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均衡型 (C5, C14)-Foil デザインと関連デザイン

潮 和 彦

グラフ理論において、グラフの分解問題は主要な研究テーマである。C5 を５点を通る

サイクル、C14 を１４点を通るサイクルとする。1点を共有する辺素な t 個の C5 と

t 個の C14 からなるグラフを (C5,C14)-2t-foil という。本研究では、完全グラフ Kn

を 均衡的に (C5, C14)-2t-foil 部分グラフに分解する均衡型 (C5, C14)-2t-foilデザイ

ンについて述べる。さらに、均衡型 C19-t-foil デザイン、均衡型 (C10, C28)-2t-foil

デザイン、均衡型 C38-t-foil デザインについて述べる。

Balanced (C5, C14)-Foil Designs and Related Designs

Kazuhiko Ushio

In graph theory, the decomposition problem of graphs is a very important topic.
Various type of decompositions of many graphs can be seen in the literature
of graph theory. This paper gives balanced (C5, C14)-2t-foil designs, balanced
C19-t-foil designs, balanced (C10, C28)-2t-foil designs, and balanced C38-t-foil
designs.

1. Balanced (C5, C14)-2t-Foil Designs

Let Kn denote the complete graph of n vertices. Let C5 and C14 be the 5-cycle and the

14-cycle, respectively. The (C5, C14)-2t-foil is a graph of t edge-disjoint C5’s and t edge-

disjoint C14’s with a common vertex and the common vertex is called the center of the

(C5, C14)-2t-foil. When Kn is decomposed into edge-disjoint sum of (C5, C14)-2t-foils,

we say that Kn has a (C5, C14)-2t-foil decomposition. Moreover, when every vertex of
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Kn appears in the same number of (C5, C14)-2t-foils, we say that Kn has a balanced

(C5, C14)-2t-foil decomposition and this number is called the replication number. This

decomposition is to be known as a balanced (C5, C14)-2t-foil design.

Theorem 1. Kn has a balanced (C5, C14)-2t-foil decomposition if and only if n ≡ 1

(mod 38t).

Proof. (Necessity) Suppose that Kn has a balanced (C5, C14)-2t-foil decomposi-

tion. Let b be the number of (C5, C14)-2t-foils and r be the replication number. Then

b = n(n − 1)/38t and r = (17t + 1)(n − 1)/38t. Among r (C5, C14)-2t-foils having a

vertex v of Kn, let r1 and r2 be the numbers of (C5, C14)-2t-foils in which v is the

center and v is not the center, respectively. Then r1 + r2 = r. Counting the number of

vertices adjacent to v, 4tr1 + 2r2 = n − 1. From these relations, r1 = (n − 1)/38t and

r2 = 17(n − 1)/38. Therefore, n ≡ 1 (mod 38t) is necessary.

(Sufficiency) Put n = 38st + 1 and T = st. Then n = 38T + 1.

Case 1. n = 39. (Example 1. Balanced (C5, C14)-2-foil decomposition of K39.)

Case 2. n = 38T + 1, T ≥ 2. Construct a (C5, C14)-2T -foil as follows:

{(38T + 1, 1, 14T + 2, 35T +2, 17T), (38T +1, 10T +1, 11T + 2, 17T + 2, 21T + 3, 29T +

3, 6T + 3, 18T + 3, 14T + 3, 5T + 2, 30T + 3, 24T + 2, 21T + 2, 13T + 1)} ∪

{(38T +1, 2, 14T +4, 35T +3, 17T −1), (38T +1, 10T +2, 11T +4, 17T +3, 21T +5, 29T +

4, 6T + 5, 18T + 4, 14T + 5, 5T + 3, 30T + 5, 24T + 3, 21T + 4, 13T + 2)} ∪

{(38T +1, 3, 14T +6, 35T +4, 17T −2), (38T +1, 10T +3, 11T +6, 17T +4, 21T +7, 29T +

5, 6T + 7, 18T + 5, 14T + 7, 5T + 4, 30T + 7, 24T + 4, 21T + 6, 13T + 3)} ∪

... ∪

{(38T +1, T − 1, 16T − 2, 36T, 16T + 2), (38T + 1, 11T − 1, 13T − 2, 18T, 23T − 1, 30T +

1, 8T − 1, 19T + 1, 16T − 1, 6T, 32T − 1, 25T, 23T − 2, 14T − 1)} ∪

{(38T +1, T, 16T, 36T + 1, 16T +1), (38T + 1, 11T, 13T, 18T + 1, 23T +1, 30T + 2, 8T +

1, 19T + 2, 9T + 2, 6T + 1, 32T + 1, 25T + 1, 23T, 14T)}.

