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Type III secretion systems (T3SS) deliver bacterial proteins, or “effectors”,
into eukaryotic host cells, inducing physiological responses in the hosts. Ef-
fector proteins have been considered virulence factors of pathogenic bacteria,
but T3SSs have now been found in symbiotic bacteria as well. Whether any
physicochemical difference exists between the two types of effectors remains un-
known. In this work, we combined computational statistical and machine learn-
ing methods to identify features that could be responsible for the difference. For
computational statistical method we used generalized Bayesian information cri-
terion and kernel logistic regression, and for machine learning method we used
support vector machine. It was clearly shown that differences in amino acid
composition exist between pathogenic and symbiotic effector proteins. All iden-
tified discriminating features were those of amino acid composition and average
residue weight, and their classification performance could be nearly identical
to that using all physicochemical features, with sensitivity and specificity of
over 80%. Further analysis on the seven discriminating features by graphical
modeling revealed three dominant features among them. Moreover, amino acid
regions that were distinctive for the seven features were explored by sliding
window analysis. This study provides a methodological basis and important
insights into the functional differences between pathogenic and symbiotic T3SS
effectors.

1. Introduction

Type III secretion systems (T3SS) are complex secretion machines that deliver
bacterial proteins called effectors into eukaryotic host cells through an injecti-
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some during infection 1),2). T3SS-secreted effector proteins induce physiological
responses in their hosts, such as cytoskeletal rearrangement to promote bacterial
attachment and invasion, interference with cellular trafficking processes, cytotox-
icity 2), induction of apoptosis of macrophages 3), disruption of tight junctions 4),
and microtubule destabilization 5). These effector protein functions are consid-
ered causes of virulence in pathogenic bacteria such as Yersinia species (spp.),
Chlamydia spp., Salmonella spp., Shigella spp., and enteropathogenic Escherchia
coli. However, T3SSs are also found in symbiotic bacteria 6),7), and a genome
analysis of a Chlamydia-related symbiont of free-living amoebae suggests that
the origins of T3SSs may be unrelated to virulence 8).

Common features of T3SS effector proteins in pathogenic and symbiotic bac-
teria can be identified by computational methods 9),10). While T3SS effector
proteins were originally not thought to share any common features 11), recent
studies using machine learning approaches have identified commonalities in the
N-terminus of effectors, mainly in amino acid composition. One study 9) analyzed
both pathogenic and symbiotic T3SS effector proteins, and found a signature in
the N-terminus that is taxonomically universal and conserved.

The symbiotic T3SS effector proteins, however, have different functions than
the pathogenic effectors. Symbiotic effectors of rhizobia, for example, modulate
host-plant reactions, that lead to the formation of functional nodules 12),13). Pu-
tative effector proteins of the tsetse fly endosymbiont, Sodalis glossinidius, specif-
ically facilitate the host cell cytoskeletal rearrangements necessary for bacterial
entry, although the number of genes encoding effector proteins is smaller in the
symbiotic regions than in the homologous islands in pathogenic bacteria 14). Ho-
mologs of the symbiotic regions are also found in endosymbionts of grain weevils,
Sitophilus oryzae and S. zeamais, in which T3SS genes are suggested to function
during a specific stage of weevil development 14). Even if the signature amino
acid sequence in the N-terminus is conserved among pathogenic and symbiotic
T3SS effector proteins, these functional differences exist. We were interested in
finding the physicochemical differences between pathogenic and symbiotic T3SS
effector proteins that might be responsible for these functional differences.

In this work, we combined computational statistical and machine learning ap-
proaches to address this issue. From a dataset of physicochemical features pre-
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pared from pathogenic and symbiotic T3SS effector proteins, discriminating fea-
tures of amino acid composition were determined using generalized Bayesian in-
formation criterion, kernel logistic regression and support vector machine (SVM).
Further analysis on seven discriminating features by graphical modeling revealed
three dominant features among them. Moreover, amino acid regions that were
distinctive for the seven features were explored by sliding window analysis.

2. Materials and Methods

2.1 Dataset
We collected the 57 currently available amino acid sequences of symbiotic T3SS

effector proteins from the literature 9),15), and the same number of amino acid se-
quences for pathogenic T3SS effector proteins 9). The accession number (Uniprot
ID), protein name and organism name for the sequences are shown in Tables S1
and S2 in Appendix A.2.

For each effector protein amino acid sequence, we calculated the physicochem-
ical features, 41 in total, such as charge, isoelectric point, number of proteolytic
enzyme or reagent cleavage sites, mole percentage of each amino acid and amino
acid groups defined in EMBOSS 16), and signal peptide probability. The list of 41
physicochemical features used in this study is in Table 1. Among them, follow-
ing features have been examined in studies of T3SS effector proteins: amino acid
composition and secondary structure 9), charge 17), cleavage sites 18), and signal
peptide probability 15). Others (No.1, 4, and 7–10 in Table 1) are general physic-
ochemical features of proteins and added because there was no prior knowledge
about differences between pathogenic and symbiotic T3SS effector proteins. Sig-
nal peptide probability was calculated by SignalP 3.0 19), and others features were
calculated by EMBOSS 16). These were used as attributes in our classification
analysis.

