
IPSJ SIG Technical Report

Simultaneous Allocation and Binding Considering
Multiplexers in High-Level Synthesis

Yuko Hara-Azumi,†1,†2,†3,†4 Hiroyuki Tomiyama†3
and Hiroaki Takada †4

This paper proposes a novel simultaneous allocation and binding method in
high-level synthesis, which minimizes the circuit area including multiplexers
(MUXs) while meeting a constraint on clock period. Contrary to most existing
works which focus on minimizing the number of interconnections under given
allocation but do not care where MUXs would be inserted, our work takes into
account where MUXs would be inserted in a circuit and optimizes not only
MUXs but also allocation while meeting a clock constraint. This method is
formulated as an ILP problem. Also, an effective ILP-based heuristic for non-
small designs is presented. Experimental results demonstrate that our work
meets the clock constraint with the minimum circuit area.

1. Introduction

High-level synthesis (HLS), which automatically synthesizes a register-transfer
level circuit from a behavioral description written in high-level programming
languages, is a promising solution for the today’s LSI design whose size and
complexity are continuously growing. HLS concists of three basic processes:
scheduling, allocation, and binding. For efficient HLS-generated circuits, it is
crucial to design the circuits with considering multiplexers (MUXs) especially in
allocation and binding because these processes directly affect MUX insertion1),2).

Various works have studied MUX optimization techniques in HLS. Most of
them, such as 3)–6), independently deal with FU/register binding. Since the
FU/register binding results are interdependent, the works may not capture opti-
mal binding results. 1), 7)–9) presented simultaneous FU/register binding tech-
niques which aim at minimizing MUXs in the overall circuit by minimizing the
total number of inputs to FUs and registers under given allocation. Because the

†1 University of California, Irvine
†2 Research Fellow of the Japan Society for the Promotion of Science
†3 Ritsumeikan University
†4 Nagoya University

works do not take into account where MUXs would be inserted in a circuit, they
cannot guarantee to realize the required clock frequency and often violate the
clock constraint. Also, as considering the fact that MUX insertion may increase
the circuit area by sharing small FUs2), allocation should be simultaneously op-
timized with FU/register binding so that the total circuit area including MUXs
can be minimized. 10), 11) simultaneously handled allocation and binding for the
MUX minimization. However, again, they do not consider where MUXs would be
inserted. None of the above-mentioned works handle the total area minimization
including MUXs or guarantee to meet a clock constraint.

This paper proposes a novel simultaneous allocation and binding method for
minimizing the circuit area including MUXs under a clock constraint while con-
sidering where the MUXs would be inserted in a circuit. Given a scheduled
data flow graph (DFG) and a clock constraint, our goal is to obtain an alloca-
tion and binding result which minimizes the total area of FUs, registers, and
MUXs while meeting the clock constraint. We formulate this method as an ILP
problem, which supports general cases such as operation chaining and multi-
cycle/pipelined operations. Also, we present an effective ILP-based heuristic for
non-small designs. Experimental results demonstrate that our work satisfies the
clock constraint with the minimum circuit area. To the best of our knowledge,
this is the first work which simultaneously optimizes allocation and binding for
FUs and registers while meeting the clock constraint by considering the area and
delay of MUXs, and studies its optimality based on ILP.

The rest of this paper is organized as follows. First, Sect. 2 describes a moti-
vating example. Next, Sect. 3 presents our simultaneous allocation and binding
method. Sect. 4 demonstrates the effectiveness of our work through experiments.
Finally, Sect. 5 concludes this paper with a summary and future work.

2. Motivating Example

Various works have studied binding techniques in HLS for minimizing MUXs
or the number of interconnections in a circuit under given FUs and registers (i.e.,
allocation). In the works, the minimum numbers of FUs and registers, which are
required for meeting a (given) schedule of a design, are given as allocation. Since
the allocation is fixed in the works, minimizing MUXs results in minimizing the
circuit area. Let us consider 1), which conducts simultaneous FU and register
binding for minimizing the total number of interconnections under given alloca-
tion, for a scheduled DFG in Fig. 1(a) with hardware resources in Fig. 1(b). Two

1 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

IPSJ SIG Technical Report

v1 v2 v3

v4 v5

v6 v7

X1 +1

+3+2

x1 +1,+3 +2

v1,v5,v7 v2,v4 v3,v6

MUX MUX MUX

x1 +2 +1,+3

v1,v5,v7 v2,v6 v3v4

MUX MUX

Component

Adder

Multiplier

Register*

2-to-1 Multiplexer

Area (LUTs)

 32

512

 32

 32

Delay (ns)

 2.11

 8.09

 0.00

 0.17

(a) (b)

(c) (d)

Total area: 768 LUTs

Critical path delay: 8.26 ns > 8.20ns

Total area: 768 LUTs

Critical path delay: 8.09 ns < 8.20ns

* The area shows the equivalent number of LUTs
 for a register. For simplicity, we assume that
 load/store time of registers is 0.00ns.

