
IPSJ SIG Technical Report

Efficient PageRank on GPU Clusters

Ali Cevahir,†1 Cevdet Aykanat,†2 Ata Turk,†2

B. Barla Cambazoglu,†3 Akira Nukada†4

and Satoshi Matsuoka†4

In this work, we report scalability of PageRank on multi-GPU clusters. Our
target GPU clusters may contain more than one GPU accelerator per node. It-
erative solvers for irregular sparse problems poorly scale with increasing number
of processors because of load imbalance problem and network bottleneck. GPU
computing units are too fast, for which network performance remains too low.
Even the latest network hardware cannot provide bandwidth appropriate for
high performance GPUs. In our previous work, we have introduced several
implementation techniques and algorithms required for scalable sparse itera-
tive solvers on multi-GPU extended clusters and evaluated those techniques on
a Conjugate Gradient solver5),6). In this work, we present the GPU cluster
performance evaluation of another important iterative method, PageRank. For
GPU implementation of PageRank, although we are inspired by the techniques
that are presented in [6], we cannot use them as is, since PageRank data has very
different characteristics than Krylov Method data. Our PageRank implemen-
tation on GPUs is based on our work on an efficient CPU cluster algorithm7).
In our experiments, we observe that PageRank achieves better scalability be-
cause of the enough data size to saturate GPUs. We observe scalability up to
a hundred GPUs for PageRank, being at the same time almost 10 times faster
than the CPU cluster implementation with the same number of CPU cores.

1. Introduction

Considering GPUs as high-performance low-cost many core co-processors, GPU

clusters are being deployed for high performance scientific computing. GPU-

based supercomputing systems have already taken their place in top ranks of the

Top 500 list. One of the world’s largest GPU clusters is deployed in Tokyo Insti-

†1 Rakuten Institute of Technology
†2 Bilkent University
†3 Yahoo! Research
†4 Tokyo Institute of Technology

tute of Technology, called TSUBAME2.0, with 2.4 PetaFlops peak performance.

Recently, there is a rapid increase in research on applications running on GPU

clusters as number of GPU-enhanced supercomputing systems increases.

Majority of those supercomputers are based on CUDA. Compute Unified De-

vice Architecture (CUDA8)) is NVIDIA’s new generation GPU hardware and

software architecture. A CUDA GPU contains number of SIMD multiprocessors.

GPU has a device memory that is accessible by all processors. Memory access

latency of many core GPU devices is hidden by running high number of threads

in parallel. Each multiprocessor contains its own shared memory and read-only

constant and texture caches that are accessible by all processors within the mul-

tiprocessor. Threads in the same multiprocessor can communicate through fast

shared memory. CUDA API supports programming different memory types.

As briefly explained above, GPU clusters has recently become effective com-

puting resources. Scientists need new algorithms/methods/sources for running

their applications on GPUs, in order to utilize these machines efficiently for their

purpose. On the other hand, all applications cannot be easily and efficiently car-

ried out on GPU clusters. Iterative solvers for matrices with irregular sparsity

patterns are hard to be carried out efficiently on GPU clusters, but efficient im-

plementations can enjoy high memory bandwidth supplied by GPUs. Note that

sparse iterative solvers are memory-bound, i.e., there is only a few arithmetic

operations per memory access.

Parallelization of iterative solvers for different parallel architectures is an ac-

tive research area for decades. What makes the parallelization difficult for un-

structured problems is the mass amount of communication between fine-grain

computations. This problem is more obvious in GPU clusters, because GPU

computation units are too fast, where network interconnect between nodes rela-

tively remains extremely slow.

Several BLAS operations are consisted in sparse iterative solvers. Sparse matrix

vector multiplication (MxV) is usually the most time-consuming of them. Parallel

execution of sparse solvers for unstructured problems on a cluster requires con-

siderable amount of communication, e.g., for sharing input and/or output vector

of MxV. Hence, minimization techniques for inter-process communication should

be considered for efficient parallel implementations. For a multi-GPU cluster,

1 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17



IPSJ SIG Technical Report

parallelization is even harder. To achieve an efficient parallel implementation,

parallelization inside a GPU between GPU cores, inside a node between GPUs

and between nodes should be carefully handled. Kernels running on GPUs require

high degree of fine-grained parallelization between cores of a GPU. This imposes

careful workload distribution between GPU threads. Optimization techniques for

accessing GPUs’ complex memory architecture for memory-intensive kernels, e.g.

