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ウエーブレットの最適化と雑音プロファイルを用いた
雑音抑圧による頑健な音声認識

ゴメス・ランディ †1 河 原 　達 也†1

本研究では、音声認識のためのウエーブレットに基づく雑音抑圧を雑音プロファイ
ルと組み合わせることで改善を図る。学習時には、音声と種々の雑音プロファイル毎
にウエーブレット変換のパラメータを最適化し、ウイナーフィルタのゲイン係数の推
定の高精度化を図る。認識時には、雑音プロファイルを特定し、入力のウエーブレッ
ト係数を当該のウイナーゲインでフィルタリングする。さらに、ウイナーゲインにス
ケーリング係数を導入し、雑音抑圧に伴う歪みによるミスマッチを補償する。評価実
験において、従来のウエーブレットに基づく手法と比較を行った。また、様々な雑音
条件において頑健性の評価も行った。

Robust Speech Recognition Using Optimized Wavelet
Denoising with Noise Profiles

Randy Gomez †1 and Tatsuya Kawahara†1

In this paper, we improved the wavelet-based denoising method for automatic
speech recognition (ASR) by using noise profiles. During training, we optimize
the wavelet parameters for speech and different noise profiles to achieve a better
estimate of the Wiener gain for effective filtering. Denoising is implemented by
identifying the noise profile and filtering the noisy wavelet coefficients using a
Wiener gain. In addition to wavelet filtering, we also introduce scale factors to
the Wiener gain during decoding, to compensate for the mismatch caused by
distortion during the denoising process. In our experimental evaluations, we
compare our method with existing wavelet-based approach. We also conducted
an experiment to test for robustness to different noise conditions.
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1. Introduction

In real environment, automatic speech recognition (ASR) systems have to deal with

background noise. When a speech signal is corrupted by noise, a mismatch with the

acoustic model (AM) would result to degradation in recognition performance. Thus,

speech processing techniques for noise suppression is one of the most important topics

in ASR.

There are a number of denoising techniques, and most of them are based on the

short term Fourier transform (STFT). In this paper, we focus on the wavelet trans-

form because of its flexibility of using the analysis window of a variable length for

different frequency bands. Moreover, we can manipulate its parameters to effectively

discriminate the signal subspaces occupied between noise and speech1). Seminal works

in wavelet denoising are based on waveshrink2) and thresholding3). A more advanced

method is proposed in4)5). This method introduces voice activity detection (VAD) and

uses several threshold profiles for different types of noise. With the VAD, more accu-

rate estimation of noise power is achieved. The use of noise profiles enables flexibility in

switching to several thresholds for improved discrimination between speech and noise

subspaces.

Most of the existing wavelet methods2)5) are generally designed to enhance the speech

waveform, but this does not necessarily mean an improvement in ASR performance.

Therefore, we propose an improved wavelet-based denoising method optimized for ASR.

We optimize the wavelet parameters for speech and noise based on AM likelihood for

improving the Wiener gain estimate. Wavelet filtering is performed by weighting the

noisy wavelet coefficients with Wiener gains in multiple bands. This method was suc-

cessfully applied to dereverberation in the previous work6). In this paper, we address its

application to the denoising problem. Specifically in this application, two problems are

addressed. First, there are a variety of noise in real environments. Thus, we establish

the notion of the noise profiles to optimize specific wavelet parameters for each type of

noise.

Second, even if a denoising method effectively suppresses noise, it often introduces

distortion (i.e. residual noise) in the processed signal. The effects of distortion may
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図 1 Block diagram of the proposed method.

be acceptable to human perception, but it may have a detrimental effect to ASR since

it is another form of mismatch with the AM. One way of dealing with mismatch is to

re-train the AM using the denoised data. However, there are many types of noise in real

environments and it is impractical to re-train the AM for every noise condition. To deal

with the residual noise, we introduce scale factors in the Wiener gain. The parameters

are optimized to minimize the mismatch between the denoised data (residual noise) and

the noise data used in the AM training, and thus they will compensate the acoustic

distortion caused by the wavelet filtering. During testing, an appropriate noise profile

is identified and the corresponding optimized wavelet and tuning parameters for that

profile are used to enhance the noisy speech input through the wavelet filtering prior to

ASR. The whole process is depicted in Fig. 1.

The paper is organized as follows; Section 2 presents the proposed denoising method

based on improved wavelet filtering by optimizing the wavelet parameters. In Section

3, we show the method of minimizing acoustic mismatch by tuning the Wiener gains.