(19T edges, 19T all lengths)

Decompose the (C5, C14)-2T -foil into s (C5, C14)-2t-foils. Then these starters comprise

a balanced (C5, C14)-2t-foil decomposition of Kn.
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Example 1.1. Balanced (C5, C14)-2-foil decomposition of K39.

{(39, 1, 16, 37, 17), (39, 2, 13, 19, 24, 32, 9, 21, 11, 7, 33, 26, 23, 14)}.

(19 edges, 19 all lengths)

This starter comprises a balanced (C5, C14)-2-foil decomposition of K39.

Example 1.2. Balanced (C5, C14)-4-foil decomposition of K77.

{(77, 1, 30, 72, 34), (77, 21, 24, 36, 45, 61, 15, 39, 31, 12, 63, 50, 44, 27)} ∪

{(77, 2, 32, 73, 33), (77, 22, 26, 37, 47, 62, 17, 40, 20, 13, 65, 51, 46, 28)}.

(38 edges, 38 all lengths)

This starter comprises a balanced (C5, C14)-4-foil decomposition of K77.

Example 1.3. Balanced (C5, C14)-6-foil decomposition of K115.

{(115, 1, 44, 107,51), (115, 31, 35, 53, 66, 90, 21, 57, 45, 17, 93, 74, 65, 40)} ∪

{(115, 2, 46, 108,50), (115, 32, 37, 54, 68, 91, 23, 58, 47, 18, 95, 75, 67, 41)} ∪

{(115, 3, 48, 109,49), (115, 33, 39, 55, 70, 92, 25, 59, 29, 19, 97, 76, 69, 42)}.

(51 edges, 51 all lengths)

This starter comprises a balanced (C5, C14)-6-foil decomposition of K115.

Example 1.4. Balanced (C5, C14)-8-foil decomposition of K153.

{(153, 1, 58, 142,68), (153, 41, 46, 70, 87, 119, 27, 75, 59, 22, 123,98, 86, 53)} ∪

{(153, 2, 60, 143,67), (153, 42, 48, 71, 89, 120, 29, 76, 61, 23, 125,99, 88, 54)} ∪

{(153, 3, 62, 144,66), (153, 43, 50, 72, 91, 121, 31, 77, 63, 24, 127,100, 90, 55)} ∪

{(153, 4, 64, 145,65), (153, 44, 52, 73, 93, 122, 33, 78, 38, 25, 129,101, 92, 56)}.

(76 edges, 76 all lengths)

This starter comprises a balanced (C5, C14)-8-foil decomposition of K153.

Example 1.5. Balanced (C5, C14)-10-foil decomposition of K191.

{(191, 1, 72, 177,85), (191, 51, 57, 87, 108,148, 33, 93, 73, 27, 153,122, 107, 66)} ∪

{(191, 2, 74, 178,84), (191, 52, 59, 88, 110,149, 35, 94, 75, 28, 155,123, 109, 67)} ∪

{(191, 3, 76, 179,83), (191, 53, 61, 89, 112,150, 37, 95, 77, 29, 157,124, 111, 68)} ∪

{(191, 4, 78, 180, 82), (191, 54, 63, 90, 114, 151, 39, 96, 79, 30, 159,125, 113, 69)} ∪

{(191, 5, 80, 181, 81), (191, 55, 65, 91, 116, 152, 41, 97, 47, 31, 161,126, 115, 70)}.

(95 edges, 95 all lengths)

This starter comprises a balanced (C5, C14)-10-foil decomposition of K191.

Example 1.6. Balanced (C5, C14)-12-foil decomposition of K229.

{(229, 1, 86, 212, 102), (229, 61, 68, 104, 129,177, 39, 111,87, 32, 183, 146, 128,79)} ∪

{(229, 2, 88, 213, 101), (229, 62, 70, 105, 131,178, 41, 112,89, 33, 185, 147, 130,80)} ∪

{(229, 3, 90, 214, 100), (229, 63, 72, 106, 133,179, 43, 113,91, 34, 187, 148, 132,81)} ∪

{(229, 4, 92, 215, 99), (229, 64, 74, 107, 135,180, 45, 114, 93, 35, 189, 149,134, 82)} ∪

{(229, 5, 94, 216, 98), (229, 65, 76, 108, 137,181, 47, 115, 95, 36, 191, 150,136, 83)} ∪

{(229, 6, 96, 217, 97), (229, 66, 78, 109, 139,182, 49, 116, 56, 37, 193, 151,138, 84)}.

(114 edges, 114 all lengths)

This starter comprises a balanced (C5, C14)-12-foil decomposition of K229.