2.2 Feature Selection
We first used the Lepage test for the location-dispersion difference between the

two groups 20). The top 10 discriminating features were chosen by the order of
their p-values in the test statistics. The p-values of all of these candidate features
were less than 0.001.

For these candidate features, we examined all combinations, 210 − 1, as ex-

Table 1 Biochemical features used as attributes of effector proteins.

No. Description

1 Number of potentially antigenic regions of a protein sequence�1

2 Number of proteolytic enzyme or reagent cleavage sites�1

3 Number of secondary structure�1

4 Hydrophobic moment�1

5 Average residue weight�1

6 Charge�1

7 Isoelectric point�1

8 Molar extinction coefficient�1

9 Extinction coefficient at 1 mg/ml�1

10 Probability of protein expression in E. coli inclusion bodies�1

11–30 Mole percentage of each amino acid�1

11:Ala, 12:Cys, 13:Asp, 14:Glu, 15:Phe, 16:Gly, 17:His, 18:Ile, 19:Lys, 20:Leu,
21:Met, 22:Asn, 23:Pro, 24:Gln, 25:Arg, 26:Ser, 27:Thr, 28:Val, 29:Trp, 30:Tyr

31 Mole percentage of tiny amino acids�1 (A+C+G+S+T)
32 Mole percentage of small amino acids�1 (A+B+C+D+G+N+P+S+T+V)
33 Mole percentage of aliphatic amino acids�1 (A+I+L+V)
34 Mole percentage of aromatic amino acids�1 (F+H+W+Y)
35 Mole percentage of non-polar amino acids�1 (A+C+F+G+I+L+M+P+V+W+Y)
36 Mole percentage of polar amino acids�1 (D+E+H+K+N+Q+R+S+T+Z)
37 Mole percentage of charged amino acids�1 (B+D+E+H+K+R+Z)
38 Mole percentage of basic amino acids�1 (H+K+R)
39 Mole percentage of acidic amino acids�1 (B+D+E+Z)
40 Number of cleavage sites between signal sequence and mature exported protein�1

41 Signal peptide probability�2

planatory variables in the kernel logistic regression (KLR), which is one of the
kernel-learning methods suitable for binary-pattern recognition problems 21),22).
Let yi be a binary observed variable and p(xi) be its conditional distribution
given xi, i.e., p(yi = 1|xi), then the likelihood function is given by

L =
n∏

i=1

p(xi)yi(1 − p(xi))(1−yi) (1)

and log-likelihood function become

�1 Calculated by EMBOSS 16).

�2 Calculated by SignalP 19).
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logL =
n∑

i=1

yi log
p(xi)

1 − p(xi)
+ log(1 − p(xi)) (2)

in which the unknown quantity p(xi) is modeled using the radial basis kernel
function K(xj ,xi) as

f(xi) = log
p(xi)

1 − p(xi)
=

n∑
j=0

αjK(xj ,xi) (3)

where
Kij = K(xi,xj) = exp(−σ ‖ xi − xj ‖2) (4)

and σ is the kernel parameter, n is the number of observations, and j is the
index of observation which forms a pair with i-th observation in the radial basis
kernel function. Let α̂ be the solution of the vector of the regression coefficients
in Eq. (3). It is calculated using the following penalized log-likelihood function

1
n

{
n∑

i=1

yif(xi) − log[1 + exp(f(xi))]

}
− λ

2
αTRα (5)

where

R =

(
1 1′

n

1n K

)

by Fisher’s scoring methods.
To select the best combination of the 10 candidate features, we used a gener-

alized Bayesian information criterion (GBIC) 23). Using the likelihood function
L(α) in Eq. (1) and the multivariate normal prior density π (α|λ) for the param-
eter vector α defined by

π (α|λ) = (2π)−r/2(nλ)r/2|R|1/2
+ exp

(
−nλ

2
α′Rα

)
. (6)

GBIC is defined as

GBIC = −2 log
∫
L(α)π(α|λ)dα (7)

and R is the same as that of Eq. (5), r is the rank of R, and |R|+ is the product
of r nonzero eigenvalues of R. Once α̂ is obtained, GBIC is calculated through

the Laplace approximation

−2 log
∫

exp(nlλ(α))dα

= −2 log
{

(2π/n)(n+1)/2

|Jλ(α̂)1/2| exp(nlλ(α̂))
}
{1 +O(n−1)} (8)

where

lλ(α) =
1
n

logL(α) +
1
n

log π(α|λ)

Jλ(α̂) = −∂
2lλ(α)
∂α∂αT

GBIC was computed for each combination of 10 features, and the combination
with the minimum GBIC was determined as explanatory variables of KLR. Dur-
ing the feature selection, values of kernel parameter σ and hyperparameter λ were
given in the range of 10−3 to 103 (σ) or to 104 (λ) for each set of explanatory
features.

2.3 Classification Performance
Classification using discriminating features identified by GBIC of KLR was

conducted by SVM based on the approximate relationship between KLR and the
SVM 21). To determine the advantage of the identified discriminating features,
a misclassification rate was calculated by leave-one-out cross-validation for each
combination of k-features that attained the minimum GBIC in 10Ck combinations
(k = 1, · · · , 10). The results are summarized in a figure which illustrates the
misclassification rates, with the number of features on the horizontal axis. We
used ‘svm’ function of e1071 package (E. Dimitriadou, K. Hornik, F. Leisch, D.
Meyer, and A. Weingessel) in R.