Then, noise profile identification is explained in Section 4. Experimental setup and

ASR evaluation results are presented in Section 5. Finally, we conclude the paper in

Section 6.

図 2 Optimization of the wavelet parameters through offline training.

2. Wavelet filtering for Denoising in ASR

2.1 Wavelet Parameter Optimization

A wavelet is generally expressed as

Ψ(υ, τ, t) =
1√
υ

Ψ
(

t − τ

υ

)
, (1)

where t denotes time, υ and τ are the scaling and shifting parameters, respectively.

Ψ
(

t−τ
υ

)
is often referred to as the mother wavelet. Assuming that we deal with real-

valued signal, the wavelet transform (WT) is defined as

F (υ, τ) =

∫
f(t)Ψ(υ, τ, t)dt, (2)

where F (υ, τ) is the wavelet coefficient and f(t) is the time-domain function. With an

appropriate training algorithm, we can optimize τ and υ so that the wavelet captures

specific characteristics of a certain signal of interest. The resulting wavelet is sensitive

in detecting the presence of this signal given any arbitrary signal. In the wavelet filter-

ing method, we are interested in detecting the power of clean speech and noise given

a noisy observation. We optimize the wavelet parameters to detect clean speech and

noise separately based on the acoustic model likelihood as shown in Fig. 2. Since we

are only interested in speech subspace in general, optimizing a single wavelet to capture

the general speech characteristics is sufficient. In the upper part of Fig. 2, we illustrate

the optimization of the wavelet for clean speech. Wavelet coefficients S(υ, τ), extracted

through Eq. (2), are converted back to the time domain sυ,τ . Likelihood scores are

computed using the clean speech acoustic model λs, a Gaussian Mixture Model (GMM)
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of 64 components. This is a text independent model which only captures the statistical

information of the speech subspace. The process is iterated, adjusting υ and τ . The

corresponding υ=a and τ=α that result to the highest score are selected.

The same procedure is applied to the case of noise, except for the creation of multiple

profiles (i), representing different types of noise. Likelihood scores are computed using

the corresponding noise profile model λn(i) (same model structure as that of λs). This

model is trained using noise-only frames from the noisy database. The corresponding

noise wavelet profiles υ=b(i) and τ=β(i) are kept for evaluation.

The noise database is constructed by generating synthetic noise signals. By referring

to the clean speech database, we can easily identify and segregate the noise-only frames

to be used for training the noise models mentioned above. To generalize different noise

characteristics, we increased the entry in the noise profiles by combining different types

of base noise. Thus, the expanded noise profiles will provide more degree of freedom in

characterizing various noise distributions.

2.2 Wavelet Filtering

The general expression of the Wiener gain at band m is expressed as

κm =
S(υ, τ)2m

S(υ, τ)2m + δmN(υ, τ)2m
, (3)

where S(υ, τ)2m and N(υ, τ)2m are wavelet power estimates for the clean speech and

noise, respectively. And υ and τ are the wavelet parameters scale and shift. δm is the

tuning parameter, which will be discussed in Section 3. By using the optimized values

for υ and τ as discussed in Section 2.1, we can compute the speech and noise power esti-

mates directly from the observed noisy signal X(υ, τ). Thus, the speech power estimate

becomes

S(υ, τ)2m ≈ X(a, α)2m, (4)

and the noise power N(υ, τ)2m estimate is given for frame-wise:

N(υ, τ)2m ≈ X(b(i), β(i))
2

m. (5)

Wavelet filtering is conducted by weighting the noisy wavelet coefficient X(υ, τ) with

the Wiener gain as,

X(υ, τ)m(enhanced) = X(υ, τ)m . κm. (6)

In Eq. (6), the Wiener weight κm dictates the degree of suppression of the contaminant

noise to the observed signal. If the noise power estimate is greater than the estimate

of the speech power, then κm for that band may be set to zero or a small value. This

attenuates the effect of noise. On the other hand, if the power of the clean speech

estimate is greater, the Wiener gain will emphasize its effect. The enhanced wavelet

coefficients are converted back to the time domain through inverse wavelet transform

(IWT).

3. Tuning Parameters of Wiener Gain

Denoising techniques often introduce distortion (i.e. residual noise) causing mis-

match to the AM. To address this problem, super-imposition of a known noise was

proposed7). Prior to training, a known stationary noise is super-imposed to the clean

speech database to train an AM. Then, the same noise is super-imposed to the denoised

speech during testing. However, it is not straightforward to determine the noise level

super-imposed on the test data. Moreover, the method still depends on the noise types

and denoising used. Thus, we introduce additional scaling parameters in the Wiener

gain to minimize the mismatch between the super-imposed noise (AM condition) and

the residual noise (testing condition). This concept is illustrated in Fig. 3.

