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Abstract

Some bacteria like Escherichia Coli present a
movement that can be modeled as a biased random
walk. Biased random walk can be used for artifi-
cial creatures as a very simple and robust control
policy for tasks like goal reaching. In this paper
we show how a very simple control law is able to
guide a simulated mobile robot equipped with an
omni-directional camera toward a target without any
knowledge of the actuators or of the camera. Ex-
periments to validate the robustness of the approach
show that the robot is able to reach the target having
sustained several damages, namely the reduction of
the size or uncontrollability of one wheel, rotation of
the axle of one wheel and obscuration of 20% of the
camera image. We then show experimentally that
the best behavior is obtained using a bias which is
roughly proportional to the random walk step, with
a coefficient dependent on the physical structure of
the robot, on its actuators and on and its sensors
after the damage.

1 Introduction

In challenging environments like forested paths 7)
or planetary explorations ® robustness is an essential
feature. Often simple living beings present a highly
adaptive and robust behavior despite their structural
simplicity. In particular bacteria are able to sense
the concentration of nutrients and direct their move-
ments toward the food molecules while escaping from
poisoning substances, a process called chemotaxis,
without any complex planning strategy or fault de-
tection system. For instance Escherichia Coli (in the
following referred as E. Coli) utilizes a biased random
walk for its movement .

This bacterium has only two ways of moving, ro-
tating clockwise or counter-clockwise. When it ro-
tates counter-clockwise the rotation aligns its flag-
ella into a single rotating bundle and it swims in a
straight line. Conversely clockwise rotations break
the flagella bundle apart and the bacterium tum-
bles in place and changes its direction randomly.
The bacterium cannot therefore choose the direction
of its movement and proceeds alternating clockwise
and counterclockwise rotations. In absence of chem-
ical gradients the length of the straight line paths
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(counter-clockwise rotations) is independent of the
direction, and the bacterium essentially performs a
random walk. In case of a positive gradient of attrac-
tants (like food) E. Coli instead reduces the tumbling
frequency, i.e. proceeds in the same direction for a
longer time biasing therefore the overall movement
toward increasing concentrations of the attractant.

The same type of behavior has been applied for
the control of a mobile robot 2), showing that biased
random walks can be a valid approach for the naviga-
tion to sources using gradient methods. In particular
the authors demonstrate that while gradient descent
is faster for tracking a single source, the biased ran-
dom walk performs better in the presence of multiple
and dissipative sources and noisy sensors and actua-
tors. The randomness of the algorithm also prevents
the robot from ending up in local minima.

While for E. Coli and for its artificial counter-
part 2) the hardware already provides two basic
movements (proceed straight and change direction
randomly) and the biased random walk is performed
at the behavior level, in our work a biased ran-
dom walk is executed directly in the motor command
space, i.e. the behaviors themselves are determined
online through the random walk. This gives great
robustness in case of hardware failures since new be-
haviors that exploit the current hardware behavior
are found online by biased random walk.

In other terms using the approach presented in 2
if a component failure causes the deterministic be-
havior, i.e. move forward, not to cause the expected
movement, the task will not be achieved. For in-
stance if due to an encoder problem a motor starts to
rotate in the opposite direction and the robot turns
around itself instead of going forward then the target
will never be reached. With our approach, instead,
the robot will explore new motor commands until it
finds that rotating the motors in the opposite direc-
tion the distance from the target can be decreased.
In general, performing a random walk in the motor
command space allows to determine runtime how to
exploit the dynamic of the hardware (that can change
due to hardware failures) whose degrees of freedom
can be hidden to the controller by a more symbolic,
high level behavior representation.

More concretely in our experiments we assume we
have a wheeled robot equipped with a sensor that
tells us only whether the quantity we want to max-
imize, e.g. the presence of a chemical, is increasing



or decreasing. We then suppose the controller to be
required to provide as its output the angular veloc-
ity of each motor. We show that a biased random
walk in the space of the actuator signals is able to
drive the robot toward the source, even without any
knowledge of the robot structure, e.g. with no infor-
mation on the location or orientation of the wheels.
To determine how to best exploit biased random walk
for direct motor control we then study the effect of
changing the noise and the bias amplitudes. Results
show that in our settings the performance of the be-
havior is determined essentialy solely by the ratio of
the two quantities, with an optimal ratio value de-
pendent on the hardware state.