2.4 Graphical Modeling
To obtain a deeper understanding of discriminating features identified by GBIC

of KLR, it was useful to graphically represent correlated relationships among it.
We used graphical modeling developed by Imoto, et al. 24),25) which combines non-
linear nonparametric regression with radial basis and Bayesian network, and was
originally developed for estimating genetic networks and functional relationships
between genes. Non-linear nonparametric regression enabled us to capture di-
rected dependencies among the features without advance knowledge about their
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relationships. Bayesian network is a powerful, graph-theoretic approach for ex-
pressing correlated relationships among variables as networks. Details are ex-
plained in the Appendix A.1.

Calculations were conducted by MATLAB R2008b on the basis of NETLAB
toolbox 26), Bayes Net Toolbox 27), and BNT structure learning package 28).

2.5 Sliding Window Analysis
While discriminating features identified by GBIC of KLR were calculated from

full-length amino acid sequences, we considered that their differences between
pathogenic and symbiotic T3SS effectors proteins might be evident in some amino
acid region. In order to explore such regions that were distinctive for identified
features, sliding windows analysis was conducted. N-terminal regions from the
1st to 97th residue were analyzed, with the window size varying from 8 to 50, and
the starting position varying from 1 to 50. Using discriminating features which
attained the smallest minimum GBIC of KLR and the lowest misclassification
rate, a dataset was created for each window, and classification performance was
evaluated by the leave-one-out cross-validation using SVM.

3. Results

3.1 Identification of Discriminating Features
A plot of minimum GBIC for 10Ck combination of features used in KLR was

given in Fig. 1 taking the number of features, k, on the horizontal axis. Sets
of discriminating features with a minimum GBIC in 10Ck combinations are in
Table 2. Clearly, all identified discriminating features were those of amino acid
composition and average residue weight.

The figure shows that the minimum GBIC tends to decrease as the number of
features increase, take the smallest value when the number of features is seven,
and increase at greater than seven features.

3.2 Classification Performance of Discriminating Features
Misclassification rates using the identified discriminating features (shown in

Table 2) are plotted in Fig. 2, taking the number of features on horizontal axis.
The plot of minimum GBICs (Fig. 1) and misclassification rates showed parallel
tendencies. While classification performance was about 80 to 85 percent for the
three to ten features, the best classification performance was obtained using a

Fig. 1 Plot of minimum GBIC against number of features used in kernel logistic regression.
Minimum GBIC from 10Ck combinations of features (k = 1, 2, · · · , 10) used in kernel
logistic regression.

combination of the seven features that attained the smallest minimum GBIC
(Fig. 2 A). The best performance with seven features was nearly identical to the
result obtained when all 41 features were used. The seven discriminating features
had a specificity of 85.5% and a sensitivity of 83.1% (Fig. 2 B).

3.3 Graph Structure Showing Correlated Relationships and Domi-
nant Features among the Seven Discriminating Features

While the best classification performance was obtained using a combination
of the seven features, the difference among the three to ten features was not
substantial. In addition, the seven discriminating features identified by GBIC
of KLR were correlated: about 28.6% among 7C2 − 7 non-diagonal correlation
matrix elements had Pearson’s linear correlation coefficients larger than 0.5. To
obtain a deeper understanding of them, we illustrated the relationship among the
discriminating features by the directed graphical modeling technique (Fig. 3).
The figure indicates that among the seven features, mole percentages of alanine
and isoleucine (‘Ala’ and ‘Ile’ in Fig. 3) are dominant features that are directly
contributed to the discrimination. Other features such as mole percentages of
small, acidic, tiny amino acids, and aspartic acid contribute to the discrimination
through those of alanine and isoleucine. Mole percentages of tiny, acidic amino
acids and aspartic acid are related to those of alanine and isoleucine through av-
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Table 2 Discriminating features identified by GBIC and kernel logistic regression.

Number of features No. in Table 1 Description of each feature

1 18 Ile (mole percentage)

2 5 Average residue weight
11 Ala (mole percentage)

3 25 Arg (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)

4 11 Ala (mole percentage)
13 Asp (mole percentage)
17 His (mole percentage)
25 Arg (mole percentage)

5 11 Ala (mole percentage)
13 Asp (mole percentage)
17 His (mole percentage)
25 Arg (mole percentage)
31 Tiny (mole percentage)

6 5 Average residue weight
11 Ala (mole percentage)
25 Arg (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)
38 Basic amino acids (mole percentage)

7 5 Average residual weight
11 Ala (mole percentage)
13 Asp (mole percentage)
18 Ile (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)
39 Acidic amino acids (mole percentage)

Number of features No. in Table 1 Description of each feature

8 5 Average residual weight
11 Ala (mole percentage)
13 Asp (mole percentage)
17 His (mole percentage)
25 Arg (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)
39 Acidic amino acids (mole percentage)

