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In speaker verification, the Structural Maximum-A-Posteriori(SMAP) adap-
tation technique is often used to train speaker-adapted acoustic models by using
available speech data in an efficient and flexible manner. In SMAP adaptation,
a tree structure is used to represent the acoustic space of the human voice.
We observed that one particular tree structure is not necessarily optimal for
modeling the acoustic space of all speakers. In this paper, we propose a voting
approach as a way to combine the decisions of multiple SMAP-adapted systems
using different tree structures. We expect that this approach is more robust
than using a single tree structure. We evaluate our proposed method on the
10sec4w-10sec4w task of NIST SRE 2006 and show that our method is more
effective than the conventional SMAP adaptation as well as relevance MAP
adaptation.

1. Introduction

Over the last few years text-independent speaker verification systems have be-
come robust against inter-session variability for speech segments of around 2 or
3 minutes. This is mainly due to the development of the Joint Factor Analysis
(JFA)4) and Nuisance Attribute Projection (NAP)8) techniques. However, when
speech segments are very short, e.g., 10 seconds, the verification accuracy is not
as satisfactory as for long segments. In some cases using NAP has been reported
to be worse2) than no compensation.

To tackle this problem, Vogt et al.9) proposed using Probabilistic Subspace
Adaptation (PSA) into Factor Analysis (FA) modeling. Fauve et al.2) proposed
a well-tuned speech detection front-end for improved frame selection followed by
eigenvoice modeling. All these methods emphasize keeping the number of model

†1 Tokyo Institute of Technology

parameters small enough so that they can be reliably estimated.
In speech recognition, Shinoda et al.7) showed that the Structural Maximum-A-

Posteriori (SMAP) adaptation technique using a tree structure performs better
than relevance MAP3) when the size of adaptation data is very small. In speaker
verification, Liu et al.5) and Xiang et al.10) successfully used it for speech segments
of about 2 minutes long or shorter. However, one particular tree structure is not
always optimal for modeling the acoustic space of every speaker. In this paper,
we propose a voting approach as a way to combine decisions of multiple systems
with different tree structures. We expect that this approach is more robust than
SMAP adaptation with a single tree structure.

The remainder of the paper is organized as follows. In Section 2, we describe
our GMM-SVM based system. A brief description of SMAP adaptation is given
in Section 3. Section 4 illustrates our proposed voting approach. In Section 5 and
Section 6, we describe our experimental setup and results respectively. Section 7
gives some conclusions.

2. GMM-SVM verification system

The goal of an automatic speaker verification system is to verify the claimed
identity of a speaker, giving a binary decision. Adaptation of Gaussian Mix-
ture Models (GMM) was first used for speaker verification by Reynolds et al.6).
Most speaker verification approaches are currently based on the same framework.
Campbell et al.1) showed that an approach using Support Vector Machines (SVM)
and GMM mean vectors as features (GMM-SVM) obtains similar performance
to the GMM-UBM paradigm and has less computational complexity.

In a GMM-SVM system, a speaker-independent GMM, so-called Universal
Background Model (UBM), is trained using hours of speech segments from hun-
dreds of speakers using the Expectation-Maximization (EM) algorithm. A GMM
is obtained for each speech segment of a target speaker by adaptating the UBM.
GMM for a set of background speakers, used as negative data in the classifier,
are obtained in the same way. The SVM classifies the stacked mean vectors of
the speaker models into target (true) or impostor (false) classes.

Let the GMM-UBM have M Gaussian pdf components
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g(x) =
M∑

i=1

λiN (x; µi,Σi), (1)

where λi is a mixture weight, N is a Gaussian pdf, µi and Σi are the mean
and covariance matrix of the Gaussian pdf respectively and Σi is assumed to be
diagonal.

For speaker s and the m-th Gaussian, MAP adaptation generates a mean vector
as

µ̂m(s) = αmµm(s) + (1− αm)µm, (2)
where µm(s) is the expected value of the m-th Gaussian using the adaptation
data only and µm is the corresponding mean vector in the UBM. αm is a weight
used to weight the relevance of the prior and is computed by introducing the
so-called relevance factor τ as

αm =
γm

γm + τ
, (3)

where γm is the occupation count of the m-th Gaussian given the adaptation
data.

The SVM classifies so-called supervectors obtained by concatenation of the
mean vectors of the speaker-adapted models. Prior to classification, the mean
vectors are typically normalized by its variance and mixture weight as

svs = (
√

λ1Σ1
− 1

2 µT
1 , ....,

√
λMΣ− 1

2
M µT

M )T , (4)
where svs has dimension M×F if the Gaussian mean vectors are F -dimensional.

