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スロットベースのベクトル空間モデルの組合せによる
音声書籍検索

李　清宰†1 Rudnicky Alexander†2

河 原 達 也†1

本稿では、音声認識・言語理解・ベクトル空間モデルに基づいて、電子書籍を検索
するための音声対話システム Let’s Buy Booksについて述べる。オンラインサービスの
Amazon Mechanical Turk (Mturk) を用いて検索文を収集することにより、文法構築の
ための発話パターンを分析したり、検索の評価実験を行うことができた。音声書籍検
索のためにスロットベースの新たなベクトル空間モデルを提案し、重み付きのスロッ
ト毎のモデルと全体のモデルを組み合わせることにより、人工的なデータと Mturkで
収集したデータの双方において最も高い検索性能が得られることを確認した。

Combining Slot-based Vector Space Models for Voice Book Search

CHEONGJAE LEE,†1 ALEXANDER RUDNICKY†2

and TATSUYA KAWAHARA†1

This paper first presents the development of Let’s Buy Books, a spoken dialog system
that helps users search for eBooks using the Olympus framework that provides the Pocket-
Sphinx for speech recognition, the Phoenix for language understanding, and the RavenClaw
for dialog management. To develop this system, we use Amazon Mechanical Turk (Mturk),
an on-line marketplace for human workers, to collect queries that are used to predict the
possible utterance patterns and to evaluate the book search performance. We also compare
different vector space approaches to voice book search and find that combining slot-based
vector space models using a weighted sub-space model smoothed with a general model pro-
vides the best performance over evaluations using both synthetic queries and real queries
collected from users through Mturk.
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1. Introduction

The book shopping domain poses interesting challenges for spoken dialog systems as the core

interaction involves search for an often under-specified item, a book for which the user may have

incomplete or incorrect information. Thus the system needs to first identify a likely set of candi-

dates for the target item, then efficiently reduce this set until it matches that item or items originally

targeted by the user. The first part of the process is characterized as ”voice search” and several

such systems have been described (Section 2). For the second part of the process, a graphic inter-

face can be used to offer selections, alternately the search can be interactively modified to generate

progressively better solution sets or to support exploration over a set of potential targets. In this

paper we focus on the voice search part of the process and specifically on two sources of diffi-

culty: users not having an exact specification for a target, and queries being degraded through

speech recognition errors.

One of the major problems is that a user may not know the exact values for their designated

book’s attributes, corresponding to slots in a spoken dialog system form. For example, if the book

title is ”ALICE’S ADVENTURES IN WONDER-LAND AND THROUGH THE LOOKING-

GLASS”, it is difficult for a user to remember the entire title. In this case, the user might say ”I

don’t know the whole title but it’s something like ALICE ADVENTURE”. As we will see below,

about 33% respondents in our survey did not have the complete information, while 32% of re-

spondents did not know the exact title of the book they were trying to find. Moreover, many titles

are too long to say even though the user knows the exact name; for example, in our database the

maximum title length was 38 words. Thus, users often say a few keywords instead of its exact

value. There are additional peculiarities. For example, the title ”MISS PARLOA’S NEW COOK

BOOK” is sort of a book by Ms. Parloa in the cook category, but this title also contains its au-

thor’s name and category. This problem may cause performance degradation in spoken language

understanding (SLU) because the mapping input to form slots may be ambiguous. The problem is

exacerbated by the large number of eBooks ?1 that have been published as well as inconsistencies

in how the information may be stored.

This paper addresses some practical issues in the development of the Let’s Buy Books system,

?1 800,126 eBooks are currently available in the Amazon Kindle Store (retrieved January 6th, 2011)
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図 1 Overall architecture of Let’s Buy Books system.

in particular the models for an effective voice-search component.

2. Related Work

Voice search 8) has been used in various applications: automated directory assistance system

9), consumer rating system 10), and multimedia search 6). Early voice search systems primarily

focused on issues of ASR and search problems in locating business or residential phone listings 9).

Then, it has been extended to general web search such as Google’s. Recent voice search systems

have been applied to search for entries in large multimedia databases 6).

A book search dialog system has recently been studied by Passoneau et al. 4). This study has

focused on Wizard-of-Oz (WoZ) experiments to design a book search dialog system for use in

the public library system. Passoneau et al. assumed that patrons have exact information for the

title, author, or catalogue number because they receive monthly newsletters for new book lists. In

addition, a simple Ratcliff/Obsersher technique 5) was used to measure the similarity of an ASR

output string to book titles in the database.

3. The Let’s Buy Books System

We have implemented the Let’s Buy Books system using the Olympus/RavenClaw framework

1). To date, this framework has been used to develop and deploy various dialog systems spanning

different applications. We also extend this framework to a voice book search system (Fig. 1). In

our system, a user’s speech is converted into a textual query using the PocketSphinx speech recog-

nizer, and then some task-specific slots, such as book title, author’s name, and book category, are

表 1 Statistics of the book database.