9 5 Average residual weight
11 Ala (mole percentage)
13 Asp (mole percentage)
17 His (mole percentage)
25 Arg (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)
38 Basic amino acids (mole percentage)
39 Acidic amino acids (mole percentage)

10 5 Average residue weight
11 Ala (mole percentage)
13 Asp (mole percentage)
17 His (mole percentage)
18 Ile (mole percentage)
25 Arg (mole percentage)
31 Tiny amino acids (mole percentage)
32 Small amino acids (mole percentage)
38 Basic amino acids (mole percentage)
39 Acidic amino acids (mole percentage)

erage residue weight. Indeed, mole percentage of isoleucine has been identified by
GBIC of KLR when the number of feature is one, and the combination of average
residue weight and mole percentage of alanine has also been identified when the
number of features is two (Table 2). Furthermore, Fig. 2 shows that classification
accuracy is as much as about 70% for the mole percentage of isoleucine, and
nearly 80% for a combination of alanine and average residue weight.

3.4 Amino Acid Regions That Were Distinctive for the Seven Dis-
criminating Features

Results of sliding window analysis with variable window sizes and starting
points are shown in Table 3. The region that gave the best classification by

the seven discriminating features was 48–95 residues from the N-terminus (N48–
95), which gave a classification accuracy of 83.3% (Fig. 4). Notably, almost all
regions with the second and third highest classification accuracy overlapped with
this region (Table 3), supporting that this is a distinctive region for the seven
discriminating features.

3.5 Summary of Differences of the Seven Discriminating Features
The differences of the seven features between pathogenic and symbiotic T3SS

effector proteins are summarized in Table 4, with “+” meaning “more common
in symbiotic proteins”. Results are given for full-length amino acid sequences and
the region that was distinctive for the seven discriminating features, N48–95. The
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Fig. 2 Classification performance using the discriminating features identified by GBIC of
KLR. Misclassification rate for each combination of k-features that attained the mini-
mum GBIC in 10Ck combinations (k = 1, · · · , 10). Classification using all 41 features
was also conducted, and the misclassification rate is at “All (41)” of the x-axis. (A) Mis-
classification rate. (B) Specificity and sensitivity.

patterns of differences were almost equivalent between full-length amino acid se-
quences and the distinctive region, revealing that the discriminating signatures of
the seven features were evident in this region. Directions of the differences were
as follows: as for mole percentage of amino acids, isoleucine decreased in symbi-
otic proteins, while the other amino acids (alanine, aspartic acids, acidic amino

Fig. 3 Graph structure showing correlated relationships and dominant features among the
seven discriminating features. Directed dependencies detected by nonparametric re-
gression are depicted by arrows whose heads indicate response variables and tails indi-
cate explanatory variables. Colours are the dominant discriminating features identified
by GBIC, when the number of features is one or two (see Table 2).

Table 3 Results of sliding window analysis using the seven discriminating features.

Region Misclassification rate Starting point Window size

N48–95 0.167 48 48
N49–95 0.175 49 47
N48–93 0.184 48 46
N48–96 0.184 48 49
N49–89 0.184 49 41
N49–90 0.184 49 42
N49–96 0.184 49 48
N9–36 0.184 9 28
N40–89 0.193 40 50
N47–93 0.193 47 47
N47–96 0.193 47 50
N48–92 0.193 48 45
N48–94 0.193 48 47
N49–93 0.193 49 45
N50–96 0.193 50 47
N65–97 0.193 65 33

acids, tiny amino acids, small amino acids) increased in symbiotic proteins. The
tendency was found both in full-length amino acid sequences and the distinctive
region (N48–95).
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Fig. 4 Plot of misclassification rate by sliding window analysis with window size 48. As
shown in Table 3, misclassification rate is lowest when the analysis start position is 48
and the window size is 48 (i.e., for region N48–95), which gives the best classification
performance by the seven discriminating features.

Table 4 Summary of differences of the seven discriminating features.

pathogen (full-length) symbiont (full-length) direction�1

Feature Mean SD Mean SD Mean SD

Ile (Molar %) 5.74 2.25 3.98 1.52 - -
Average residue weight 109.30 4.12 108.98 2.80 - -
Ala (Molar %) 8.28 3.07 10.99 2.80 + -
Asp (Molar %) 4.49 1.91 16.01 1.60 + -
Acidic (Molar %) 10.79 3.91 11.70 2.21 + -
Tiny (Molar %) 31.58 6.98 32.94 3.90 + -
Small (Molar %) 51.97 6.95 54.53 4.41 + -

pathogen (N48–95) symbiont (N48–95) direction�1

Feature Mean SD Mean SD Mean SD

Ile (Molar %) 5.30 4.09 3.84 2.81 - -
Average residue weight 109.26 6.41 109.79 4.34 + -
Ala (Molar %) 9.06 4.55 10.78 5.25 + +
Asp (Molar %) 3.07 2.27 5.88 3.46 + +
Acidic (Molar %) 8.92 5.69 11.15 4.91 + -
Tiny (Molar %) 32.35 10.64 33.08 8.05 + -
Small (Molar %) 51.68 10.95 53.91 6.69 + -

4. Discussion

In this work, we identified the discriminating features between pathogenic and

�1 From pathogenic to symbiotic (“+” means “more in symbiotic proteins”).

symbiotic T3SS effector proteins, using a large combination of physicochemical
features, analyzed by GBIC of KLR. Their classification performance could be
nearly identical to that using all physicochemical features, with sensitivity and
specificity of over 80%.