Example 1.7. Balanced (C5, C14)-14-foil decomposition of K267.

{(267, 1, 100, 247,119), (267, 71, 79, 121, 150, 206,45, 129,101, 37, 213,170, 149, 92)} ∪

{(267, 2, 102, 248,118), (267, 72, 81, 122, 152, 207,47, 130,103, 38, 215,171, 151, 93)} ∪

{(267, 3, 104, 249,117), (267, 73, 83, 123, 154, 208,49, 131,105, 39, 217,172, 153, 94)} ∪

{(267, 4, 106, 250,116), (267, 74, 85, 124, 156, 209,51, 132,107, 40, 219,173, 155, 95)} ∪

{(267, 5, 108, 251,115), (267, 75, 87, 125, 158, 210,53, 133,109, 41, 221,174, 157, 96)} ∪

{(267, 6, 110, 252,114), (267, 76, 89, 126, 160, 211,55, 134,111, 42, 223,175, 159, 97)} ∪

{(267, 7, 112, 253,113), (267, 77, 91, 127, 162, 212,57, 135,65, 43, 225, 176, 161,98)}.

(133 edges, 133 all lengths)

This starter comprises a balanced (C5, C14)-14-foil decomposition of K267.

2. Balanced C19-Foil Designs

Let Kn denote the complete graph of n vertices. Let C19 be the 19-cycle. The C19-t-foil

is a graph of t edge-disjoint C19’s with a common vertex and the common vertex is called

the center of the C19-t-foil. In particular, the C19-2-foil and the C19-3-foil are called the
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C19-bowtie and the C19-trefoil, respectively. When Kn is decomposed into edge-disjoint

sum of C19-t-foils, it is called that Kn has a C19-t-foil decomposition. Moreover, when

every vertex of Kn appears in the same number of C19-t-foils, it is called that Kn has

a balanced C19-t-foil decomposition and this number is called the replication number.

This decomposition is to be known as a balanced C19-t-foil design.

Theorem 2. Kn has a balanced C19-t-foil decomposition if and only if n ≡ 1 (mod

38t).

Proof. (Necessity) Suppose that Kn has a balanced C19-t-foil decomposition. Let b

be the number of C19-t-foils and r be the replication number. Then b = n(n−1)/38t and

r = (18t +1)(n− 1)/38t. Among r C19-t-foils having a vertex v of Kn, let r1 and r2 be

the numbers of C19-t-foils in which v is the center and v is not the center, respectively.

Then r1 + r2 = r. Counting the number of vertices adjacent to v, 2tr1 + 2r2 = n − 1.

From these relations, r1 = (n − 1)/38t and r2 = 18(n − 1)/38. Therefore, n ≡ 1 (mod

38t) is necessary.

(Sufficiency) Put n = 38st + 1, T = st. Then n = 38T + 1.

Case 1. n = 39. (Example 1. Balanced C19-decomposition of K39.)

Case 2. n = 38T + 1,T ≥ 2. Construct a C19-T -foil as follows:

{ (38T + 1, T, 16T, 36T + 1, 16T + 1, 26T + 2, 10T + 1, 11T + 2, 17T + 2, 21T + 3, 29T +

3, 6T + 3, 18T + 3, 14T + 3, 5T + 2, 30T + 3, 24T + 2, 21T + 2, 13T + 1),

(38T +1, T − 1, 16T − 2, 36T, 16T +2,26T +4, 10T +2, 11T +4, 17T +3, 21T +5, 29T +

4, 6T + 5, 18T + 4, 14T + 5, 5T + 3, 30T + 5, 24T + 3, 21T + 4, 13T + 2),

(38T + 1, T − 2, 16T − 4, 36T − 1, 16T + 3, 26T + 6, 10T + 3, 11T + 6, 17T + 4, 21T +

7, 29T + 5, 6T + 7, 18T + 5, 14T + 7, 5T + 4, 30T + 7, 24T + 4, 21T + 6, 13T + 3),

...,

(38T + 1, 2, 14T + 4, 35T + 3, 17T − 1, 28T − 2, 11T − 1, 13T − 2, 18T, 23T − 1, 30T +

1, 8T − 1, 19T + 1, 16T − 1, 6T, 32T − 1, 25T, 23T − 2, 14T − 1),

(38T +1, 1, 14T +2, 35T +2, 17T, 28T, 11T, 13T, 18T +1, 23T +1, 30T +2, 8T +1, 19T +

2, 9T + 2, 6T + 1, 32T + 1, 25T + 1, 23T, 14T) }.

(19T edges, 19T all lengths)

Decompose this C19-T -foil into s C19-t-foils. Then these starters comprise a balanced

C19-t-foil decomposition of Kn.