Section 2 reports in detail our control algorithm,
sections 3 and 4 describe out experimental setup and
results and section 5 illustrates future works.

2 Control Algorithm

As stated in the introduction our approach takes
inspiration from the chemotaxis of E. Coli, but while
this bacterium and the robot presented in 2 have ba-
sic behaviors already implemented at a low level we
aim at having the system determine on-line these mo-
tion primitives too. We therefore control the robot
with a biased random walk directly at the hardware
level, in our case providing directly the velocities of
the wheels. A big advantage of this approach is that
it can recover from unexpected and even quite serious
damages in the robot hardware, giving the system a
high robustness without the need of introducing any
self modeling or damage identification.

The principle underlying the behavior of E. Coli
can be interpreted under the very general framework
of biological fluctuations % 8). Expressly assuming to
have a continuous time system we can model it by
the equation

i = aA(x) f(u) + . (1)

where u € R™ is the control signal, z € R" is the
state, f : R™ — R™ is a deterministic function of
the current control, n is a random variable, o and
G are two scaling coefficients and A : R® — R is
a function of the state, called “activity”, that indi-
cates the fitness, or “quality” of a particular state.
Intuitively when the state is getting better the value
of A(x) increases and control becomes mainly de-
terministic, while when the conditions worsen the
control becomes more and more stochastic. As a
practical example in the E. Coli case increasing food
concentrations reduces the tumbles (random direc-
tion changes).

This simple, biologically inspired framework re-
vealed to be very robust and perform well in many
applications, for instance for routing in overlay net-
works ¥, robot navigation ® or control of pneumatic
actuated robotic arms 3).

In our case the control signal u corresponds to the
angular velocity of each motor and the state x corre-
sponds to the information coming from our sensors.
In particular our robot is equipped with an hyper-
bolic mirror omni-directional camera, and x is the

number of pixels whose color is similar to the color
of the target (see section 3 for the details).
To simplify as much as possible we decided to set

f(u) as follows:
u

flu) = — (2)
il
i.e. we maintain only the direction of u, and
dz
A(x) = — 3
() = sgn() (3)

where sgn is the sign function.

Concretely we simply apply a bias in the current
direction if we are following an increasing gradient,
and bias in the opposite direction if the values of
the activity is decreasing and no bias in case of a
constant activity.

Good values for o and § were determined exper-
imentally. In particular we will show in section 4
that for a given value of o the optimal value of §
(in terms of average performance maximization) is
roughly proportional to a.

3 Experimental setup

Using ODE* we simulated a mobile robot equipped
with three spherical wheels. The two front wheels are
directly actuated by two independent motors whose
maximum velocity is 0.5 rad /s while the rear wheel is
free to rotate in any direction. The task is to reach a
red semisphere of radius 4 m placed at a distance of
30m. The robot is equipped with an omni-directional
camera and the value of x fed to the controller is
the number of red pixels in the image, determined
by a filter that given the RGB components of each
pixels counts the pixels whose R component is more
than double the maximum of the G and B component
values.

The controller receives information on the red pix-
els with a sampling frequency of 0.2Hz and provides
a 2 dimensional velocity command u. We chose to
employ such a low sampling frequency to validate
the robustness of the method even in case of low
cost hardware with very poor performances. The
controller implements the discrete time equivalent of
equation 1, expressly

Ut

U1 = up + A(z) Tarl
t

+ 8n (4)

where
A(r) = sgn(wy — x4-1) (5)
We simulated four types of damage (see Figure 1):

1. the right wheel size is reduced to two thirds of
its normal size

2. the right wheel becomes uncontrollable, and its
movement is completely random

3. the right wheel rotation axis direction is turned
90 degrees along the Z axis and becomes paral-
lel to the longitudinal axis, i.e. the rotation of
the wheel instead pushing the robot forward and
backward pushes the robot towards sideways

* For details see http://www.ode.org.
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Fig.1 The four damages simulated. (a) Reduced size of one wheel. (b) Uncontrollability of one wheel (c) Rotation
of the rotation axis of one wheel (note the direction of the stripes) (d) Obscuration of part of the image.