MxV, should be carefully thought. Moreover, additional communication between

GPU and CPU memories is required for utilizing GPU acceleration.

Above problems are handled for a CG solver in [6]. In this work, we present

results on a different iterative solver called PageRank, which is an important

component of effective Web search. Although this work is similar in the sense

that PageRank is also a sparse iterative solver, since PageRank data has its own

characteristics, techniques explained in [6] are not directly applicable. PageRank

data is usually huge and number of links per page follows a power-law distribu-

tion. Experiments show that, although we observe slightly worse flop/s than CG

for PageRank because of the power-law nature of the data, PageRank seems to

scale better with the increasing number of GPUs.

To handle huge PageRank data, we have proposed repartitioning techniques

of initially distributed data7). In this work, we accelarate the this PageRank

implementation. Details of our previous works are explained in below section.

2. Related Work

Three important problems exist for unstructured sparse iterative solvers on

GPUs: minimization of communication time between GPUs, development of

efficient kernels for basic operations on GPUs and handling of the heterogeneity

of the underlying system.

In [6], algorithms and techniques to overcome above problems are explained and

a CG solver is implemented on a multi-GPU cluster. Each node of multi-GPU

cluster contains several GPUs. Recent GPUs do not have a direct communication

link between them, hence communications between GPUs are coordinated by host

CPU(s).

Our major contributions in above-mentioned work can be summarized as:

• Scalable sparse iterative solver with unstructured matrices is achieved on

multiple GPUs.

• All basic vector and matrix operations run on GPUs.

• We propose auto-selection for running MxV kernel in iterations.

• In order to decrease the communication time by minimizing total commu-

nication volume between GPUs, we enhance graph/hypergraph-partitioning-

based sparse matrix decomposition models.

• We adapt matrix decomposition models for heterogenous GPU clusters using

hierarchical partitioning.

• We make experiments on a wide range of well known datasets. Our experi-

ments confirm the validity of proposed techniques. Also, experiments suggest

that, without using such techniques, it is impossible to obtain scalability.

In our multi-GPU CG implementation, all basic vector and matrix operations

of solvers are held on GPUs. For the core operation, MxV, we proposed a JDS-

based GPU algorithm5). Proposed MxV algorithm achieves high utilization of

GPU resources by coalesced memory accesses, caching, and load balancing be-

tween working threads. Simultaneously with our proposal, NVIDIA has released

several kernels based on different formats1). For MxV, the solver automatically

selects the fastest between several kernels proposed by NVIDIA and ourselves.

For sparse matrix decomposition, to minimize communication and balance loads

of MxV between nodes and GPUs, we utilize state-of-the-art 1D hypergraph par-

titioning models4), which correctly encapsulate total communication volume in

the NP-hard decomposition problem. Partitioning models are applied first be-

tween nodes, and then between GPUs within nodes for better reduction of com-

munication for the slower communication link – network of the cluster among

nodes.

To demonstrate effectiveness of our proposed techniques for CG, we held ex-

periments on a set of well-known matrices. We show strong scalability by com-

paring GPU vs. CPU cluster implementations on the same underlying network,

providing 20 Gbps per node. We achieve up to 119 Gflops of double-precision

CG performance with 32 GPUs on 16 nodes of TSUBAME1.2, and 15.4 times

speedup over single GPU implementation. This is 17.4 times faster than CPU

implementation of the same number of nodes and CPU cores. We use up to 16

cores per node for CPU experiments, and observe that CG is always faster on

2 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17



IPSJ SIG Technical Report

GPU cluster than CPU cluster.

We investigate PageRank in this paper. For PageRank, we mostly focus on min-

imization of matrix decomposition time, since number of iterations for PageRank

is small. In [7], we utilize graph/hypergraph-partitioning-based decomposition

techniques to minimize communication for parallel PageRank on CPU clusters.