The seven discriminating features which attained the smallest minimum GBIC
of KLR and the lowest misclassification rate were those of amino acid composition
and average residue weight. Moreover, all of the identified discriminating features
were those of amino acid composition and average residue weight, which are
correlated primary properties of proteins. No other higher-order property was
selected by GBIC of KLR on every number of features (from one to ten) used in
KLR (Table 2).

Interestingly, recently reported common features of T3SS effectors were also
found to be amino acid composition or shared sequence motif 9),10). Especially, the
common features of T3SS effectors were reported to be enrichment or depletion
of several amino acids (alanine, aspartic acid, threonine, glutamic acid, proline,
leucine, serine, threonine) in the N-terminus 9). It was reported that, when these
differences in individual amino acid composition and other features are combined
together, discrimination between T3SS effectors and other control proteins was
made possible with sensitivity of ∼71% and selectivity of ∼85%. Similarly, it is
conceivable that discrimination between pathogenic and symbiotic T3SS effector
proteins in our analysis is made possible by combining differences in individual
amino acid composition.

The distinctive region for the seven discriminating features was 48–95 residues
from the N-terminus. The classic signal peptide secretion signal is 15–40 residues
from the N-terminus 29). Common features of T3SS effectors proteins were re-
cently found to be embedded in 30 10) or up to 50 residues 9) at the N-terminus.
These findings are complementary with ours because the differences between
pathogenic and symbiotic effector proteins are thought to have arisen after the
common features in the N-terminus. Although common features are conserved,
differences in amino acid composition occur, presumably because of different re-
lationships of pathogens, and symbionts with their hosts.

While classification performance was about 80 to 85 percent for the three to
ten features identified by GBIC of KLR, Fig. 1 shows that the minimum GBIC
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became larger when the number of features used in KLR increased from four
to five, or became more than seven. In both cases, the misclassification rate
increased (Fig. 2). Table 2 shows that the difference between the four and five
features identified by KLR was mole percentage of tiny amino acids. A combi-
nation of four features, specifically mole percentage of Arg, Ala, Asp, His, and
mole percentage of tiny amino acids are considered to reduce model validity and
classification performance. Considering more than seven features also had an
adverse effect, presumably because unnecessary information was added to the
model.

The sequence dataset of T3SS effector proteins poses a challenge. Because
sequence identities among these proteins are low, and their length varies, ob-
taining fully aligned datasets is difficult or sometimes impossible. We could not
analyze T3SS proteins by sequence-alignment methods, so we prepared a feature
dataset by calculating the physicochemical properties of each effector protein.
The features chosen were easy to calculate compared to other features, such as
genomic context, evolutionary based features, and regulatory networks 30). We
also examined the differences between pathogenic and symbiotic effectors as a
feature-selection problem, using GBIC of KLR, and classification using SVM.
This approach provided a methodological basis for future research examining
characteristic features of T3SS effector proteins.

The two previous studies that examined common features of T3SS effector
proteins also used feature-selection methods. One conducted feature selection by
a greedy hill-climbing search in combination with correlated feature selection 31)

based on the WEKA (Waikato Environment for Knowledge Analysis) machine
learning toolbox 32). The selected number of discriminating features was 10,
more than half of which were amino acid composition. Another study used a
recursive feature elimination approach of SVM 10). A minimal set of 88 features
was found to retain the ability to classify secreted effectors. Although the datasets
in these studies were different from ours, our method was comparably effective
in capturing essential differences with lower features.

In this study, we used GBIC of KLR for computational statistical method,
and used SVM and leave-one-out cross-validation for machine learning method.
Although both of information criterion and cross-validation can be used to feature

selection, these results often disagree. Since GBIC of KLR is more sophisticated
method than simple cross-validation, enabling selection of features that maximize
posterior probability given observed data, we selected it primarily. We anticipate
the combination would lead to better classification.

The identified discriminating features were used for classification, and for elu-
cidating their correlated relationships and dominant features among them us-
ing graphical modeling that combined non-linear nonparametric regression and
Bayesian network. Although these techniques are usually used for estimating
gene networks from microarray expression data, the combination of them, with
feature selection, was a powerful method for a deeper understanding of the mean-
ing of the discriminating features.