Fig. 1 Motivating example: (a)An input scheduled DFG, (b)Hardware resources, (c)An opti-
mal solution obtained by 1), and (d)An optimal solution obtained by our method.

adders, one multiplier, and three registers are given as the allocation. Fig. 1(c)
shows an optimal circuit obtained by 1). The circuit has three MUXs, each of
which is inserted before each register. As a result, it has one multiplier (×1) and
one MUX on its critical path (depicted as a bold line in the figure). The area
and clock period of the circuit are 768 LUTs and 8.26ns, respectively.

In contrast, our method (explained in Sect. 3) simultaneously optimizes allo-
cation and binding for minimizing the total area including MUXs while meeting
a clock constraint by considering where the MUXs would be inserted. Fig. 1(d)
describes a circuit obtained by our method when the clock constraint is set as
8.20ns. Since the circuit gains 32 LUTs by increasing one register but loses 32
LUTs by decreasing one MUX, the total area eventually becomes the same as the
one in Fig. 1(c). Futhermore, the circuit in Fig. 1(d) meets the clock constraint,
while the circuit in Fig. 1(c) does not. In this example, our work achieves the
better performance with no area overhead than 1). As shown here, our work
minimizes the total area including MUXs under a clock constraint.

Circuits such as the one in Fig. 1(d) cannot be obtained by existing works which
conduct binding under given allocation. Moreover, since most existing works con-

sider MUXs only by the total number of interconnections and do not care where
the MUXs would be inserted, they may significantly worsen performance of cir-
cuits in large designs due to the MUXs inserted on a critical path. This example
shows the importance of simultaneous allocation and binding optimization and
that of path delay consideration for synthesizing efficient circuits in terms of both
area and performance.

3. Simultaneous Allocation and Binding

This section presents our HLS technique which simultaneously optimizes alloca-
tion and binding of FUs and registers considering MUXs under a clock constraint.

3.1 Preliminaries and Definitions
We propose a novel simultaneous allocation and binding method for minimiz-

ing the total area of FUs, registers, and MUXs under a clock constraint. This
method is formulated as an ILP problem. Also, an effective ILP-based heuristic
for non-small designs is presented. To the best of our knowledge, this is the
first work which simultaneously optimizes not only FU/register binding but also
FU/register allocation under the clock constraint by considering the influences
of MUXs on both the area and performance of a circuit.

The input to our method is a scheduled DFG, the maximum number of FUs
and registers (i.e., FUs and registers for unsharing), and a constraint on the clock
period given by a designer. A DFG is an acyclic directed graph, where nodes
and edges represent operations and data dependencies, respectively. Data which
are generated in a clock cycle and used in another clock cycle are called values
and need to be stored in registers. In the remainder of this paper, operations
and values are collectively called tasks, and FUs and registers are collectively
called agents. Resources represent agents and MUXs. We assume that the type
of agents which can execute tasks is unique.

Tasks can share the same agent if there is no type conflict in assigning the tasks
to the agent (e.g., values to registers and additions to adders) and their lifetime
does not overlap each other. The lifetime of a value is defined as the period in
clock cycle from the generation to the last use of the value. Similarly, the lifetime
of an operation is defined as the period in clock cycle from the initiation to the
termination of the operation. For a single-cycle operation, its initiation and
termination are in the same clock cycle.

The goal of our work is to simultaneously determine allocation (i.e., how many
instances should be used for each type of agents) and binding (i.e., which tasks

2 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

IPSJ SIG Technical Report

should share agents) so that the total resource area (i.e., the total area of FUs,
registers, and MUXs) is minimized while meeting the clock constraint. Consid-
ering the area and delay of the controller and routing logic is our future work.

3.2 ILP Formulation
We formulated our simultaneous allocation and binding method as an ILP

problem below. Notations in the following formulas are defined in Table 1.
Note that notations starting with a capital letter are all constants and only those
in a small letter are variables. Operation chaining and multi-cycle/pipelined
operations can be handled by the following formulas without extension?1.