However, these techniques are not practical when applied directly, because of the

vast size of the Web. We first focus on reducing this partitioning overhead. For

this purpose, we propose two different Web matrix compression schemes by ex-

ploiting the site information inherently available in page links. Namely, instead of

partitioning page-by-page matrix, we partition site-by-page, page-by-site or site-

by-site compressed matrices. These partitioning models significantly decrease the

preprocessing overhead of partitioning the original page-to-page matrix, without

sacrificing the parallel efficiency.

In a real-world applications, Web dataset is likely to be distributed among many

processors. In such a setup, the data has to be redistributed among processors

for efficient parallel PageRank computations. Hence, partitioning models should

encapsulate the initial data redistribution overhead as well as the communication

overhead that will be incurred during the parallel PageRank computations. This

problem constitutes a typical instance of the repartitioning (remapping) problem.

In the work, we explain repartitioning models to encapsulate the initial matrix

redistribution overhead.

PageRank computations conducted on well-known, large Web datasets indicate

the effectiveness of the proposed techniques. These techniques result in consider-

ably high speedups while incurring a preprocessing overhead of several iterations

(for some instances even less than a single iteration) of the underlying sequential

PageRank algorithm.

3. PageRank on GPUs

PageRank experiments on GPU clusters complements our discussions for CG

in [6]. Since the matrices that are used in PageRank are much bigger than that of

CG, GPU cluster experiments for PageRank demonstrate strong scalability even

on a cluster with a hundred GPUs. Data sizes, matrix properties and convergence

rates are different for CG and PageRank. Hence, optimization techniques are

Parallel-PageRank(Ak

11, Ak

12, A2
k, tk, uk, α, ε)

. pk =[pT
1k

pT
2k

]T; tk =[tT1k
tT2k

]T; uk =[uT
1k

uT
2k

]T

. p1k =[pT
1k

(A11) pT
1k

(Z)]T; t1k =[tT1k
(A11) tT1k

(Z)]T

. u1k =[uT
1k

(A11) uT
1k

(Z)]T

1. (a) p1k ← t1k

(b) pold
1k
← p1k

2. (a) πk ← ‖p1k‖1

(b) δk ← ‖p1k‖1

(c) 〈π, δ〉 ← AllReduceSum(〈πk , δk〉)

(d) γ ← 1− π

3. (a) t̂1k(A12,Z)← ParMatVecMult(Ak

12, t1k(Z))

(b) û1k(A12, Z)← ParMatVecMult(Ak

12, u1k(Z))

4. (a) t̂1k(A12,Z)← (1 − α)̂t1k(A12,Z)

(b) t1k ← (1− α)t1k

5. while δ > ε do

6. q1k(A11)← ParMatVecMult(Ak

11,p1k(A11))

7. q1k(A11)← q1k(A11) + t̂1k(A12,Z)

+ αγû1k(A12, Z)

8. (a) p1k(A11)← αq1k(A11) + t1k(A11) + αγu1k(A11)

(b) p1k(Z)← t1k(Z) + αγu1k(Z)

9. (a) πk ← ‖p1k‖1

(b) δk ← ‖p1k − pold
1k
‖1

(c) 〈π, δ〉 ← AllReduceSum(〈πk , δk〉)

(d) γ ← 1− π

10. pold
1k
← p1k

11. end while

12. (a) q2k ← ParMatVecMult(Ak

2 ,p1k)

(b) p2k ← αq2k + (1 − α)t2k + αγu2k

13. return pk

ParMatVecMult (Ak , xk)

(a) x′

k
← Expand (xk) (a) yk ← Ak × xk

(b) yk ← Ak × x′

k
(b) yk ← Fold (yk)

Row parallel Column parallel

Fig. 1 Parallel PageRank algorithm (pseudocode for processor Pk).7)

3 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17



IPSJ SIG Technical Report

diverged for these two methods, although the idea behind is similar.