This is the first study to identify discriminating features between pathogenic
and symbiotic T3SS effector proteins, using a combination of computational sta-
tistical and machine learning approaches. The discriminating features of amino
acid composition and average residue weight, the dominant features among the
seven discriminating features, and the amino acid regions that were distinctive
for them were revealed. This study will provide a methodological basis for future
research, and provides important insight about the functional differences between
pathogenic and symbiotic T3SS effectors.
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Appendix

A.1 Details of Graphical Modeling Applied in This Study
We denote the most discriminating features identified by the GBIC as x =

{x1, · · · ,xp} where xj (j = 1, · · · , p) is n-dimensional column vector. Corre-
lated relationships among them are explored through nonparametric regression
by taking a response variable, for example bj , as xj (j = 1, · · · , p), and a sub-
set of remaining variables, for example ak (k = 1, · · · , q, 1 ≤ q ≤ p − 1), as
explanatory variables. A nonparametic regression model using radial basis func-
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tion network 23) is given by

bi = γ0 +
M∑

m=1

γmψm(ai) + εi (i = 1, · · · , n) (9)

where εi ∼ N(0, σ2), and

ψm(ai) = ψm(||ai − cm||2) = exp
(
−||ai − cm||2

2vh2
m

)
, m = 1, · · · ,M (10)

where M and v are given constants; M is the number of basis function and v is
a hyperparameter that controls the widths of the basis functions. We abbreviate
the subscript j (j = 1, · · · , p) and k (k = 1, · · · , q) for convenience. To estimate
parameters in the model, we fix v to be 1, and M to p− 1 for convenience. A K-
means clustering based procedure is applied to estimate center cm and width hm

in advance for each m. The observations x1, · · · ,xn are divided into M clusters
Cm (m = 1, · · · ,M) by K-means algorithm, and estimates of cm and hm are
given by

cm =
1
nm

∑
i∈Cm

ai, hm =
1

nmq

∑
i∈Cm

||ai − cm||2 (11)

where nm is the number of the observations which belong to the m-th cluster
Cm. The unknown parameters γ0, · · · , γm (m = 1, · · · ,M) are estimated by the
maximum-likelihood method.

To determine directed dependencies among {x1, · · · ,xp} we apply a Bayesian
network method 24),25) based on the nonparametric regression. Considering a
graph G with {x1, · · · ,xp} as nodes, the directed edges of the graph are given,
for example, from a1, · · · ,aq to bj when these variables satisfy Eq. (9). The key
issue is to select a1, · · · ,aq to bj from {x1, · · · ,xp} for each bj , which is called the
selection of the best graph structure G. The selection is conducted by maximizing
the posterior probabilities, represented by

Ppost(G|x) ∝ P (G)
∫
P (θ,x|G)dθ (12)

where θ is a parameter vector used in the graph G (in this case γ0, · · · , γm and
σ). We assume P (G) is uniform, introduce hyperparameter λ, and denote the
joint distribution of θ and G by P (θ, G, λ). Since

P (x|θ, G) =
n∏

i=1

f(x(i);θ, G) =
p∏

j=1

n∏
i=1

fj(bij ; {ai1, · · · , aiq},θj , G)

where fj is the density function of bj , it follows that∫
P (θ,x, G)dθ

=
∫
P (x|θ, G)P (θ, G, λ)dθ

∝
∫
P (x|θ, G)Pprior(θ|G,λ)dθ

=
p∏

j=1

∫ n∏
i=1

fj(bij ; {ai1, · · · , aiq},θj , G)Pprior,j(θj |G,λj)dθj

Putting

BNRC (G)

= −2 log

⎧⎨
⎩

p∏
j=1

∫ n∏
i=1

f(bij ; {ai1, · · · , aiq},θj , G)Pprior(θj |G,λj)dθj

⎫⎬
⎭ (13)

=
p∑

j=1

BNRC (Gj)

we select the best graph structure G that minimize BNRC (G). For structure
learning, we use the greedy hill-climbing algorithm 25).

In the following, we abbreviate the subscript j for convenience. To calculate
BNRC (G), we calculate the integration using the Laplace approximation

−2 log
∫

exp{nlλ(θ|b,a)}dθ

=
(2π/n)r/2

|Jλ(θ̂)|1/2
exp{nlλ(θ̂|b,a)}{1 +O(n−1)} (14)

where r is the dimension of θ, and
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Table S1 Amino acid sequences of symbiotic effector proteins used in this study.

Uniprot ID Protein name Organism

Q9ANH8 Bll1810 protein Bradyrhizobium japonicum
Q9ANI9 Bll1798 protein Bradyrhizobium japonicum
Q2LDQ5 HsvB type III effector Pantoea agglomerans pv. gypsophilae

gypsophilae
A2I8A2 HsvB type III effector Pantoea agglomerans pv. gypsophilae
Q9F0I3 Y4yA Rhizobium fredii
Q9F0I4 Y4yB Rhizobium fredii
Q9EUG5 Y4yA Rhizobium fredii
Q9EUG6 Y4yB Rhizobium fredii
Q84H14 Putative type III secreted Photorhabdus luminescens

effector LopT
Q6MCQ9 Putative CPAF (Chlamydia Protochlamydia amoebophila

protease-like activity factor) (strain UWE25)
A1WKP8 Type III effector Verminephrobacter eiseniae