Example 2.1. Balanced C19-decomposition of K39.

{(39, 1, 16, 37, 17, 19, 2, 13, 18, 24, 32, 9, 21, 11, 7, 23, 26, 23, 14)}.

(19 edges, 19 all lengths)

This stater comprises a balanced C19-decomposition of K39.

Example 2.2. Balanced C19-2-foil decomposition of K77.

{(77, 2, 32, 73, 33, 54, 21, 24, 36, 45, 61, 15, 39, 31, 12, 63, 50, 44, 27),

(77, 1, 30, 72, 34, 56, 22, 26, 37, 47, 62, 17, 40, 20, 13, 65, 51, 46, 28)}.

(38 edges, 38 all lengths)

This stater comprises a balanced C19-2-foil decomposition of K77.

Example 2.3. Balanced C19-3-foil decomposition of K115.

{(115, 3, 48, 109, 49, 80, 31, 35, 53, 66, 90, 21, 57, 45, 17, 93, 74, 65, 40),

(115, 2, 46, 108, 50, 82, 32, 37, 54, 68, 91, 23, 58, 47, 18, 95, 75, 67, 41),

(115, 1, 44, 107, 51, 84, 33, 39, 55, 70, 92, 25, 59, 29, 19, 97, 76, 69, 42)}.

(57 edges, 57 all lengths)

This stater comprises a balanced C19-3-foil decomposition of K115.

Example 2.4. Balanced C19-4-foil decomposition of K153.

{(153, 4, 64, 145, 65, 106,41, 46, 70, 87, 119, 27, 75, 59, 22, 123,98, 86, 53),

(153, 3, 62, 144, 66, 108, 42, 48, 71, 89, 120,29, 76, 61, 23, 125, 99, 88, 54),

(153, 2, 60, 143, 67, 110, 43, 50, 72, 91, 121,31, 77, 63, 24, 127, 100, 90, 55),

(153, 1, 58, 142, 68, 112, 44, 52, 73, 93, 122,33, 78, 38, 25, 129, 101, 92, 56)}.

(76 edges, 76 all lengths)

This stater comprises a balanced C19-4-foil decomposition of K153.

Example 2.5. Balanced C19-5-foil decomposition of K191.

{(191, 5, 80, 181, 81, 132,51, 57, 87, 108,148, 33, 93, 73, 27, 153,122, 107, 66),
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(191, 4, 78, 180, 82, 134, 52, 59, 88, 110, 149, 35, 94, 75, 28, 155,123, 109, 67),

(191, 3, 76, 179, 83, 136, 53, 61, 89, 112, 150, 37, 95, 77, 29, 157,124, 111, 68),

(191, 2, 74, 178, 84, 138, 54, 63, 90, 114, 151, 39, 96, 79, 30, 159,125, 113, 69),

(191, 1, 72, 177, 85, 140, 55, 65, 91, 116, 152, 41, 97, 47, 31, 161,126, 115, 70)}.

(95 edges, 95 all lengths)

This stater comprises a balanced C19-5-foil decomposition of K191.

Example 2.6. Balanced C19-6-foil decomposition of K229.

{(229, 6, 96, 217,97, 158,61, 68, 104, 129, 177,39, 111,87, 32, 183, 146, 128,79),

(229, 5, 94, 216, 98, 160, 62, 70, 105, 131,178, 41, 112, 89, 33, 185, 147,130, 80),

(229, 4, 92, 215, 99, 162, 63, 72, 106, 133,179, 43, 113, 91, 34, 187, 148,132, 81),

(229, 3, 90, 214, 100, 164,64, 74, 107, 135, 180,45, 114,93, 35, 189, 149, 134,82),

(229, 2, 88, 213, 101, 166,65, 76, 108, 137, 181,47, 115,95, 36, 191, 150, 136,83),

(229, 1, 86, 212, 102, 168,66, 78, 109, 139, 182,49, 116,56, 37, 193, 151, 138,84)}.

(114 edges, 114 all lengths)

This stater comprises a balanced C19-6-foil decomposition of K229.

3. Balanced (C10, C28)-Foil Designs

Let Kn denote the complete graph of n vertices. Let C10 and C28 be the 10-cycle and

the 28-cycle, respectively. The (C10, C28)-2t-foil is a graph of t edge-disjoint C10’s and t

edge-disjoint C28’s with a common vertex and the common vertex is called the center of

the (C10, C28)-2t-foil. In particular, the (C10, C28)-2-foil is called the (C10, C28)-bowtie.

