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This paper presents a novel approach to the acoustic model training for Non-
Audible Murmur (NAM) recognition using normal speech data transformed
into NAM data. NAM is extremely soft murmur, which is so quiet that people
around the speaker hardly hear it. NAM recognition is one of the promising
silent speech interfaces for man-machine speech communication. Our previous
work has shown the effectiveness of Speaker Adaptive Training (SAT) based on
Constrained Maximum Likelihood Linear Regression (CMLLR) in the NAM
acoustic model training. However, since the amount of available NAM data
is still small, the effect of SAT is limited. In this paper we propose modified
SAT methods capable of using a larger amount of normal speech data by trans-
forming them into NAM data. The transformation of normal speech data is
performed with the CMLLR adaptation. The experimental results demonstrate
that the proposed methods yield an absolute increase of around 2% in word ac-
curacy compared with the conventional method.

1. Introduction

Nowadays accuracy of speech recognition systems is considerably high enough
to be used in daily tasks. Even though there is such confidence in these systems,
it is still hard to see people making use of these functionalities in everyday life.
Feeling uncomfortable (even embarrassment) in talking to machines (phone, car,
etc.), being noisy, and lack of privacy would be one of the main reasons why
people try to avoid such convenient and hands-free input interfaces.

Silent speech interfaces1) have recently studied as a technology to enable speech
communication to take place without the necessity of emitting an audible acoustic
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signal. Various sensing devices, such as a throat microphone2), electromyogra-
phy (EMG)3), and ultrasound imaging4), have been explored alternative to air
microphone. These sensing devices are effective for soft speech in a private talk
and as a speaking aid for the vocally handicapped.

As one of the sensing devices for silent speech, Nakajima et al.5) have developed
Non-Audible Murmur (NAM) microphone, which is a special body-conductive
microphone. Inspired by a stethoscope, NAM microphone was originally devel-
oped to detect extremely soft murmur called NAM, which is so quiet that people
around the speaker hardly hear it. Placed on the neck below the ear, NAM mi-
crophone is capable of detecting various types of speech such as NAM, whisper,
and normal speech through the soft tissue of the head. Moreover, its usability is
better compared with other devices such as EMG or ultrasound systems. Con-
sidering these properties, we focus on NAM microphone as one of the promising
devices.

Building NAM recognition systems are not very different from those utilizing
normal speech. As a matter of fact, language models, dictionaries, searching
algorithms, and other specific modules may be used without any modifications
at all. The only modification is needed in the acoustic model, which should match
acoustic features of NAM. If we follow the same footsteps of building a normal
speech acoustic model, it would take many years gathering training data to reach
a considerable accuracy in NAM recognition. One possible shortcut is the use of
already accumulated normal speech databases. As reported in the literatures6),7),
normal speech data can serve for generating an initial acoustic model, and later
model adaptation techniques (e.g., linear regression approaches8)) are applied to
it for developing a speaker-dependent NAM acoustic model using a small amount
of NAM data. It has been also reported inthe literature9) that speaker adaptive
training (SAT)10) yields significant improvements in NAM recognition accuracy
by refining the initial acoustic model using only several tens of speakers’ NAM
data.

In this paper we propose a novel approach to the NAM acoustic model training
for further increasing the accuracy of NAM acoustic model. Some of canonical
model parameters updated in the conventional SAT are not well optimized since
the amount of available NAM data is still limited. Inspired by a speech synthesis
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technique for transforming NAM into normal speech11), the proposed method
transforms acoustic features of normal speech into those of NAM to effectively
increase the amount of NAM data available in SAT. This proposed process is
achieved by modifying the SAT process based on Constrained Maximum Likeli-
hood Linear Regression (CMLLR)8). The experimental results of the proposed
methods yield around 2% increase in absolute word accuracy compared to the
conventional methods.

This paper is organized as follows. Section 2 gives a short description of NAM.
In Section 3, conventional work on NAM recognition including SAT for NAM and
the problem of this approach are described. Section 4 explains in more detail the
proposed method, followed by its evaluation, in section 5. Finally, we summarize
this paper in section 6.

2. NON-AUDIBLE MURMUR (NAM)

NAM is defined as the articulated production of respiratory sound without
using vocal folds vibrations, modulated by various acoustic filter characteristics
as a result of motion and interaction of speech organs, and transmitted through
soft tissues of human body5). NAM can be detected with NAM microphone
attached on the surface of human body. According to Nakajima et. al., the
optimal position for it would be just behind the ear.

The sampled signal is weak, and usually is amplified before analyzed by speech
recognition tools. The amplified NAM is still less intelligible and its sound qual-
ity is unnatural since high frequency components over 3 or 4 kHz are severely
attenuated by essential mechanisms of body conduction such as lack of radia-
tion characteristics from lips and influence of low-pass characteristics of the soft
tissue12).