3. SMAP adaptation

SMAP adaptation was proposed to keep the desirable asymptotic properties of
relevance MAP while dealing with the problem of the data scarceness by using a
tree structure. First, a tree is obtained by clustering the Gaussian components
of the UBM. The root node of the tree represents the whole acoustic space and
each of the leaf nodes has a Gaussian component that summarizes its child node
distributions. After building the tree, speaker-dependent models are obtained by
using each non-leaf node as prior information for its child nodes. These two steps

are briefly described in the following two subsections.
3.1 Tree construction
In our method, the structure of the tree represented by the number of layers

L and the number of branches B
(l)
r from a node r at the l-th layer needs to be

provided prior to clustering.
For clustering, we define the distance measure between two Gaussian compo-

nents as the symmetric Kullback-Leibler (KL) divergence. Assuming the covari-
ance matrices to be diagonal, the KL divergence between two Gaussian compo-
nents, ga(.) and gb(.) can be written as

d(a, b) =
F∑

i=1

[
σ2

a(i)− σ2
b (i) + (µb(i)− µa(i))2

σ2
b (i)

+
σ2

b (i)− σ2
a(i) + (µa(i)− µb(i))2

σ2
a(i)

], (5)

where µa(i) is the i-th element of F -dimensional mean vector µa and σ2
a(i) is the

i-th diagonal element of covariance matrix
∑

a

The algorithm for obtaining a tree from a UBM with G gaussians is given
below:
( 1 ) Set:

( a ) the root node to be node k

( b ) all the M Gaussians of UBM in set Gk

( c ) B
(1)
k to be the number of children n

( d ) l to be 1
( 2 ) Calculate the node pdf gk for node k using the following formulas:

µk(i) =
1

Mk

∑

m∈Gk

µm(i), (6)

σ2
k(i) =

1
Mk

[
∑

m∈Gk

(σ2
m(i) + µ2

m(i))−Mkµ2
k(i)], (7)

where Mk is the number of Gaussian components included in Gk.
( 3 ) If l is equal to L, stop clustering, else go to Step 4
( 4 ) Compute the initial pdf for n child nodes using the minimax method:

( a ) Find n Gaussian components from Gk:
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( i ) The 1st Gaussian is gc1(.) = gm̂(.) where
m̂ = arg max

m
d(m, k) (8)

( ii ) Rest of the (n− 1) Gaussians will be gcp
(.) = gm̂(.) where

m̂ = arg max
m

min
q∈Gck

d(m, cq), (9)

where Gck is the set of Gaussians already assigned to the child
nodes of node k, 1 ≤ p ≤ n− 1 and 1 ≤ q ≤ n− 2

( b ) Interpolate the node pdf of the node k and the initial node pdf of
each child node cp and set the node pdf for cp as follows:

µ̂cp(i) = (1− α)µk(i) + αµcp(i), (10)
σ̂2

cp
(i) = (1− α)(σ2

k(i) + µ2
k(i)) + α(σ2

cp
(i) + µ2

cp
(i))− µ̂cp , (11)

where 0 ≤ α ≤ 1.
( 5 ) Repeat the following k-means procedures until the grand sum of distances,

GD, converges:
( a ) For each Gaussian component in Gk, calculate the distance from it

to each child node pdf of the l-th layer by using (5), and assign each
mixture component to the nearest child node

( b ) Recalculate the child node pdf by using (6) and (7)
( c ) Using (5), calculate the sum of distances, D, from each child node to

each of its mixture components and then obtain GD by accumulating
all D

( 6 ) Set each child node to be node k and its corresponding subset of Gaussian
components to be Gk. Increase l and go to Step 4.

3.2 Adaptation
The formulation of SMAP adaptation is similar to that of relevance MAP3),

except that it uses hierarchical priors and uses normalized pdfs in the formulation.
The adaptation steps for each node p using adaptation data X = {x1, x2, ..., xT }
are:
( 1 ) Transform each sample vector xt into a vector ymt for each mixture com-

ponent m as follows:
y
(p)
mt = Σ−1/2

m (xt − µ(p)
m ), (12)

where t = 1, 2, ..., T and m = 1, 2, ..., M (p).
( 2 ) Estimate the normalized pdf N (Y (p)|ν, η) for Y

(p)
m = {y(p)

m1, y
(p)
m2, ..., y

(p)
mT },

where ν(p) and η(p) represent the shift and rotation needed to compensate
for the distortion, i.e., to adapt the model parameters to the data. When
there is no mismatch between the training and adaptation data, then ν(p) =
~0 and η(p) = I. The ML estimation of the mean vector of the normalized
pdf is calculated as follows:

ν̃(p) =
∑T

t=1

∑M(p)

m=1 γ
(p)
mty

(p)
mt∑T

t=1

∑M
m=1 γ

(p)
mt

, (13)

where γ
(p)
mt is the occupation probability for Gaussian m at tree node p and

time t.
( 3 ) Calculate the hierarchical prior

ν̂(p) =
Npν̃

(p) + τ ν̂(p−1)

Np + τ
, (14)

where Np =
∑T

t=1

∑M(p)

m=1
γ(p)mt is the average number of frames as-

signed to node pdf p and τ is the MAP relevance factor that weights the
priors at the parent node p− 1.

( 4 ) Compute the SMAP estimate of the mean vector

µ̂(p)
m = µ(p)

m +
∑1/2

m
ν̂(p), (15)

where µ
(p)
m is the unadapted mean vector for Gaussian m of node p.