We denote the spectrum of the super-imposed noise as ϕ(t, f) and the residual noise

after the denoising as θ(δm, t, f). Here, t and f are the frame index and frequency, re-

spectively. The argument δm in θ(δm, t, f) suggests that the residual noise spectrum is

affected by the choice of δm through the wavelet filtering. The objective is to minimize

the error Em between the super-imposed noise ϕ(t, f) and the residual noise θ(δm, t, f)

by manipulating δm. For a given noise profile (i), the scaling parameter δm is optimized

through minimum mean squared error (MMSE) criterion in each band m

Em =
1

T

∑
t

∑
f∈Bm

|ϕ(t, f) − θ(δm, t, f)|2, (7)
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図 3 Tuning parameters of Wiener gain.

where Bm is among the given set of bands. We used a total number of bands M = 58)9).

In this manner, δ
(i)
m is estimated for every noise profile i to be used during testing. By

tuning the Wiener gain, super-imposition of the known noise to the denoised utterance

during testing is not needed anymore.

4. Noise Profile Identification

Each noise profile has corresponding optimized wavelet parameters (b(i), β(i) in Sec-

tion 2.1) and tuning parameters of the Wiener gain (δ
(i)
m in Section 3). During testing

in ASR, it is necessary to be able to classify the noise that corrupts the speech signal to

retrieve the appropriate parameters and perform the improved wavelet filtering. A fast

GMM-based classifier shown in Fig. 4 is employed in identifying the noise profile (i).

After removing high-energy frames from the input speech, the remaining noise segments

n are evaluated with the noise specific GMMs (λn(i)), which was explained in Section

2.1. Subsequently, the profile (i) that leads to the best likelihood is selected. We have

found out that the identification works well even with only a few frames of data.

5. Experimental Evaluations

We have evaluated the proposed method in large vocabulary continuous speech recog-

nition (LVCSR). The training database is from the Japanese Newspaper Article Sen-

tence (JNAS) corpus with a total of approximately 60 hours of speech. The test set is

composed of 200 sentences uttered by 50 speakers. The language model is a standard

word trigram model. The acoustic model is a phonetically tied mixture (PTM) HMMs

with 8256 Gaussians in total. We used seven types of noises in the database7): Car,

図 4 Noise profile identification using Gaussian Mixture Model (GMM).

Computer, Office, Crowd, Park, Mall and Vacuum cleaner. The noise profiles used in

this experiment include the 21 combinations of the above mentioned noise.

In Tables 1 and 2, we show the ASR performance in word accuracy for different meth-

ods in 20dB and 10dB SNR. The accuracy in the clean condition is 93%. (A) is the

result when the noisy test data is not processed, and recognized using an AM re-trained

with the same noisy condition. In (B), we show the result of one of the best perform-

ing wavelet-based denoising methods which employ VAD and different noise statistical

profiles4)5). In (C), we show the performance of the conventional Wavelet filtering1).

The proposed wavelet filtering method with wavelet parameter optimization is shown

in (D). The optimization (Section 2.1) significantly improved the ASR performance,

compared to the conventional wavelet filtering in (C). The ASR performance is further

improved by introducing the tuning parameters (Section 3) during decoding (E). The

proposed method significantly outperforms the conventional methods (B) and (C).

Next, we investigated the robustness of the proposed method in the event that a

particular noise during testing is not covered in the noise profile database. To simulate

this scenario, we held-out some noise type and compare its performance when the noise

is included in the noise profile database (i.e. (E)). The decrease in word accuracy shown

in Fig. 5 between the two is very small, which means that the system is robust. The

performance for the held-out noise condition is still better than that of the two refer-

ence methods4)1) (B) and (C) in Tables 1 and 2. The robustness of the system may be

attributed to the expansion of the noise profile by combining different base noise. Note

that the held-out noise type was not used to expand the noise profile database in this

experiment.
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Car Computer Office Crowd Park Mall Vacuum average

(A) No processing 72.0% 69.3% 63.3% 64.8% 51.2% 43.0% 62.5% 60.8%

(B) Wavelet Denoising4) 85.8% 84.3% 77.8% 76.8% 60.3% 55.7% 79.4% 74.3%

(C) Wavelet Filtering (WF)1) 84.5% 83.6% 76.4% 76.1% 58.9% 55.2% 78.7% 73.4%

(D) Proposed WF 89.7%89.7%89.7% 88.3%88.3%88.3% 83.5%83.5%83.5% 82.6%82.6%82.6% 64.8%64.8%64.8% 59.0%59.0%59.0% 83.3%83.3%83.3% 78.7%78.7%78.7%