3. DEVELOPMENT OF NAM ACOUSTIC MODEL

3.1 Conventional Work
NAM utterances recorded with NAM microphone can be used to train speaker-

dependent hidden Markov models (HMMs) for NAM recognition. The simplest
way to build a NAM acoustic model would be to start from scratch and utilize
only NAM samples. However, this method requires a lot of training data, which

is not the case for NAM.
Another method for building a NAM acoustic model would be to retrain a

speaker-independent normal speech model with NAM samples. This method
requires less training data compared to the training from scrach. In the litera-
ture6) it has been reported that an iterative MLLR adaptation process using the
adapted model as the initial model at the next EM-iteration step is very effective
because acoustic characteristics of NAM are considerably different from those of
normal speech.

We have previously demonstrated that the use of the canonical model for NAM
adaptation trained using NAM data in SAT paradigm yields significant improve-
ments in the performance of NAM recognition9). A schematic representation
of this method is shown in figure 1. In the CMLLR-based SAT, the speaker-
dependent CMLLR transform WWW
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Fig. 1 Schematic representation of conventional SAT process.

each speaker. In M-step, the updated model parameter set λ̂λλ including a mean
vector µ̂µµm and a covariance matrix Σ̂ΣΣm of each Gaussian component and the
updated CMLLR transform set ŴWW

(NAM)

1:N are sequentially determined by maxi-
mizing the auxiliary function. The initial model parameter set for SAT is set
to that of a speaker-independent model developed with normal speech data sets
consisting of voices of several hundreds of speakers. After the canonical model is
optimized with SAT, the speaker-dependent model for individual speakers were
developed from the canonical model using iterative MLLR mean and variance
adaptation.

Note that multiple linear transforms are used for each speaker. The Gaussian
components are automatically clustered according to the amount of adaptation
data using a regression-tree-based approach13).

3.2 Problem
Even though the conventional SAT method showed some improvements in the

recognition accuracy, further improvements would be essential in the development
of NAM recognition interface. One of the problems spotted in this method con-
tinues to be the limitation of training data. This is a serious problem when using
a normal speech acoustic model as a starting point, which includes many HMM
model parameters. The MLLR or CMLLR adaptation enables such a complicated
acoustic model to be well adapted to NAM data since all Gaussian components
are transformed by effectively sharing the same linear transform among differ-
ent components. Therefore, the use of the complicated acoustic model is very
effective in the adaptation. However, it causes one issue in the development of
the canonical model. Since each Gaussian component of the canonical model
is updated with component-dependent sufficient statistics calculated from NAM
data, there are a lot of components not well updated due to lack of the amount

of training data. Consequently, the effectiveness of SAT is minimized or lost in
those components and the adaptation performance will suffer from them.

4. IMPROVING NAM ACOUSTIC MODEL USING TRANS-
FORMED NORMAL SPEECH DATA

4.1 Proposed SAT Using Transformed Normal Speech Data
A schematic representation of the proposed method is shown in figure 2. To

normalize acoustic variations caused by both speaker differences and speaking
style differences (i.e., differences between NAM and normal speech), the speaker-
dependent CMLLR transform WWW

(S2N)
s =

[
bbb
(S2N)
s ,AAA

(S2N)
s

]
is applied to the fea-

ture vector ooo
(s)
t of normal speech as follows:
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In E-step, the posterior probabilities, γ
(n)
m,t and γ

(s)
m,t, for individual speakers are

calculated given the current model parameter set λλλ and the CMLLR transform
sets, WWW

(NAM)
1:N and WWW

(S2N)
1:S . In M-step, the model parameter set and the CMLLR

transform sets are sequentially updated. The initial model parameter set for SAT
is set to that of the canonical model developed by the conventional SAT process
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Fig. 2 Schematic representation of proposed SAT process described in section 4.1.

described in section 3.1. Multiple linear transforms are used for each speaker.
4.2 Proposed SAT with Factorized Transforms
Because acoustic characteristics of NAM are quite different from those of nor-

mal speech, more complicated transformation would be effective for transform-
ing the normal speech data of different speakers into NAM data of a canonical
speaker. Such a complicated transformation is achieved by an increase of the
number of linear transforms but the estimation accuracy of linear transforms
suffers from a decrease of the amount of adaptation data available for the esti-
mation of each transform. To make it possible to effectively increase the number
of linear transforms while keeping the estimation accuracy high enough, factor-
ized transforms are applied to the proposed method.

A schematic representation of the proposed method with the factorized trans-
forms is shown in figure 3. The CMLLR transform WWW
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Fig. 3 Schematic representation of proposed SAT process described in section 4.2.
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Multiple linear transforms are used for each speaker and for the speaker-
independent style transformation. The canonical model developed by the con-
ventional SAT process described in section 3.1 are used as an initial model.
The speaker-dependent transforms in normal speech, WWW

(SP )
s , are initialized by

the traditional SAT process using only normal speech data, where the speaker-
independent normal speech model is used as an initial model. In this paper, they
are fixed to the initialized parameters through the proposed SAT process. They
may also be updated iteratively.