4. Voting method

In SMAP adaptation, a tree structure obtained by clustering Gaussians offers a
convenient way to capture the hierarchical structure of the acoustic space of the
human voice. Different speakers have different acoustic spaces depending on fac-
tors such as the language, accent or pronunciation particularities. It is therefore
reasonable to think that the optimal clustering differs from speaker to speaker
and, in a hierarchical clustering scenario, so would the optimal tree structure.
In other words, some tree structures may be adapted more efficiently to some
speakers than others. In the context of SMAP adaptation this would translate
into better prior estimates. As evidenced by informal experiments, decisions in-
volving certain speakers are slightly sensitive to the chosen tree structure. In this
paper, we propose to combine decisions of multiple systems with different tree
structures as a way to mitigate this problem. To proceed, we construct a set of
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K SMAP adapted systems with different tree structures and:
( 1 ) For each trial x,

( a ) Ask yes/no vote to each of the K systems

V ote(x) =

{
yes if thrk >= score,

no if thrk < score,
(16)

where thrk is the speaker independent threshold of system k

( b ) Divide the K systems into two groups based on their types of votes.
( c ) Re-estimate the score by averaging the score of the majority group.

( 2 ) Set a global speaker-independent threshold
( 3 ) Take final decision about each trial as follows

Decision(x) =

{
true if thrG >= score,

false if thrG < score,
(17)

where thrG is the global speaker independent threshold
In machine learning, voting and score fusion techniques are known to obtain

performance gains if the individual systems are performing sufficiently. Oth-
erwise, the final decisions could degrade and become worse than those of the
individual systems.

5. Experimental setup

The performance of the speaker verification systems was measured by carrying
out experiments on the 10sec4w-10sec4w task of the 2006 NIST SRE ?1. In this
task, the length of training and test segments is about 10 seconds. There are 2971
true trials and 30584 false trials for 731 speakers among which 316 are females
and 415 are males.

Regarding feature extraction, we first remove the non-speech part from the
speech segments using the information in the transcript files. We break each
segment into frames of 30 ms long with a frame rate of 100 frames/sec. We pre-
emphasize each frame with a pre-emphasis factor of 0.97 and apply a Hamming
window. We compute 15 Perceptual Linear Prediction (PLP) coefficients, aug-
mented with the energy coefficient and first and second derivatives, resulting in
48 features per frame. Cepstral mean subtraction was applied to remove static

?1 http://www.itl.nist.gov/iad/mig/tests/spk/2006/index.html

channel effects.
A UBM with 512 Gaussians was trained using about 180 hours of speech in-

volving 2832 and 1974 female and male speech segments of the 2004 NIST SRE.
We applied 5 iterations of Baum-Welch re-estimation. For the speaker models
we use SMAP adaptation with different relevance factors. The resulting super-
vectors have 24576 dimensions. We use a soft-margin SVM with a linear kernel.
The same 4806 speech segments used for UBM training were used as the imposter
speaker data.

6. Results

First we conducted experiments to compare SMAP and relevance MAP in
the GMM-SVM system, and later some experiments on the proposed voting ap-
proach. We ran one system using relevance MAP and 13 systems using SMAP.
The latter used different tree structures that were either binary trees, variations
of binary trees or three level trees with the same number of child nodes at ev-
ery layer. In this series of experiments, both MAP and SMAP systems used a
relevance factor of 10.

Table 1 shows the Equal Error Rate (EER) ?2 of these systems. Most of the
SMAP-adapted systems outperform the relevance MAP-adapted system. The
tested binary trees are the worst performing amongst all trees. One reason could
be that the number of nodes/clusters is too small to calculate the prior effi-
ciently. That is the reason why as soon as more than two children are included in
their layers, e.g. SMAP 2 2 2 5 or SMAP 2 2 5 5, error rates decrease. For the
three layer trees, error rates consistently decrease as the number of nodes gets
larger. The best relative improvement for individual SMAP systems, around 6%,
is obtained for the 2 10 10 2 tree structure-based system, although several other
systems perform fairly close. Overall, systems using structures with a larger
number of nodes/clusters tend to obtain the lower absolute error rates.

The SMAP voting system outperforms any SMAP individual system, suggest-
ing the voting technique is working properly. We obtain an additional gain of

?2 EER is the rate when False Rejection(FR) error and False Acceptance (FA) error are equal.
FA error occurs when a imposter speaker is accepted falsely as the claimed speaker and FR
error occurs when a true speaker is rejected against his/her own claim
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2.3% EER from the best SMAP individual system, which makes a total relative
gain of 8.3% EER from the MAP baseline system.

7. Conclusion

We proposed a voting technique to avoid the issue of tree structure optimization
in SMAP adaptation. We tested it on a speaker verification task, namely the
10sec4w-10sec4w condition of the 2006 NIST SRE, a inherently difficult task
due to the short length of the speech segments. We showed that the voting
technique is effective although relative gains are small. We also showed that
SMAP-adapted systems outperform a MAP-adapted baseline by a 6% in relative
EER terms. As future work, we would investigate other score fusion strategies,
e.g., based on neural network or logistic regression. Exploring a greater diversity
of trees should be addressed as well.
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