggr.
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(a) PRCycle2 (b) PRCycle2 aggr (c) PRCycle2 w0.5

(e) PRCycle2 w1.0 (f) C metric (g) Smax metric

Fig. 7 (a)–(d) Normalized H metric (e) C metric (f) normalized Smax metric between PR variants and NSGA-II
for different M values and K = 7.

7. Conclusions

In this paper, we have studied the behavior of path relinking (PR) algorithm
on MNK-landscape models having different number of objective functions and
degree of epistatic interactions. We have designed several variants of PR based
on [a] selection criteria for initiating (is) and guiding (gs) solutions, [b] link

direction, and [c] selection strategy for the path. Experiments have shown that
the selection of pairs of is and gs, and link direction have stronger influence
in the quality of the extreme solutions than in the convergence property of PR
when M ≤ 5. In particular, the results suggest that applying Cycle, which uses
all extreme solutions both as is and gs, as selection criteria and a link direction
that applies re-initiating strategy are beneficial for PR.
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(a) H: PRCycle2

(b) H: PRCycle2 aggr

Fig. 8 Normalized H metric between NSGA-II and (a) PRCycle2 (b) PRCycle2 aggr
for different values of M and K.

For higher values of M , PR can be directed to find either better extreme
solutions or better convergence depending on the selection strategy for the path.
For example, if we use selection strategy for the path that favors solutions in
the direction of is, then better extreme solutions can be found. In fact, PR has
better extreme solutions than NSGA-II when M ≥ 6 (K = 7). On the other
hand, if we use a selection strategy for the path that aggregates all objective

(a) C metric

(b) Smax metric

Fig. 9 (a) C metric and (b) normalized Smax metric of PR variants and NSGA-II for
different values of K and M .

functions, then solutions with better convergence can be obtained. In fact, PR
has better convergence behavior compared to NSGA-II when M ≥ 4. This good
convergence can be seen in a broad range of levels of epistatic interaction K, with
its peak improvement around 1 ≤ K ≤ 10.

In the future, we want to investigate adaptive strategies that simultaneously
improve both convergence and spread. For example, we are interested in studying
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the efficiency of PR when it dynamically uses the different path selection strate-
gies. We also want to study the ways on how to enhance MOEAs using PR. One
possible approach is to strategically embed a PR procedure inside MOEAs. For
instance, we have shown that NSGA-II performs poorly in terms of convergence
and thus, the presence of PR may enhance NSGA-II’s convergence. Depending
on the selection strategy, PR may also be used to further improve the quality
of the extreme solutions of NSGA-II. When implementing these examples, we
want to measure the contribution of PR to the overall performance of NSGA-II
to provide additional information about its efficiency and relevance.
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