Slots Title Author Category
Max. Length 38 10 5
Avg. Length 6.99 2.25 1.53

#Values 13982 9598 1131
Voca. Size 13708 8159 1002

extracted from the textual query by the Phoenix semantic parser. After the slots are extracted, the

book search module returns relevant items using slot-based vector space models. In this section,

we briefly describe how to prototype our system for voice book search applications.

3.1 Backend Database
The backend of our system contains a relational database consisting of 15,088 eBooks, sampled

randomly from Amazon Kindle Book?1 by web crawling. First, each book record was extracted

automatically with 17 attributes including its title, authors, categories, price, sales rank, customer

review rating, publisher, etc. Table 1 shows the statistics of the book database used in Let’s Buy

Books system. There are 13982 unique titles, 1131 unique categories, and 9589 unique authors in

the book database. The average title length is 6.99 words, and the average author length is 2.25

words. These contribute 20882 words to the system vocabulary.

3.2 Speech Recognition and Language Understanding
The Let’s Buy Books uses the PocketSphinx decoder, configured with a statistical n-gram lan-

guage model. The resulting hypothesis is parsed by Phoenix, a robust parser configured with an

extended context free grammar.

One of the most important challenges in building speech recognition and language understand-

ing modules for the book search system is to define a habitable user language prior to the point

at which a prototype system is available to collect actual user data. Often the procedure con-

sists of the developer and a few other volunteers generating likely inputs as language data. Such

an approach necessarily introduces a sampling bias. We sought to improve this sample diversity

by using the Amazon Mechanical Turk (Mturk) service to obtain user utterances at a low cost.

Mturk?2 is an on-line marketplace for human workers (turkers) who perform tasks, called human

?1 http://www.amazon.com/Books-Kindle/b?node=154606011
?2 See http://www.mturk.com/ for a Mturk description
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intelligence tasks (HITs), in exchange for a small sum of money 3).

Mturk can be used to collect diverse answers to specific questions; we published some HITs

to collect the possible utterances given the metadata about a title, authors, and a category in re-

sponse to the question ”how can I help you?” as might be posed by a human clerk in a book store.

These utterances include one or more slot values of the corresponding book. The basic grammars

for Phoenix were then manually written based on an analysis of these utterances. In addition,

we augmented the grammar using task-specific grammars for continuing further dialogs such as

searching different books, specifying the books, manipulating a shopping cart and so on. These

grammars were independent of the book database.

Some sub-grammars for slot values need to be automatically generated from the book database

because updating new items periodically is a necessary operation to maintain the accuracy of the

book search system. To define the slot values for books, their titles were tokenized into a bag

of words; title queries have many combinations of words regardless of their orders and grammars

because users do not say content words (e.g. ’ALICE’, ’ADVENTURE’, ’WONDERLAND’, etc)

without functional words (e.g. ’IN’, ’OF’, ’THROUGH’, etc). The author names were divided

into the first name, the middle name, and the last name because users can say either the full name

or the partial name. For example, either ’LEWIS’, ’CARROLL’, or ’LEWIS CARROLL’ could be

said when users want to find some books written by ’LEWIS CARROLL’. The n-gram language

model in our system was trained by using 100,000 sampled sentences automatically generated

using these grammars. This is a routine process and consequently the Let’s Buy Books system

can be easily maintained to reflect changes in the book database.

3.3 Dialog Manager
The dialog manager in Let’s Buy Books is implemented using RavenClaw, an agenda-based

dialog manager that uses a predefined hierarchical task structure (Fig. 2) to control interaction. In

our dialog strategy, a user speaks a query after the system prompts ”how can I help you?” The

user can search for any books by three slots such as a title, a category, and an author. If the system

still has no filled slots after the initial query is provided, the system attempts to fill slots by asking

the user to provide the missing information. Once a back-end query can be formed (at least one

slot is filled), the system returns relevant books using its book search algorithm. Fig. 3 illustrates

a sample interaction with the Let’s Buy Books system.

図 2 Partial view of task structure in Let’s Buy Books.

S: WELCOME TO LET’S BUY BOOKS!
S: HOW CAN I HELP YOU?
U: I AM LOOKING FOR SOME BOOKS BY LEWIS CARROLL
S: WHAT IS THE BOOK CATEGORY?
U: MAYBE FICTION
S: JUST A MINUTE. LET ME CHECK THAT FOR YOU
S: 5 BOOKS WERE FOUND SUCH AS ”ALICE IN WONDERLAND AND THROUGH THE LOOKING-GLASS”,

”ALICE’S ADVENTURES IN WONDERLAND THROUGH THE LOOKING GLASS”, · · ·
S: I SUGGEST ”ALICE IN WONDERLAND AND THROUGH THE LOOKING-GLASS” BY LEWIS CARROLL IN

FICTION CATEGORY. THE PRICE IS 0.99 DOLLARS.
S: PLEASE SAY WHAT YOU DO NEXT.