(E) Proposed WF + gain tuning 91.3%91.3%91.3% 89.2%89.2%89.2% 84.7%84.7%84.7% 84.0%84.0%84.0% 65.9%65.9%65.9% 62.6%62.6%62.6% 84.9%84.9%84.9% 80.3%80.3%80.3%

表 1 Evaluation results in word accuracy (20 dB SNR)

Car Computer Office Crowd Park Mall Vacuum average

(A) No processing 59.2% 56.9% 47.6% 49.0% 28.8% 15.7% 41.6% 34.9%

(B) Wavelet Denoising4) 73.4% 74.5% 63.6% 65.2% 36.1% 27.9% 72.8% 59.0%

(C) Wavelet Filtering (WF)1) 72.7% 73.3% 62.2% 64.5% 35.3% 26.9% 71.4% 58.0%

(D) Proposed WF 82.8%82.8%82.8% 80.1%80.1%80.1% 68.7%68.7%68.7% 69.8%69.8%69.8% 41.3%41.3%41.3% 33.2%33.2%33.2% 75.4%75.4%75.4% 64.4%64.4%64.4%

(E) Proposed WF + gain tuning 84.6%84.6%84.6% 82.5%82.5%82.5% 71.4%71.4%71.4% 74.1%74.1%74.1% 44.6%44.6%44.6% 35.9%35.9%35.9% 77.0%77.0%77.0% 67.5%67.5%67.5%

表 2 Evaluation results in word accuracy (10 dB SNR)

図 5 Robustness to noise that are not enrolled in the profile database.

6. Conclusion

We have proposed an improved wavelet filtering to address contaminant noise. This

method optimizes the wavelet parameters to improve the Wiener gain estimate used

in denoising. Moreover, the use of noise profiles enables the system to process differ-

ent types of contaminant noise effectively. This results to a more accurate estimate

of noise power for effective denoising. We have also introduced a mechanism to com-

pensate distortion by the wavelet filtering, by tuning the Wiener gain during testing.

Since the tuning parameters were optimized to minimize the acoustic mismatch between

the denoised data and the AM, ASR performance is also enhanced. In the future, we

will expand the formulation of this method to address both noise and reverberation

problems.

参 考 文 献

1) E. Ambikairajah et. al., “Wavelet Transform-based Speech Enhancement” In Pro-

ceedings of the International Conference on Spokem Language Processing ICSLP,

1998.
2) H.Y. Gao, “Wavelet Shrinkage Denoising”, In Proceedings of the Computational

Graphical Statistics 1998.
3) D.L. Donoho, “Denoising by soft thresholding”, In Proceedings of the IEEE Trans-

5 c© 2011 Information Processing Society of Japan

Vol.2011-SLP-85 No.12
2011/2/5



情報処理学会研究報告
IPSJ SIG Technical Report

action on Information Theory 1995.
4) H. Sheikhzadeh and H. Abutalebi, “An Improved Wavelet-based Speech Enhance-

ment System” In Proceedings of Eurospeech, 2001.
5) S. Ayat, M.T. Manzuri-Shalmani and R. Dianat, “An Improved Wavelet-based

Speech Enhancement by Using Speech Signal Features” Elsevier, 2006.
6) R. Gomez, T. Kawahara, “An Improved Wavelet-based Dereverberation for Ro-

bust Automatic Speech Recognition” In Proceedings of Interspeech, 2010.
7) S. Yamade, K. Matsunami, A. Baba, A. Lee, H. Saruwatari and K. Shikano, “Spec-

tral subtraction in noisy environments applied to speaker adaptation based on HMM

Sufficient Statistics”, In Proceedings of the International Conference on Spokem

Language Processing ICSLP, 2000.
8) R. Gomez, J. Even, H. Saruwatari and K. Shikano, “Distant-talking Robust Speech

Recognition Using Late Reflection Components of Room Impulse Response” In

Proceedings of the IEEE International Conferences on Acoustics Speech and Signal

Processing ICASSP, 2008.
9) R. Gomez, J. Even, H. Saruwatari and K. Shikano, “Fast Dereverberation for

Hands-Free Speech Recognition” In Proceedings of IEEE Workshop on Hands-free

Speech Communication and Microphone Array HSCMA, 2008.

6 c© 2011 Information Processing Society of Japan

Vol.2011-SLP-85 No.12
2011/2/5


