
Optimized Matrix Multiplication on GPU

K. Matsumoto∗ N. Nakasato∗ T. Sakai∗ S.G. Sedukhin∗

We present an implementation of dense matrix-matrix multiply-add (MMA) on GPU from
AMD when the memory requirement is larger than a GPU’s local memory. This MMA imple-
mentation utilizes our previous DGEMM (Double-precision General Matrix Multiply) kernel,
which efficiently works on a Cypress GPU.

One of the drawbacks of GPU processing is the communication time between the host
memory and GPU’s local memory. The proposed implementation overlaps the communication
and the computation and alleviate the communication latency. For our implementation on a
Cypress GPU running at 850 MHz clock speed, we have selected the block size of 1792× 1792
in the blocked MMA algorithm to hide the latency. In addition, the multiplication kernel of a
transposed matrix and a non-transposed matrix (TN) in row-major order was discovered faster
than that of non-transposed matrices (NN) in the DGEMM kernel; therefore we use the TN
kernel for our implementation by copying matrix data into transposed form before transferring
it to GPU. Fig. 1 shows the performance in Gflop/s of our NN implementation with and without
the optimization on the GPU.

In Fig. 1, the performance in multiples of 1792 (the blocking factor) is only depicted. When
a size is not the multiples, we insert the zero padding so that MMA can effectively be done on
GPU. The performance is sensitive to the amount of padding since it increases the redundant
computations on the padded portions. Thus, our MMA implementation chooses the appropriate
size of blocking in multiples of 128. Fig. 2 shows the performance of NN implementation with
the padding. Notice that the blocking factors used are up to 1792 because the GPU with 1 GB
local memory cannot allocate the memory region for the bigger blocking factor.

 0

 100

 200

 300

 400

 500

1792 3584 5376 7168 8960 10752 12544 14336

G
flo

p/
s

Matrix size (granularity = 1792)

With overlap and transposition
Without overlap

Without transposition

 0

 100

 200

 300

 400

 500

 0 2000 4000 6000 8000 10000 12000 14000

G
flo

p/
s

Matrix size (granularity = 1)

Figure 1: MMA performance with and
without optimizations

Figure 2: MMA performance with a
padding

∗The University of Aizu

2011年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2011

ⓒ 2011 Information Processing Society of Japan76

HPCS2011
2011/1/18