Assignment: Each task should be assigned to one and only one agent;∑

j∈Agents

xi,j = 1 ∀i ∈ Tasks (1)

Also, an agent can perform at most one task in each control step;

(xi,j + xi′,j)× Conflicti,i′ ≤ 1 ∀i, i′ ∈ Tasks, i 6= i′,∀j ∈ Agents (2)

where Conflicti,i′ = 1 if both of tasks i and i′ are active in at least one control
step (i.e.,

∑
t∈Csteps Activei,t ×Activei′,t ≥ 1), otherwise 0.

Inter-agent connection: For dataflow from task i to mth input operand of
task i′, suppose that tasks i, i′ are bound to agent j, j′, respectively, there must
be an inter-agent connection from agent j to mth input port of agent j′;

(xi,j + xi′,j′ − 1)×Dataflowi,i′,m ≤ wj,j′,m

∀i, i′ ∈ Tasks, i 6= i′,∀j, j′ ∈ Agents, j 6= j′,
∀mth operand ∈ InOperandi′ ,∀mth port ∈ InPortj′ (3)

Delay constraint: If agent j has nj,m interconnections from distinct agents
at mth input port, a MUX with nj,m inputs and one output (i.e., a nj,m-to-1
MUX) is inserted before mth input port of agent j.

nj,m =
∑

j′∈Agents

wj′,j,m, ∀j, j 6= j′,∀mth port ∈ InPortsj (4)

We define a path as a set of directed edges between two values which are active

?1 For multi-cycle/pipelined operations, only the initiating and terminating execution of the
operations are considered.

Table 1 Definition of notations.

Tasks A set of tasks (i.e., operations and values)
Agents A set of agents (i.e., FUs and registers)
Resources A set of resources (i.e., Agents and MUXs)
TaskTypei Task type of task i
AgentTypej Agent type of agent j
Assignablei,j Assignablei,j = 1 if there is no type conflict between task i and

agent j, otherwise 0
Csteps A set of control steps
Activei,t Activei,t = 1 if task i is active at control step t, otherwise 0
xi,j xi,j = 1 if task i is assigned to agent j, otherwise 0
Conflicti,i′ Conflicti,i′ = 1 if tasks i and i′ have lifetime conflict, otherwise 0
Dataflowi,i′,m Dataflowi,i′,m = 1 if there is a data dependency from task i to

mth input operand of task i′, otherwise 0
wj,j′,m wj,j′,m = 1 if there is a connection from agent j to mth input

port of agent j′, otherwise 0
InOperandi A set of input operands of task i.

Note that |InOperandi| ≥ 1 for operations
and |InOperandi| = 1 for values.

InPortsj A set of input ports of agent j.
Note that |InPortsj | ≥ 1 for FUs and |InPortsj | = 1 for registers.

nj,m Total number of interconnections of mth input port of agent j
Path A set of paths on a given DFG
TaskPathi,p TaskPathi,p = 1 if task i is on path p, otherwise 0
ConstDelay A constraint on the clock period
dp Delay of path p
MUXl An l-to-1 MUX
Delayk Delay of resource k
Areak Area of resource k
yj yj = 1 if at least one task is assigned to agent j, otherwise 0

in consecutive two control steps. The path delay corresponds to the register-to-
register delay in a circuit. The delay of a path p, dp, is estimated as a summation
of delays of agents where tasks on the path are bound and delays of MUXs which
are inserted before the agents;

dp =
∑

i∈Tasks

∑

j∈Agents

(DelayMUXnj,m
+Delayj)×TaskPathi,p×xi,j

∀p ∈ Path, i′ ∈ Tasks, i 6= i′, TaskPathi′,p = 1, Dataflowi′,i,m = 1,

mth operand ∈ InOperandi, mth port ∈ InPortsj (5)

Let us consider an example shown in Fig. 2. Fig. 2(a) describes a part of an
input scheduled DFG. Numbers attached to each node (i.e., 1 and 2) represent
input operands of the node, m, e.g., value v1 is input to the 1st operand of
operation ×1. A table in Fig. 2(b) displays a binding result of tasks in Fig. 2(a),

3 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

IPSJ SIG Technical Report

v1 v2 v3

v5

X1 +1

+2

v4

1 2

1 2
1 2

Tasks
v1
v2
v3
X1
+1
+2
v4
v5

Agents
REG1
REG2
REG3
MULT1
ADD1
ADD2
REG1
REG3

...

...

...