Hrp-dependent outers (strain EF01-2)
Q9ANJ0 Bll1797 protein Bradyrhizobium japonicum
P13835 Avirulence protein B Pseudomonas syringae pv. glycinea
Q887D0 Effector protein hopM1 Pseudomonas syringae pv. tomato
Q888Y7 Type III effector HopQ1-1 Pseudomonas syringae pv. tomato
Q52537 AvrPmaA1 protein Pseudomonas syringae
Q886L1 Type III effector HopAF1 Pseudomonas syringae pv. tomato
Q88BF6 Type III effector HopY1 Pseudomonas syringae pv. tomato
Q889A9 Type III effector HopAJ1 Pseudomonas syringae pv. tomato
Q87V79 Type III effector HopAN1 Pseudomonas syringae pv. tomato
Q882F0 Type III helper protein HopP1 Pseudomonas syringae pv. tomato
Q8RP03 Type III effector HopPtoA1Pma Pseudomonas syringae pv. maculicola
Q9ANJ7 Blr1789 protein Bradyrhizobium japonicum
Q888Y1 Type III effector HopR1 Pseudomonas syringae pv. tomato
Q87W07 Type III effector HopI1 Pseudomonas syringae pv. tomato
Q08370 Protein hrmA Pseudomonas syringae pv. syringae
Q87WF7 Type III effector HopT1-2 Pseudomonas syringae pv. tomato
Q87X57 HopPtoE Pseudomonas syringae pv. tomato
Q87W42 HopPtoG Pseudomonas syringae pv. tomato

Uniprot ID Protein name Organism

Q88A09 Type III effector HopH1 Pseudomonas syringae pv. tomato
Q881L7 Type III effector HopL1 Pseudomonas syringae pv. tomato
Q9K2L5 ORF2 Pseudomonas syringae pv. phaseolicola
Q87W46 Type III effector HopV1 Pseudomonas syringae pv. tomato
Q9AND2 Bll1858 protein Bradyrhizobium japonicum
Q88AB8 Type III effector HopAS1 Pseudomonas syringae pv. tomato
Q7PC62 Effector protein hopAE1 Pseudomonas syringae pv.

syringae (strain B728a)
Q7PC42 Putative type III effector Pseudomonas syringae pv.

HolPtoACPsy syringae (strain B728a)
Q52530 Avirulence gene D (Fragment) Pseudomonas syringae pv. phaseolicola
Q9L6W4 Putative uncharacterized protein Pseudomonas syringae pv. tomato
Q9F3T4 Probable cysteine protease Pseudomonas syringae pv. pisi

avirulence protein avrPpiC2
Q52394 AvrPphE protein Pseudomonas syringae pv. phaseolicola
Q9RBW3 Effector protein hopAB1 Pseudomonas syringae pv. phaseolicola
Q888W0 Type III effector HopAI1 Pseudomonas syringae pv. tomato
Q7PC45 Type III effector HopAG1 Pseudomonas syringae pv.

syringae (strain B728a)
Q9AMW4 Putative cysteine protease Bradyrhizobium japonicum

yopT-like blr2058
P11437 Avirulence protein A Pseudomonas syringae pv. glycinea
Q52432 Avirulence protein (Fragment) Pseudomonas syringae
Q9F3T6 Effector protein AvrPphD Pseudomonas syringae pv. phaseolicola
Q52389 Putative uncharacterized protein Pseudomonas syringae
Q9JP32 Type III effector HopN1 Pseudomonas syringae pv. tomato
Q87W65 Effector protein hopAD1 Pseudomonas syringae pv. tomato
Q87XS5 Type III effector HopAK1 Pseudomonas syringae pv. tomato
Q9L6W3 HrpK Pseudomonas syringae pv. tomato
Q89TL5 Blr1904 protein Bradyrhizobium japonicum
Q9ANJ9 Blr1787 protein Bradyrhizobium japonicum
Q9ANM7 ID84 Bradyrhizobium japonicum
Q89TQ6 Blr1788 protein Bradyrhizobium japonicum

lλ(θ|b,a) =
1
n

n∑
i=1

log f(bi; {ai1, · · · , aiq},θ, G) +
1
n

logPprior(θ|G,λ)

Jλ(θ̂) = −∂
2lλ(θ|b,a)
∂θ∂θT

θ̂ = arg max{lλ(θ|b,a)}
We use a multivariate normal distribution with mean vector zero and diagonal

covariance matrix whose i-th element is λ for logPprior(θ|G,λ). Thus,

logPprior(θ|G,λ) = −r
2

log 2π − 1
2

log |Σ| − 1
2
γT Σ−1γ (15)

Furthermore,

IPSJ Transactions on Bioinformatics Vol. 3 95–107 (Dec. 2010) c© 2010 Information Processing Society of Japan



106 Computational Identification of Discriminating Features of Pathogenic and Symbiotic Type III Secreted Effector Proteins

Table S2 Amino acid sequences of pathogenic effector proteins used in this study.

