ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音声言語情報処理(SLP)
  3. 2010
  4. 2010-SLP-084

Inter-speaker weighted MAP adaptation for GMM-supervector speaker recognition

https://ipsj.ixsq.nii.ac.jp/records/71574
https://ipsj.ixsq.nii.ac.jp/records/71574
bbb96bda-c31f-44c9-8679-91b044cb7fac
名前 / ファイル ライセンス アクション
IPSJ-SLP10084012.pdf IPSJ-SLP10084012.pdf (342.9 kB)
Copyright (c) 2010 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2010-12-13
タイトル
タイトル Inter-speaker weighted MAP adaptation for GMM-supervector speaker recognition
タイトル
言語 en
タイトル Inter-speaker weighted MAP adaptation for GMM-supervector speaker recognition
言語
言語 eng
キーワード
主題Scheme Other
主題 Session-4 話者認識・識別
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology
著者所属
Tokyo Institute of Technology
著者所属
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者名 Marc, Ferras Koichi, Shinoda Sadaoki, Furui

× Marc, Ferras Koichi, Shinoda Sadaoki, Furui

Marc, Ferras
Koichi, Shinoda
Sadaoki, Furui

Search repository
著者名(英) Marc, Ferras Koichi, Shinoda Sadaoki, Furui

× Marc, Ferras Koichi, Shinoda Sadaoki, Furui

en Marc, Ferras
Koichi, Shinoda
Sadaoki, Furui

Search repository
論文抄録
内容記述タイプ Other
内容記述 Gaussian Mixture Models (GMM) are ubiquitously used in state-of-the-art speaker recognition systems. The popular GMM-SVM paradigm uses Maximum A Posteriori (MAP) speaker-adapted GMM models by stacking the mean vectors into a supervector that is fed into a Support Vector Machine classifier. In this paper, we modify the standard relevance MAP algorithm to better fit the speaker recognition task. We propose to emphasize the adaptation of the Gaussian mixtures according to the inter-speaker variability exhibited on a training set, thus accounting for both the occupation count and the speaker discrimination ability during adaptation. We evaluate our proposal on a relevance MAP based GMM-SVM system using a large telephone speech corpus such as the one provided in the 2006 NIST Speaker Recognition Evaluation. We show that despite its simplicity this technique is effective.
論文抄録(英)
内容記述タイプ Other
内容記述 Gaussian Mixture Models (GMM) are ubiquitously used in state-of-the-art speaker recognition systems. The popular GMM-SVM paradigm uses Maximum A Posteriori (MAP) speaker-adapted GMM models by stacking the mean vectors into a supervector that is fed into a Support Vector Machine classifier. In this paper, we modify the standard relevance MAP algorithm to better fit the speaker recognition task. We propose to emphasize the adaptation of the Gaussian mixtures according to the inter-speaker variability exhibited on a training set, thus accounting for both the occupation count and the speaker discrimination ability during adaptation. We evaluate our proposal on a relevance MAP based GMM-SVM system using a large telephone speech corpus such as the one provided in the 2006 NIST Speaker Recognition Evaluation. We show that despite its simplicity this technique is effective.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10442647
書誌情報 研究報告音声言語情報処理(SLP)

巻 2010-SLP-84, 号 12, p. 1-4, 発行日 2010-12-13
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 23:00:10.284548
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Sadaoki, Furui, 2010: 情報処理学会, 1–4 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3