When Kn is decomposed into edge-disjoint sum of (C10, C28)-2t-foils, we say that Kn

has a (C10, C28)-2t-foil decomposition. Moreover, when every vertex of Kn appears in

the same number of (C10, C28)-2t-foils, we say that Kn has a balanced (C10, C28)-2t-foil

decomposition and this number is called the replication number. This decomposition is

to be known as a balanced (C10, C28)-2t-foil design.

Theorem 3. Kn has a balanced (C10, C28)-2t-foil decomposition if and only if n ≡ 1

(mod 76t).

Proof. (Necessity) Suppose that Kn has a balanced (C10, C28)-2t-foil decomposi-

tion. Let b be the number of (C10, C28)-2t-foils and r be the replication number. Then

b = n(n − 1)/76t and r = (36t + 1)(n − 1)/76t. Among r (C10, C28)-2t-foils having a

vertex v of Kn, let r1 and r2 be the numbers of (C10, C28)-2t-foils in which v is the

center and v is not the center, respectively. Then r1 + r2 = r. Counting the number of

vertices adjacent to v, 4tr1 + 2r2 = n − 1. From these relations, r1 = (n − 1)/76t and

r2 = 36(n − 1)/76. Therefore, n ≡ 1 (mod 76t) is necessary.

(Sufficiency) Put n = 76st + 1 and T = st. Then n = 76T + 1.

Construct a (C10, C28)-2T -foil as follows:

{(76T + 1, 1, 28T + 2, 70T + 2, 34T, 68T − 1, 34T − 1, 70T + 3, 28T + 4, 2),

(76T + 1, 20T + 1, 22T + 2, 34T + 2, 42T + 3, 58T + 3, 12T + 3, 36T + 3, 28T + 3, 10T +

2, 60T + 3, 48T + 2, 42T + 2, 26T + 1, 52T + 3, 26T + 2, 42T + 4, 48T + 3, 60T + 5, 10T +

3, 28T + 5, 36T + 4, 12T + 5, 58T + 4, 42T + 5, 34T + 3, 22T + 4, 20T + 2)} ∪

{(76T + 1, 3, 28T + 6, 70T + 4, 34T − 2, 68T − 5, 34T − 3, 70T + 5, 28T + 8, 4),

(76T + 1, 20T + 3, 22T + 6, 34T + 4, 42T + 7, 58T + 5, 12T + 7, 36T + 5, 28T + 7, 10T +

4, 60T + 7, 48T + 4, 42T + 6, 26T + 3, 52T + 7, 26T + 4, 42T + 8, 48T + 5, 60T + 9, 10T +

5, 28T + 9, 36T + 6, 12T + 9, 58T + 6, 42T + 9, 34T + 5, 22T + 8, 20T + 4)} ∪

{(76T + 1, 5, 28T + 10, 70T + 6, 34T − 4, 68T − 9, 34T − 5, 70T + 7, 28T + 12, 6),

(76T +1, 20T +5, 22T +10, 34T +6, 42T +11, 58T +7, 12T +11, 36T +7, 28T +11, 10T +

6, 60T +11, 48T +6, 42T +10, 26T +5, 52T +11, 26T +6, 42T +12, 48T +7, 60T +13, 10T +

7, 28T + 13, 36T + 8, 12T + 13, 58T + 8, 42T + 13, 34T + 7, 22T + 12, 20T + 6)} ∪

... ∪

{(76T + 1, 2T − 1, 32T − 2, 72T, 32T + 2, 64T + 3, 32T + 1, 72T + 1, 32T, 2T),

(76T + 1, 22T − 1, 26T − 2, 36T, 46T − 1, 60T + 1, 16T − 1, 38T + 1, 32T − 1, 12T, 64T −

1, 50T, 46T − 2, 28T − 1, 56T − 1, 28T, 46T, 50T + 1, 64T + 1, 12T + 1, 18T + 2, 38T +

2, 16T + 1, 60T + 2, 46T + 1, 36T + 1, 26T, 22T)}.

(38T edges, 38T all lengths)

Decompose the (C10, C28)-2T -foil into s (C10, C28)-2t-foils. Then these starters com-

prise a balanced (C10, C28)-2t-foil decomposition of Kn.
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Example 3.1. Balanced (C10, C28)-2-foil decomposition of K77.

{(77, 1, 30, 72, 34, 67, 33, 73, 32, 2),

(77, 21, 24, 36, 45, 61, 15, 39, 31, 12, 63, 50, 44, 27, 55, 28, 46, 51, 65, 13, 20, 40, 17, 62, 47,

37, 26, 22)}.

(38 edges, 38 all lengths)

This starter comprises a balanced (C10, C28)-2-foil decomposition of K77.