4. 20% of the camera image becomes obscurated

We took n ~ N (0,1) as a Gaussian variable of
variance one and studied the behavior for several val-
ues of @ and §. In particular for each condition (no
damage or one of the damages listed) we determined
the time spent contacting with the goal over 20000
seconds. Each condition is simulated for 128 differ-
ent positions of the target, in particular assuming the
robot’s chassis is placed at (0,0) we set the target
in each of the positions as (R - cos(6;), R - sin(6;)),

0; = %22 i ={0,...,127} where R = 30 m.

4 Results

Although the motors maximum speed is 0.5 rad/s
in all experiments the best results were obtained for
values of o and @ higher than 1. For high values
of o and [ the system essentially selects between
four possible behaviors which move the robot for-
ward, backward or make it rotate or slide (in the
case of the wheel axis damage) with the maximum
speed. Always using the maximum speed means that
when the robot takes a wrong action this brings the
robot away from the target to the maximum extent,
but if the robot succeeds to reach the target, trivially
it must mean that more than 50% of the movements
bring the robot closer to the destination. In such
setting having the robot to move at the maximum
speed ensures the best performances.

Figure 2 depicts the results for the undamaged
robot and for the four damages previously listed.
The =z and y axis indicate the values of a and f3
respectively, while the color represents the perfor-
mance, in terms of ratio between the time spent
touching the target and the total simulation time
(20000 seconds). For all damages the graphs presents
non zero values, i.e. the robot is able to reach the
target and touch it. As expected a completely de-

terministic behavior (8 = 0) is often not able to
drive the robot to the target, since without “explo-
ration” of motor commands done by the random part
the system can just provide a single type of motor
command. Similarly when « = 0 the probability of
touching the goal with a completely random move-
ment is so low that in no experiment the robot could
reach the target within the simulation time.

We can notice that the color zones are approxi-
mately triangles departing from the origin, i.e. the
performance depends just on the ratio between «
and 8 and not on their value (except the fact that
they should be higher than 1 to ensure the maximum
wheel speed). We can explain this by noticing that
the ratio between « and 3 defines the behavior of
the random walk, while their values define the entity
of the variations and since the values of the velocity
are clamped to 0.5, when « and § are high enough
essentially the behavior is the same.

Figure 2(f) shows the average performance for var-

(673

ious 5 ratios. We notice that for the first type of

damage (reduced wheel size) a ratio close to 2 gives
the best performances, while in the case of changed
rotation axis the best performance is obtained with
% ~ 2.5. The undamaged robot and the robot with
damaged camera instead performs best with & ~ 3.
For the uncontrollable wheel higher values for %,
around 5, gives the best performance. In this case
probably the noise introduced by the hardware itself
reduces the noise required in the control signal.
Observing Fig. 2 we notice that some damages
seems easier to recover than others, in detail the per-
formance decreases more abruptly when the size of
one wheel is reduced and when the rotation axis is
changed by 90 degrees than when the camera is par-
tially obscurated or when one wheel become uncon-
trollable. In these cases a lower % is more beneficial,
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Fig.2 Performances of the robot for various settings of a and g: (a) Without any damage, (b) Reduced size of one
wheel, (c¢) Uncontrollability of one wheel, (d) Rotation of the rotation axis of one wheel, (e) Obscuration of
part of the image, (f) plot of /8 vs. average performance.

i.e. intuitively speaking when the task is difficult the
more stochastic the control is the better it is.

5 Conclusions and Future Work

In this paper we presented an approach for mobile
robot navigation based on biased random walk and
inspired from the movement of E. Coli chemotaxis.
We showed that a random walk in the motor com-
mand space can be sufficient to drive a robot toward
a goal without any knowledge of the robot structure.
This ensures that even in case of hardware failure the
control adapts to the new robot conditions without
any need of modeling and identification of the possi-
ble failures. We validated the methodology using a
simulated mobile robot equipped with an omnidirec-
tional camera, and shown that the robot is able to
reach the goal even in case of severe damages of the
sensors and actuators. We then provided an experi-
mental study on the optimal bias in the random walk.
These tests suggest that the optimal bias is propor-
tional to the noise, but the coefficient depends on the
hardware. Furthermore, we saw that in this case the
use of a limited number of motor primitives (mov-
ing each motor with its maximum speed and change
just its rotation direction) gave good performances
for goal reaching.

Future works will aim at identifying whether other
types of noise are more efficient than Gaussian Noise.
For instance ® shows experimentally that Levy walk
performs better that random noise in a goal reaching
task similar to the one presented in this paper.
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