...

cstep t

(a) (b)

Fig. 2 Path delay estimation: (a)A part of an input scheduled DFG and (b)A binding result.

e.g., value v1 and operation ×1 are assigned to register REG1 and multiplier
MULT1, respectively. For example, a path p1 in Fig. 2(a) starts from value v2,
passes through the 2nd operand of ×1 and the 1st operand of +2, and ends at
value v5. Then, in case of the binding result in Fig. 2(b), the delay of path p1, dp1,
is estimated as a summation of the delays of REG2, a MUX inserted before the
2nd input port of MULT1, MULT1, a MUX inserted before the 1st input port
of ADD2, ADD2, a MUX inserted before the input port of REG3, and REG3;
dp1 = DelayREG2 + DelayMUXnMULT1,2

+ DelayMULT1 + DelayMUXnADD2,1
+

DelayADD2 + DelayMUXnREG3,1
+ DelayREG3.

Then, in order to meet the clock constraint, ConstDelay, all paths should meet
the following constraint;

dp ≤ ConstDelay ∀p ∈ Path (6)

Area: The objective of this study is to simultaneously conduct FU/register
binding and allocation so that the datapath area (i.e., the total resource area)
is minimized. That is, while meeting the above constraints, the value of the
following cost function should be minimized;

Min :
∑

j∈Agents

(Areaj +
∑

mthport∈InPortsj

AreaMUXnj,m
)× yj (7)

where yj = 1 if at least one task is bound to agent j (i.e.,
∑

i∈Tasks xi,j ≥ 1),
otherwise 0.

Although for simplicity, we described the formulation in non-linear form, it can
be easily linearized such as by a linearization option of ILP solvers.

Set lower bound (L_boundg) and upper bound (U_boundg)

for area of FUs which sub-problem g handles in such a way that

U_bound1> L_bound1> U_bound2 >... > U_bound|G| > L_bound|G|,

where |G| represents the number of sub-problems.

A scheduled DFG
Maximum FUs

and registers

Divide tasks and agents into sub-problems
depending on the bounds and set g = 1

Set g = g+1 and reflect allocation and binding results of

sub-problem h to sub-problem g (for all h; h < g)

Run ILP problem in Sect. III-B for sub-problem g

g == |G| ?
Yes

No

Exit

Input A clock constraint

Fig. 3 Stepwise allocation and binding algorithm.

3.3 ILP-Based Heuristic
In this section, we present a heuristic based on the ILP problem described in

Sect. 3.2. In medium- and large-scale designs, our ILP problem might be unable
to handle allocation and binding for all tasks at one time in practical time because
the number of formulas rapidly grows by increasing the number of variables, xi,j .
However, by using the ILP-based heuristic which splits the entire problem into
several smaller sub-problems and stepwisely solves the FU/register allocation
and binding problem, an optimal or near-optimal solution can be obtained in
practical time. This approach is effective to handle non-small designs.

This algorithm focuses on how expensive each type of FUs is in area since
sharing more expensive FUs more effectively decreases the datapath area. Fig. 3
shows the stepwise allocation and binding algorithm. Let us explain it by the
example in Fig. 1(a). First, a designer sets lower and upper bounds of FU area
for sub-problems in such a way that sub-problem g contains more expensive FUs
than sub-problem g+1. Assume that the entire problem is divided into sub-
problems 1 and 2 for the example in Fig. 1(a), we set the bounds so that only
multipliers are in sub-problem 1 and adders are in sub-problem 2. Second, FUs
and operations assignable to the FUs are divided into the sub-problems depending
on the bounds. Because FU/register binding results interdependently influence
each other, operations and their input/output values should be handled together
in the same sub-problem. If the values are input to (output from) multiple types

4 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

IPSJ SIG Technical Report

Table 2 Characteristics of benchmark programs.

Complexity of input DFGs Minimum FUs and registers
Designs (Given allocation in 1))

add sub mult shift cmp value ADD SUB MULT SHIFT CMP REG
FFT 4 4 4 18 2 2 2 6
HAL 2 2 6 1 25 1 1 4 1 10

IDCT3 5 3 2 2 21 3 3 2 2 7
IIR Biquad 6 2 5 19 1 1 2 6

of operations in different sub-problems, the values should be handled with more
expensive operations. For this example, multiplication ×1 and its input/output
values v1,v2,v4 are handled in sub-problem 1, and the other tasks are in sub-
problem 2. Next, the ILP problem in Sect. 3.2 is run for all sub-problems in
descending order of expensiveness of FUs which the sub-problems hold. Results
of all precedence sub-problems (i.e., allocation, binding, MUX insertion, and
critical path information) should be reflected to their successive sub-problems.
For this example, the results of sub-problem 1 is reflected to sub-problem 2. It
is repeatedly done until all the sub-problems are solved.