[· · · · · · ]

図 3 A sample dialog of Let’s Buy Books.

4. Book Search Algorithm

The search problem in the Let’s Buy Books is to return relevant books given noisy queries. In

this section, we describe how to define a set of slots and how to search for relevant books for the

book search dialog system.

4.1 Defining a Set of Slots for Book Search
The book database in the Let’s Buy Books consists of various fields including title, authors,
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category, subject, price, file size, printed pages, and publisher. Although many slots can be used

to search for appropriate books, it is not necessarily practical to handle all possible fields. There-

fore, a partial set of slots should be defined for use in the book search system. To define the set of

slots for use in the system, we surveyed 221 turkers, those who had previously bought eBooks, on

which information they typically have when they buy eBooks. The top three were title (31.99%),

authors (26.10%), and category (14.73%). Consequently only these three slots are considered in

our book search.

4.2 Vector Space Model
Vector space models have been widely used to search for appropriate items given a user query in

many voice search systems 9)–10). In our system, we also adopted different vector space models

to address the book search problem. Our vector-space search engine uses the idea of a term space,

where each book is represented as a vector with specific weights in a high-dimensional space (vi).

A query (q) is also represented as the same kind of vector (vq). The relevant book list is identified

by calculating the cosine similarity, s(vq, vi) between two vectors as follows:

s(vq, vi) =
vq · vi

‖vq‖‖vi‖
If the vectors are normalized, it is possible to compute the cosine similarity as the dot product

between the unit vectors.

s(vq, vi) = v̂q · v̂i

This is also important for speedy search because there are many vectors to be computed at every

query.

We explored the best vector space model for the book search task, comparing three different

models: single vector space model (SVSM), multiple vector space model (MVSM), and hybrid

vector space model (HVSM). First, in SVSM, all slots are indexed together over a single term

space where every term is equally weighted regardless of its slot name. In this model, slot names

may not be necessary for the book search because all query terms are integrated into a single

query vector. This model can be robust against SLU errors in which the slot names are incorrectly

extracted. This model may be adequate for books in which the title includes its author’s name and

category. However, this model cannot capture the relationship between slots. For example, when

some users who have no exact book in mind want to find any suitable books, and then to choose

one of them for purchase, this type of model cannot take into account the user’s preferences.

The next model considered is MVSM in which each slot, i, is independently indexed over sub-

spaces, and each slot-based model is interpolated with slot-specific weights, wi, as follows:

l∗ = argmax
l

∑
i

wisi(vq, vi)

Although the interpolation weights can usually be set empirically or by using held-out data,

these weights can be modified based on a user’s preferences or on confidence scores derived from

speech recognition. Thus, MVSM can be easily tuned to improve the performance of generat-

ing relevant lists. Nevertheless, incorrect slot names may be critical to the search performance

compared to SVSM since MVSM relies on the correct word-to-slot mapping. We consequently

also evaluated a hybrid model, HVSM, in which SVSM is interpolated into MVSM with a spe-

cific weight. This model can compensate for the individual drawbacks of the SVSM and MVSM

models at the cost of additional computation.

4.3 Term Indexing and Weight
In representing book information and queries as term vectors, we use stemming to improve

search performance, but we do not eliminate stop words because some stop words are necessary

and meaningful for identifying relevant books. For example, some titles consist of only stop words

such as ”YOU ARE THAT” and ”IT”. They will not be indexed correctly if stop words are filtered

out.

There are several different ways of assigning term weights. One of the best known schemes is

TFxIDF (term frequency and inverse document frequency), but we found this scheme did not work

well for book search because most values and queries are too short to estimate reliable weights

over the true distribution. A simple term count weight was used to represent term vectors in which

the weights indicate the counts of term occurrences.

4.4 Database Search
Queries against SVSM can be generated by concatenating slot values. For example, if the book

title was ’ALICE ADVENTURE’ and the author’s name was ’LEWIS’, then the query would be

’ALICE ADVENTURE LEWIS’. A set of relevant books is returned by using a single query. On

the other hand, three queries in MVSM can be used to find relevant books in each vector space
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model such as title, author, and category. In this case, we have to consider unfilled slots because

they return no results. Therefore, the weights are renormalized dynamically according to the cur-

rent slot-filling coefficient (fi) that is assigned a value of one if the slot name i is already filled,

and zero otherwise, as follows:

ŵi =

∑
j
fjwj

fiwi
Finally, HVSM requires all four queries used in SVSM and MVSM. In all models, the dot

product is used to measure the similarity between the normalized vectors.