Example 3.2. Balanced (C10, C28)-4-foil decomposition of K153.

{(153, 1, 58, 142,68, 135,67, 143,60, 2),

(153, 3, 62, 144, 66, 131, 65, 145,64, 4)}

∪

{(153, 41, 46, 70, 87, 119,27, 75, 59, 22, 123, 98, 86, 53, 107, 54, 88, 99, 125, 23, 61, 76, 29,

120, 89, 71, 48, 42),

(153, 43, 50, 72, 91, 121, 31, 77, 63, 24, 127, 100,90, 55, 111, 56, 92, 101,129, 25, 38, 78, 33,

122, 93, 73, 52, 44)}.

(76 edges, 76 all lengths)

This starter comprises a balanced (C10, C28)-4-foil decomposition of K153.

Example 3.3. Balanced (C10, C28)-6-foil decomposition of K229.

{(229, 1, 86, 212,102, 203, 101,213, 88, 2),

(229, 3, 90, 214, 100, 199,99, 215,92, 4),

(229, 5, 94, 216, 98, 195, 97, 217,96, 6)}

∪

{(229, 61, 68, 104,129, 177, 39, 111, 87, 32, 183,146, 128, 79, 159, 80, 130, 147, 185,33, 89,

112, 41, 178, 131,105, 70, 62),

(229, 63, 72, 106,133, 179, 43, 113, 91, 34, 187,148, 132, 81, 163, 82, 134, 149,189, 35, 93,

114, 45, 180, 135,107, 74, 64),

(229, 65, 76, 108,137, 181, 47, 115, 95, 36, 191,150, 136, 83, 167, 84, 138, 151,193, 37, 56,

116, 49, 182, 139,109, 78, 66)}.

(114 edges, 114 all lengths)

This starter comprises a balanced (C10, C28)-6-foil decomposition of K229.

Example 3.4. Balanced (C10, C28)-8-foil decomposition of K305.

{(305, 1, 114, 282,136, 271, 135,283, 116, 2),

(305, 3, 118,284, 134, 267,133, 285, 120,4),

(305, 5, 122,286, 132, 263,131, 287, 124,6),

(305, 7, 126,288, 130, 259,129, 289, 128,8)}

∪

{(305, 81, 90, 138,171, 235, 51, 147, 115,42, 243,194, 170, 105,211, 106, 172,195, 245, 43,

117, 148,53, 236,173, 139, 92, 82),

(305, 83, 94, 140, 175, 237,55, 149,119, 44, 247,196, 174, 107,215, 108, 176,197, 249, 45,

121, 150,57, 238,177, 141, 96, 84),

(305, 85, 98, 142, 179, 239,59, 151,123, 46, 251,198, 178, 109,219, 110, 180,199, 253, 47,

125, 152,61, 240,181, 143, 100,86),

(305, 87, 102, 144,183, 241, 63, 153, 127,48, 255,200, 182, 111,223, 112, 184,201, 257, 49,

74, 154, 65, 242, 185, 145,104, 88)}.

(152 edges, 152 all lengths)

This starter comprises a balanced (C10, C28)-8-foil decomposition of K305.

Example 3.5. Balanced (C10, C28)-10-foil decomposition of K381.

{(381, 1, 142, 352,170, 339, 169,353, 144, 2),

(381, 3, 146,354, 168, 335,167, 355, 148,4),

(381, 5, 150,356, 166, 331,165, 357, 152,6),

(381, 7, 154,358, 164, 327,163, 359, 156,8),

(381, 9, 158,360, 162, 323,161, 361, 160,10)}

∪

{(381, 101,112, 172, 213,293, 63, 183, 143, 52, 303, 242, 212,131, 263, 132,214, 243, 305,53,

145, 184,65, 294,215, 173, 114,102),

(381, 103, 116, 174,217, 295, 67, 185, 147, 54, 307, 244,216, 133, 267,134, 218, 245,309, 55,

149, 186,69, 296,219, 175, 118,104),

(381, 105, 120, 176,221, 297, 71, 187, 151, 56, 311, 246,220, 135, 271,136, 222, 247,313, 57,

153, 188,73, 298,223, 177, 122,106),
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(381, 107,124, 178, 225,299, 75, 189, 155, 58, 315, 248,224, 137, 275,138, 226, 249,317, 59,

157, 190,77, 300,227, 179, 126,108),

(381, 109,128, 180, 229,301, 79, 191, 159, 60, 319, 250,228, 139, 279,140, 230, 251,321, 61,

92, 192, 81, 302,231, 181, 130,110)}.

(190 edges, 190 all lengths)

This starter comprises a balanced (C10, C28)-10-foil decomposition of K381.