4. Experiments

This section demonstrates the effectiveness of our method through experiments.
4.1 Experimental Setup
In experiments, the ILP problem in Sect. 3.2 was solved in a stepwise manner

as described in Fig. 3 by a commercial ILP solver, LINGO12), with its lineariza-
tion option. To evaluate the efficiency of our work, we compared our work with
1), one of the recent works which the most effectively minimize MUXs by si-
multaneous FU/register binding under given allocation. Although 1) presented
a heuristic and an ILP formulation for solving the problem and its contribution
is the proposal of the heuristic, we also solved its ILP problem by LINGO for
comparing the optimality of our work and 1).

We used the following four designs as benchmarks: FFT13), HAL14), the third
stage of MPEG IDCT (IDCT3)14), and the IIR Biquad filter consisting of N
sections (IIR Biquad)15). The designs were scheduled by a commercial HLS tool,
eXCite16). For 1), the minimum numbers of FUs and registers for the given
scheduled DFGs are given as allocation. Table 2 describes complexity of DFGs
and the allocation for 1) in columns 2-7 and 8-13, respectively. Utilized resources
deal with 32 bit data, and their area and delay, based on the Xilinx Virtex-4’s

Table 3 Area and delay of hardware resources.

ADD SUB MULT SHIFT CMP REG?1 2-to-1 3-to-1 4-to-1
MUX MUX MUX

Area (LUTs) 32 32 512 62 52 32 32 64 96
Delay (ns) 2.11 2.11 8.09 0.89 2.30 0.00 0.17 0.56 0.56

library17), are shown in Table 3. The clock constraint for our method was set
for 8.33ns (120MHz). Our method was solved in two steps for all the designs.

4.2 Experimental Results
Table 4 summarizes experimental results. The third, fourth, and fifth columns

show used resources (i.e., FUs, registers, and MUXs), the total resource area, and
the critical path delay, respectively.

Our work necessarily meets the clock constraint with the minimum resource
area. On the other hand, 1) violates the constraint in all the designs because 1)
focuses on only minimizing the total number of interconnections and does not
care where MUXs are inserted. One may think that the constraint violation by 1)
is trivial. Actually, the violation might be small in small designs. However, the
larger the design becomes, the more serious the violation will be because MUX
insertion on a critical path will be inevitable under limited resource allocation,
especially if the path delay is not considered. Our work can minimize the total
resource area under the clock constraint by simultaneously optimizing allocation
and binding while considering where the MUXs would be inserted.

The LINGO’s runtime was in total from approximately seven to 80 minutes
for our method and from approximately one to 55 minutes for 1). While the
ILP problem of 1) was solved at one time and obtained optimal solutions, our
method was solved in the stepwise manner and the obtained solutions may be
near-optimal. Even so, our method outperforms 1) in that our method explores
the wider design space and obtains solutions with the minimum area under the
clock constraint, which cannot be explored by 1).

Here, we showed only the results where 1) violates the clock constraint in all
the designs. If a looser constraint which 1) meets is given, solutions obtained by
1) are always contained in the design space which our method explores. That is,
those solutions or better solutions (i.e., solutions with smaller area) are obtained
as optimal solutions by our method.

?1 On FPGAs, registers are generally implemented by flip-flops. Here shows the equivalent
number of LUTs for a 32-bit register. Also, for simplicity without loss of generality, we
assume that load/store time of registers is 0.00ns.

5 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

IPSJ SIG Technical Report

Table 4 Experimental results.

Desgins Methods Resources Area (LUTs) Critical path delay (ns)

FFT Our work ADD × 2, SUB × 2, MULT × 2, REG × 7, 2-to-1 MUX × 6 1,568 8.26
Existing work1) ADD × 2, SUB × 2, MULT × 2, REG × 6, 2-to-1 MUX × 7 1,568 8.43

HAL Our work ADD × 1, SUB × 1, MULT × 4, CMP × 1, REG × 12, 2-to-1 MUX × 7 2,772 8.26
Existing work1) ADD × 1, SUB × 1, MULT × 4, CMP × 1, REG × 10, 2-to-1 MUX × 6, 3-to-1 MUX × 1 2,740 8.65