Uniprot ID Protein name Organism

A6M3N5 Translocated Yersinia pestis CA88-4125
host-GTPase-activating protein

O30783 Inclusion membrane protein C Chlamydophila caviae
O34020 CopN protein Chlamydophila caviae
O52623 Guanine nucleotide exchange Salmonella typhimurium

factor sopE
O84118 Inclusion membrane protein E Chlamydia trachomatis
O84119 Inclusion membrane protein F Chlamydia trachomatis
O84235 Inclusion Membrane Protein B Chlamydia trachomatis
O84236 Inclusion Membrane Protein C Chlamydia trachomatis
O84462 Translocated actin-recruiting Chlamydia trachomatis

phosphoprotein
O85239 Protein kinase YopO Yersinia enterocolitica
P0C2N1 Cysteine protease yopT1 Yersinia enterocolitica
A6M3U5 Leucine-rich 15-repeat Yersinia pestis CA88-4125

translocated effector protein
P27475 Cysteine protease yopT Yersinia enterocolitica
P40613 Surface presentation of antigens Salmonella typhimurium

protein spaN
P40722 Sop effector protein sopD Salmonella typhimurium
P74873 Effector protein sptP Salmonella typhimurium
Q05608 Protein kinase ypkA Yersinia pseudotuberculosis
Q3KMQ0 Inclusion membrane protein A Chlamydia trachomatis
Q3KMQ1 Inclusion membrane protein G Chlamydia trachomatis
Q46210 Inclusion membrane localized protein Chlamydophila caviae
Q56027 Cell invasion protein sipA Salmonella typhimurium
Q56061 Protein sifA Salmonella typhimurium
A9R9K8 Protein-tyrosine-phosphatase YopH Yersinia pestis bv.

Antiqua (strain Angola)
Q56921 Protein kinase A Yersinia enterocolitica
Q56935 Yop targeting protein yopK, yopQ Yersinia pseudotuberculosis
Q57QR2 Outer protein Salmonella choleraesuis
Q663I2 Yop proteins translocation protein H Yersinia pseudotuberculosis
Q663L9 YopM; putative targeted effector protein Yersinia pseudotuberculosis
Q7BRY7 Yop effector YopE Yersinia enterocolitica

Uniprot ID Protein name Organism

Q7BRY8 Yop effector YopH Yersinia enterocolitica
Q7BRZ4 Secreted protein YopR Yersinia enterocolitica
Q7BS06 YopQ Yersinia enterocolitica
Q7CQD4 Guanine nucleotide exchange factor sopE2 Salmonella typhimurium
A9ZER0 Type III secretion protein YopR Yersinia pestis biovar Orientalis

str. IP275
Q7DB81 EspD Escherichia coli O157:H7
Q7DB85 EspF Escherichia coli O157:H7
Q824H6 Putative uncharacterized protein Chlamydophila caviae
Q8X2D5 EspF-like protein Escherichia coli O157:H7
Q8XC86 EspB Escherichia coli O157:H7
Q8ZNR3 Secreted effector protein of Salmonella Salmonella typhimurium
Q93KQ5 Yop effector YopP Yersinia enterocolitica
Q93KU8 Yop effector YopM Yersinia enterocolitica
Q93RN4 Cysteine protease yopT Yersinia pseudotuberculosis
Q9RPH0 Leucine-rich repeat protein Salmonella typhimurium
A9ZFE7 Protein kinase YopO Yersinia pestis biovar Orientalis

str. IP275
Q9RPQ1 Inclusion membrane protein D Chlamydia trachomatis
Q9Z7W9 CPj0585 protein Chlamydia pneumoniae
Q9Z7Y1 Uncharacterized protein Chlamydia pneumoniae

CPn 0572/CP 0177/CPj0572/CpB0594 Chlamydia pneumoniae
Q9Z8L4 CopN Chlamydia pneumoniae
Q9Z8P6 Inclusion Membrane Protein C Chlamydia pneumoniae
Q9Z8P7 Inclusion Membrane Protein B Chlamydia pneumoniae
Q9Z8Z8 Inclusion membrane protein A Chlamydia pneumoniae
Q9Z9F5 Putative uncharacterized protein Chlamydia pneumoniae
B0A3S3 Cysteine protease YopT Yersinia pestis biovar Orientalis

str. F1991016
B0A3S4 YopK protein Yersinia pestis biovar Orientalis

str. F1991016
B0HNN9 Effector protein YopJ Yersinia pestis biovar Antiqua

str. B42003004
B2NN32 NleB Escherichia coli O157:H7 str. EC4196

log f(bi; {ai1, . . . , aiq},θ, G)

= −1
2
(log 2π − 2 log σ) −

bi −
M∑

m=0
γmψm({ai1, · · · , aiq})

2σ2
(16)

To obtain parameter estimates θ̂ which maximize lλ(θ|b,a) in Eq. (14), an
iterative procedure is applied. First, initially fixed λ, σ2, γ = (γ0, · · · , γM )T is

estimated by solving regularized least-square function based on lλ(θ|b,a)

E =
1
2

n∑
i=1

(
bi −

M∑
m=0

γmψm({ai1, · · · , aiq})
)2

+
λ

2
γTγ (17)

as
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γ̂ =
(
ψT (a)ψ(a) + λI

)−1

ψ(a)T b (18)

where ψ(a) = (ψ0({ai1, · · · , aiq}), · · · , ψM ({ai1, · · · , aiq})). Second, σ2 is esti-
mated by

σ̂2 = ||b −ψ(a)γ̂||2/n (19)
Third, λ is estimated by maximizing lλ(θ|b,a). The procedure is repeated until
γ, σ2, λ converge. BNRC (G) is computed using the parameter estimates. The
best graph structure G that attain the minimum BNRC (G) is selected.

A.2 Supplementary Data
Supplementary tables with amino acid sequences of effector proteins used in

this study are in Tables S1 and S2.
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