4. Balanced C38-Foil Designs

Let Kn denote the complete graph of n vertices. Let C38 be the 38-cycle. The C38-t-foil

is a graph of t edge-disjoint C38’s with a common vertex and the common vertex is called

the center of the C38-t-foil. In particular, the C38-2-foil and the C38-3-foil are called the

C38-bowtie and the C38-trefoil, respectively. When Kn is decomposed into edge-disjoint

sum of C38-t-foils, it is called that Kn has a C38-t-foil decomposition. Moreover, when

every vertex of Kn appears in the same number of C38-t-foils, it is called that Kn has

a balanced C38-t-foil decomposition and this number is called the replication number.

This decomposition is to be known as a balanced C38-t-foil design.

Theorem 4. Kn has a balanced C38-t-foil decomposition if and only if n ≡ 1 (mod

76t).

Proof. (Necessity) Suppose that Kn has a balanced C38-t-foil decomposition. Let b

be the number of C38-t-foils and r be the replication number. Then b = n(n−1)/76t and

r = (37t +1)(n− 1)/76t. Among r C38-t-foils having a vertex v of Kn, let r1 and r2 be

the numbers of C38-t-foils in which v is the center and v is not the center, respectively.

Then r1 + r2 = r. Counting the number of vertices adjacent to v, 2tr1 + 2r2 = n − 1.

From these relations, r1 = (n − 1)/76t and r2 = 37(n − 1)/76. Therefore, n ≡ 1 (mod

76t) is necessary.

(Sufficiency) Put n = 76st + 1, T = st. Then n = 76T + 1. Construct a C38-T -foil as

follows:

{ (76T + 1, 2T, 32T, 72T +1, 32T +1, 52T +2, 20T +1, 22T + 2, 34T +2, 42T +3, 58T +

3, 12T + 3, 36T + 3, 28T + 3, 10T + 2, 60T + 3, 48T + 2, 42T + 2, 26T + 1, 52T + 3, 26T +

2, 42T + 4, 48T + 3, 60T + 5, 10T + 3, 28T + 5, 36T + 4, 12T + 5, 58T + 4, 42T + 5, 34T +

3, 22T + 4, 20T + 2, 52T + 4, 32T + 2, 72T, 32T − 2, 2T − 1),

(76T + 1, 2T − 2, 32T − 4, 72T − 1, 32T + 3, 52T + 6, 20T + 3, 22T + 6, 34T + 4, 42T +

7, 58T + 5, 12T + 7, 36T + 5, 28T + 7, 10T + 4, 60T + 7, 48T + 4, 42T + 6, 26T + 3, 52T +

7, 26T + 4, 42T + 8, 48T + 5, 60T + 9, 10T + 5, 28T + 9, 36T + 6, 12T + 9, 58T + 6, 42T +

9, 34T + 5, 22T + 8, 20T + 4, 52T + 8, 32T + 4, 72T − 2, 32T − 6, 2T − 3),

(76T + 1, 2T − 4, 32T − 8, 72T − 3, 32T + 5, 52T +10, 20T + 5, 22T + 10, 34T +6, 42T +

11, 58T + 7, 12T + 11, 36T + 7, 28T + 11, 10T + 6, 60T + 11, 48T + 6, 42T + 10, 26T +

5, 52T +11, 26T +6, 42T +12, 48T +7, 60T +13, 10T +7, 28T +13, 36T +8, 12T +13, 58T +

8, 42T + 13, 34T + 7, 22T + 12, 20T + 6, 52T + 12, 32T + 6, 72T − 4, 32T − 10, 2T − 5),

...,

(76T +1, 2, 28T +4, 70T +3, 34T−1,56T−2, 22T−1, 26T−2, 36T, 46T−1, 60T +1, 16T−

1, 38T +1, 32T −1,12T, 64T −1, 50T, 46T −2, 28T −1, 56T −1, 28T, 46T, 50T +1, 64T +

1, 12T +1, 18T +2,38T +2, 16T +1, 60T +2,46T +1, 36T +1, 26T, 22T, 56T, 34T, 70T +

2, 28T + 2, 1) }.

(38T edges, 38T all lengths)

Decompose this C38-T -foil into s C38-t-foils. Then these starters comprise a balanced

C38-t-foil decomposition of Kn.

Example 4.1. Balanced C38-decomposition of K77.

{(77, 2, 32, 73, 33, 54, 21, 24, 36, 45, 61, 15, 39, 31, 12, 63, 50, 44, 27, 55, 28, 46, 51, 65, 13, 20,

40, 17, 62, 47, 37, 26, 22, 56, 34, 72, 30, 1)}.