IDCT3 Our work ADD × 3, SUB × 3, MULT × 2, SHIFT × 2, REG × 11, 2-to-1 MUX × 5, 3-to-1 MUX × 1 1,916 8.26
Existing work1) ADD × 3, SUB × 3, MULT × 2, SHIFT × 2, REG × 7, 2-to-1 MUX × 5, 4-to-1 MUX × 2 1,916 8.65

IIR Biquad Our work ADD × 2, SUB × 2, MULT × 2, REG × 7, 2-to-1 MUX × 5, 3-to-1 MUX × 1 1,600 8.26
Existing work1) ADD × 1, SUB × 1, MULT × 2, REG × 6, 2-to-1 MUX × 5, 3-to-1 MUX × 2 1,568 9.21

5. Conclusions

In this paper, we proposed a novel simultaneous allocation and binding method
which minimizes the datapath area (i.e., the total area of FUs, registers, and
MUXs) while meeting a clock constraint. By considering not only the area of
MUXs but also where the MUXs would be inserted in a circuit, our method
explores the wider design space than existing works and obtains solutions which
meet the clock constraint with the minimum datapath area. We formulated this
method as an ILP problem. Also, we presented an effective ILP-based heuristic
for non-small designs. Experimental results showed that our work more globally
optimizes circuits under a clock constraint than an existing work.

As designs become larger, even our ILP-based heuristic may be unable to solve
in practical time. Developing a heuristic which can handle such large designs will
be our future work. Also, the influences of the controller and routing logic on the
area and performance of the circuits should be considered in our future work.

Acknowledgements

This work is in part supported by KAKENHI 22700050.

References

1) J.Cong and J.Xu, “Simultaneous FU and register binding based on network flow
method,” in Proc. Design, Automation and Test in Europe, 2008, pp. 1057–1062.

2) Y.Hara, H.Tomiyama, S.Honda, and H.Takada, “Proposal and quantitative anal-
ysis of the CHStone benchmark program suite for practical c-based high-level syn-
thesis,” Journal of Information Processing, vol.17, no.12, pp. 242–254, 2009.

3) P.G. Paulin, J.P. Knight, and E.F. Girczyc, “HAL: A multi-paradigm approach
to automatic data path synthesis,” in Proc. Design Automation Conference, 1986,
pp. 263–270.

4) C.-J. Tseng and D.P. Siewiorek, “Automated synthesis of data path in digital sys-
tems,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. CADJ, no.3, pp. 379–395, 1986.

5) C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu, “Data path allocation based
on bipartite weighted matching,” in Proc. Design Automation Conference, 1990,
pp. 499–504.

6) B. Pangrle, “On the complexity of connectivity binding,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol.10, no.11, pp. 1460–
1465, 1991.

7) M.Rim, R.Jain, and R.De Leone, “Optimal allocation and binding in high-level
synthesis,” in Proc. Design Automation Conference, 1992, pp. 120–123.

8) T.Kim and X.Liu, “Compatibility path based binding algorithm for interconnect
reduction in high level synthesis,” in Proc. International Conference on Computer
Aided Design, 2007, pp. 435–441.

9) J.Cong, Y.Fan, and J.Xu, “Simultaneous resource binding and interconnection
optimization based on a distributed register-file microarchitecture,” ACM Trans.
on Design Automation of Electronic Systems, vol.14, no.3, pp. 1–31, 2009.

10) N.Woo, “A global, dynamic register allocation and binding for a data path syn-
thesis system,” in Proc. Design Automation Conference, 1991, pp. 505–510.

11) C.Mandal, P.P. Chakrabarti, and S.Ghoseo, “GABIND: A ga approach to alloca-
tion and binding for the high-level synthesis of data path,” IEEE Trans. on Very
Large Scale Integration Systems, vol.8, no.6, pp. 747–750, 2000.

12) Lindo systems. [Online]. Available: http://www.lindo.com/
13) N.Ohsawa, M.Hariyama, and M.Kameyama, “FPGA-based processor for multi-

media mobile communication,” in Proc. Sensing Instrument Control Engeneering
Tohoku Chapter workshop, 2000, pp. 1–6.

14) Express group. [Online]. Available: http://express.ece.ucsb.edu/
15) V.Sivojnovic, J.M. Velarde, C.Schlager, and H.Meyr, “Designing the low-power

mcore architecture,” in Proc. Signal Processing Applications & Technology Confer-
ence, 1994.

16) Y Explorations. [Online]. Available: http://www.yxi.com/.
17) Xilinx Inc. [Online]. Available: http://www.xilinx.com/.

6 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-148 No.15
2011/1/17