5. Search Evaluation

5.1 Evaluation Metrics
To evaluate the book search algorithms, we defined two evaluation metrics widely used in in-

formation retrieval systems. One is precision at n (P@n), which represents the number of correct

queries among the top n relevant lists divided by the total number of queries. For example, P@100

means how many queries contain the correct answer by search in the top 100 relevant books. The

other is mean reciprocal rank (MRR), which indicates the average of the reciprocal ranks of

results for a sample of queries Q 7).

MRR =
1

|Q|

q∑
i=1

1

ranki

In reality, there may be multiple correct answers in the lists when users do not have the exact

book in their mind. For example, some users can search for any fictions without an exact book

in their mind. However, because it is difficult to automatically determine the relevance relation-

ship between the queries and the lists, we assumed that the lists include a single correct book

corresponding to the query.

5.2 Evaluation on Synthetic Queries
We first evaluated the book search algorithms using 2000 synthetic queries which are automat-

ically generated with all slot names. These include three kinds of queries: exact query, partial

query, and noisy query (Table 2). Exact queries are the queries including exact values from the

book record. Partial queries consist of some terms randomly selected, up to five, from the exact

queries. Noisy queries are generated by using a simple ASR error simulator 2) applied to the par-

表 2 Examples of synthetic query; sub and del represent substitution error and deletion error, respectively.

Title
ALICE’S ADVENTURES IN WONDERLAND AND THROUGH THE LOOKING-
GLASS

Exact Query
ALICE’S ADVENTURES IN WONDERLAND AND THROUGH THE LOOKING-
GLASS

Partial Query ALICE’S ADVENTURES THROUGH GLASS
Noisy Query ALEXsub ADVENTURES THROUGHdel GLASS

図 4 P@100 and MRR of different models.

tial queries. This error simulator can make errors systematically when given both a specific word

error rate (WER) and error type (e.g. insertion, deletion, and substitution) distribution. Thus,

various experiments can be performed for preliminarily evaluating the search performance under

different WER conditions although simulated queries may differ from real queries produced in

real ASR. In our experiment, the weights for MVSM and HVSM were assigned based on our

survey result (Section 4.1) to reflect user’s reported preferences when they buy eBooks.

We examined the robustness of different models to simulated ASR errors for the book search

(Fig. 4). Our search engines are fairly robust to ASR errors; however, MVSM shows lower ac-

curacy than the other models. However, the performances between SVSM and HVSM were not
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表 3 Search results on real queries (WER=0%).

Models SVSM MVSM HVSM
P@n 0.8699 0.8747 0.9030
MRR 0.6634 0.6917 0.7227

significantly different. This indicates that SVSM may be a useful way to compensate for recogni-

tion errors.

5.3 Evaluation on Real Queries
To evaluate the search performance on the real queries collected through Mturk, 623 queries

(text input) were parsed by Phoenix using the task grammar. Among them, 203 queries had no

parse results due to the lack of coverage; the rest (420 queries) were evaluated for the book search.

The current grammars cannot extract slot information perfectly although fully parsing the ut-

terance (due to the ambiguities discussed earlier); therefore, even with correct input SLU may

introduce errors. In addition, the queries did not contain all slot names because turkers had used a

partial set of slots. Table 3 shows the evaluation result on real queries with different search mod-

els. In this result, HVSM shows much higher accuracy than the others. We believe that HVSM can

work well in the book search system because this model can not only reflect the slot information

but also fall back to SVSM in case of SLU errors in which the slot names are incorrectly extracted.

6. Summary and Discussion

We developed the Let’s Buy Books dialog system for eBook search using the Olym-

pus/RavenClaw framework. Some issues in book search were also addressed. We implemented

three modeling approaches: SVSM, MVSM, and HVSM. Some experiments were conducted us-

ing synthetic queries from an ASR error simulator. The experimental results on synthetic queries

have shown that SVSM and HVSM can outperform MVSM under various WER conditions. How-

ever, HVSM shows the best performance on real queries obtained through Mturk. These results

mean that slot information may be useful to search more precisely in an actual system and that

SVSM, not considering slot names, may be a necessary adjunct to overcome SLU errors.

In addition, we surveyed which information was useful when you have selected one book if

similar eBooks were found. We found that many users report that additional attributes such as

price and customer review are also important in selecting a particular book among suggested

books. Consequently, we need to resolve a re-ranking problem in displaying the top lists for users

because the current search can consider only the lexical similarity between query and attributes’

values in the book database.

Finally, additional issues have yet to be resolved before deploying the application in the real

world. One of them is that the book search must be improved to be robust to high WER. To

improve the robustness, various ASR hypothesis structures (e.g. n-best list, confusion network,

etc) can be incorporated. Some features, such as book synopsis and customer reviews, would also

contribute to the effectiveness of the search engine by incorporating rich information.
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