(38 edges, 38 all lengths)

This stater comprises a balanced C38-decomposition of K77.

Example 4.2. Balanced C38-2-foil decomposition of K153.

{(153, 4, 64, 145, 65, 106,41, 46, 70, 87, 119, 27, 75, 59, 22, 123,98, 86, 53, 107,54, 88, 99, 125,

23, 61, 76, 29, 120,89, 71, 48, 42, 108, 66, 144, 62, 3),

(153, 2, 60, 143, 67, 110, 43, 50, 72, 91, 121,31, 77, 63, 24, 127, 100, 90, 55, 111,56, 92, 101, 129,

25, 38, 78, 33, 122,93, 73, 52, 44, 112, 68, 142, 58, 1)}.
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(76 edges, 76 all lengths)

This stater comprises a balanced C38-2-foil decomposition of K153.

Example 4.3. Balanced C38-3-foil decomposition of K229.

{(229, 6, 96, 217,97, 158,61, 68, 104, 129, 177,39, 111,87, 32, 183, 146, 128,79, 159,80, 130,

147, 185,33, 89, 112, 41, 178, 131, 105,70, 62, 160, 98, 216, 94, 5),

(229, 4, 92, 215, 99, 162, 63, 72, 106, 133,179, 43, 113, 91, 34, 187, 148,132, 81, 163,82, 134,

149, 189,35, 93, 114, 45, 180, 135, 107,74, 64, 164, 100, 214,90, 3),

(229, 2, 88, 213, 101, 166,65, 76, 108, 137, 181,47, 115,95, 36, 191, 150, 136,83, 167,84, 138,

151, 193,37, 56, 116, 49, 182, 139, 109,78, 66, 168, 102, 212,86, 1)}.

(114 edges, 114 all lengths)

This stater comprises a balanced C38-3-foil decomposition of K229.

Example 4.4. Balanced C38-4-foil decomposition of K305.

{(305, 8, 128, 289,129, 210, 81, 90, 138,171, 235, 51, 147, 115,42, 243, 194,170, 105, 211,106,

172, 195,245, 43, 117, 148, 53, 236, 173, 139,92, 82, 212, 130,288, 126, 7),

(305, 6, 124, 287,131, 214, 83, 94, 140, 175, 237,55, 149, 119,44, 247,196, 174, 107,215, 108,

176, 197,249, 45, 121, 150, 57, 238, 177, 141,96, 84, 216, 132,286, 122, 5),

(305, 4, 120, 285,133, 218, 85, 98, 142, 179, 239,59, 151, 123,46, 251,198, 178, 109,219, 110,

180, 199,253, 47, 125, 152, 61, 240, 181, 143,100, 86, 220, 134, 284,118, 3),

(305, 2, 116, 283,135, 222, 87, 102, 144,183, 241, 63, 153, 127,48, 255, 200,182, 111, 223,112,

184, 201,257, 49, 74, 154, 65, 242, 185,145, 104, 88, 224, 136,282, 114, 1)}.

(152 edges, 152 all lengths)

This stater comprises a balanced C38-4-foil decomposition of K305.

Example 4.5. Balanced C38-5-foil decomposition of K381.

{(381, 10, 160, 361, 161,262, 101, 112,172, 213, 293,63, 183,143, 52, 303, 242, 212,131, 263,

132, 214,243, 305, 53, 145, 184,65, 294, 215,173, 114, 102,264, 162, 360,158, 9),

(381, 8, 156, 359,163, 266, 103,116, 174,217, 295, 67, 185, 147, 54, 307, 244,216, 133, 267,

134, 218,245, 309, 55, 149, 186,69, 296, 219,175, 118, 104,268, 164, 358,154, 7),

(381, 6, 152, 357,165, 270, 105,120, 176,221, 297, 71, 187, 151, 56, 311, 246,220, 135, 271,

136, 222,247, 313, 57, 153, 188,73, 298,223, 177, 122,106, 272, 166,356, 150, 5),

(381, 4, 148,355, 167, 274,107, 124, 178,225, 299, 75, 189, 155,58, 315, 248,224, 137, 275,

138, 226,249, 317, 59, 157, 190,77, 300,227, 179, 126,108, 276, 168,354, 146, 3),

(381, 2, 144,353, 169, 278,109, 128, 180,229, 301, 79, 191, 159,60, 319, 250,228, 139, 279,

140, 230,251, 321, 61, 92, 192, 81, 302,231, 181, 130,110, 280, 170,352, 142, 1)}.

(190 edges, 190 all lengths)

This stater comprises a balanced C38-5-foil decomposition of K381.
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