Note that the number of the style transforms is easily increased since all normal
speech data are effectively used for estimating them. Consequently, a larger
number of the composite transforms are available compared with the speaker-
dependent transforms available in the other proposed SAT process described in
4.1.

4.3 Implementation
We have found that if both normal speech data and NAM data are used simul-
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taneously for updating the canonical model parameters, the NAM recognition ac-
curacy of the speaker-dependent adaptation model generated from the updated
canonical model tends to decrease considerably. This is because the proposed
method does not perfectly map normal speech features into NAM features and
the canonical model starts to better match normal speech features rather than
NAM features due to the use of a much larger amount of normal speech data
compared with the amound of NAM data.

To avoid this issue, in this paper the transformed normal speech data are used
for only developing the first canonical model, and then, it is further updated in
SAT with only NAM data. Namely, after optimizing the speaker-dependent linear
transform set WWW

(S2N)
1:S or the style transforms WWW

(S2N)
c while fixing the model

parameters to the initial values (i.e., the canonical model parameters optimized in
the conventional SAT with NAM), the model parameters are first updated using
only transformed normal speech data, i.e., maximizing a part of the auxiliary
function related to L(SP )

s,m,t in Eq. (4) or L′(SP )
s,m,t in Eq. (7). And then, they are

further updated in the SAT process using only NAM data, i.e, maximizing only
a part of the auxiliary functions related to L(NAM)

n,m,t , which is equivalent to the
SAT process in the conventional method. In this implementation, the proposed
methods are different from the conventional method only in that the initial model
parameters in SAT with NAM are developed by the transformed normal speech
data.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Conditions
Table 1 lists training and test data. The starting acoustic model was a

speaker-independent (SI) 3-state left-to-right tied-state triphone HMMs for nor-
mal speech, of which each state output probability density was modeled by a
Gaussian Mixture Model (GMM) with 16 mixture components. The total number
of triphones was 3300. The employed acoustic feature vector was a 25-dimensional
vector including 12 MFCC, 12 ∆ MFCC, and ∆ Energy. A dictionary of around
63k words (multiple pronunciations) and a 2-gram language model were used

Table 1 Training and test data

Type Training Test

Normal 298 speakers -
speech 46980 utterances -
(SP) 84.4 hours -
NAM 42 speakers 41 speakers

8893 utterances 1023 utterances
15.5 hours 1.83 hour

during decoding ?1.
The regression-tree based approach was adopted for dynamically determin-

ing the regression classes for estimating multiple CMLLR transforms. In the
SAT process, the average number of speaker-specific linear transforms for nor-
mal speech and that for NAM were around 104 and 110, respectively. Meanwhile,
the number of the style transforms from normal speech to NAM was manually
set to 256.

5.2 Experimental Results
To show the implementation issue described in Section 4.3, the proposed SAT

with the factorized transforms was performed using both NAM data and normal
speech data to update the canonical model. Figure 4 shows the change of log-
likelihoods of training utterances of NAM and normal speech through adaptive
iterations in the SAT process. Within a single iteration NAM speaker-dependent
CMLLR transforms and the style transforms were calculated, and then the canon-
ical model was updated. It can be observed from this figure that during the it-
erative estimation, the likelihoods for normal speech data tend to increase while
those for NAM data tend to decrease. We have also found that the resulting
canonical model caused the degradation of NAM recognition accuracy. Therefore,
the implementation described in section 4.2 was used in the following evaluation.
To demonstrate the effectiveness of the proposed methods, the canonical models

were developed by the proposed SAT methods based on the implementation in
section 4.2 and the conventional SAT method, and then the speaker-dependent
models were built from each canonical model using the CMLLR adaptation. Fig-
ure 5 shows the results. The proposed methods yield significant improvements in
word accuracy (WACC) compared with the conventional method. We have found

?1 These experimental conditions are different from those in literature9).
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Fig. 4 Change of log-scaled likelihoods for training utterances over iterations.

Fig. 5 Word accuracy of different methods.

that 1115 triphones models (around 1/3 of the HMM set) were not observed in
NAM training data. The canonical model parameters at these states were not
updated at all in the conventional SAT. On the other hand, they were updated
in the proposed methods using the transformed normal speech data. This is one
of the major factors yielding the WACC improvements shown in figure 5. More-
over, we can also observe that the use of the factorized transformation yields
slight improvements in the proposed method.

6. CONCLUSIONS

In this paper, we proposed the modified speaker adaptive training (SAT) meth-
ods for building a canonical model for non-audible murmur (NAM) adaptation so
as to make a larger amount of normal speech data transformed into NAM data
available in the training. The experimental results demonstrated that the pro-
posed method yields significant improvements in NAM recognition accuracy than
the conventional SAT method since it is capable of extracting more information
from normal speech data and applying it to the training process of the NAM

acoustic model. Moreover, the use of factorized transformation in the proposed
method yields a slight improvement in the performance of NAM recognition.
Further investigation will be conducted on the regression tree generation of the
SAT process.
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