For GPU cluster implementation, the same parallel PageRank algorithm runs

as the CPU cluster version, which is depicted in Fig. 1. The only difference is

vector operations and MxV run on GPUs. Unlike GPU cluster implementation

of CG, one MPI process is assigned for each GPU. By doing so, communication

pattern for PageRank on GPU cluster become the same with CPU cluster. Hence,

fairer comparisons can be made with CPU cluster implementation.

Another major difference of PageRank from CG on GPUs is that MxV ker-

nel selection is not applied for PageRank. GPUs run CSR-vector1) kernel. We

observed that it is emprically the fastest MxV kernel on GPUs for Web matri-

ces. Power-law Web matrices makes difficult to optimize MxV. Performance of

CSR-vector kernel is satisfactory. However, proposal of a specific kernel for Web

matrices may increase the PageRank performance.

Amongst the techniques explained in [7], we only test repartitioning on the

GPU cluster, because matrices should be big enough to utilize GPUs and bigger

matrices cannot be partitioned on single node. Just like CPU cluster experiments

in [7], we use hypergraph partitioning for repartitioning of initially hash-based

columnwise-distributed matrices.

3.1 PageRank Computation Times

In our tests, we use up to 96 Tesla GPUs on TSUBAME1.2 supercomputer,

having 8 AMD 2.4 GHz Opteron dual core processors on each node. We use 2

Tesla GPUs and 2 CPU cores from each node.

We use 4 real Web data in our experiments: indochina, arabic-2005, uk-2005

and uk-union having 7.4M, 22.7M, 39.5M, 133.6M pages and 145.9, 640, 936,

5500M links, respectively2),3).

Matrices smaller than indochina are too small to get speedups on the GPU

cluster. Fig. 2 depicts the speedups for indochina dataset over 4 GPUs. As you

can see, it scales very poorly for GPUs more than 32.

For bigger datasets (arabic-2005, uk-2005 and uk-union), we depict PageR-

ank run times until convergence on CPU and GPU clusters in Figs. 3, 4 and 5.

We provide run times for 32, 64 and 96 processors. Since uk-union data is too

large to fit the memory of 32 GPUs, we provide results for 64 and 96 processors

for this data. Respective GPU and CPU cluster performances in Gflops are given

Fig. 2 GPU cluster speedups for indochina.

Fig. 3 PageRank run times on GPU and CPU clusters for arabic-2005.

4 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17



IPSJ SIG Technical Report

Fig. 4 PageRank run times on GPU and CPU clusters for uk-2005.

Fig. 5 PageRank run times on GPU and CPU clusters for uk-union.

Fig. 6 PageRank performance in Gflops on GPU and CPU clusters for arabic-2005.

Fig. 7 PageRank performance in Gflops on GPU and CPU clusters for uk-2005.

5 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17



IPSJ SIG Technical Report

Fig. 8 PageRank performance in Gflops on GPU and CPU clusters for uk-union.

in Figs. 6, 7 and 8. From the figures, one can observe that bigger data runs faster

on GPUs.

As can be seen from the figures and discussed before, performance gaps be-

tween GPU and CPU clusters are bigger for bigger matrices. For example, for

arabic-2005, GPUs are 5.3 times faster than CPUs with 64 processors, while

this ratio is 8.0 with same number of processors for uk-union data. These gaps

become smaller as the number of processors increase. For 96 processors, speedups

go far from the ideal line. One of the main reasons of fall-downs in speedups is

the increasing load imbalance with increasing number of processors.

Note that we have hardly achieved speedups for 64 GPUs in our CG study,

because of the insufficient matrix sizes6).

4. Conclusion

In this work, we have shown scalability results for PageRank on a multi-GPU

cluster. Previously, we have shown ways to implement efficient sparse iterative

solvers on a CG example. However, PageRank has a completely different char-

acteristics than CG. Although PageRank has a few iterations, we show ways to

compansate initial partitioning cost7). Since we deal with bigger matrices for

PageRank, problem better scales with the increasing number of GPUs. This

shows the network bottleneck for sparse iterative solvers.

Hypergraph partitioning is executed as a preprocessing to iterative solvers.

There are publicly available, effective and efficient partitioning tools for hyper-

graphs, but they are implemented on CPUs. Peak performance of GPUs is much

higher than that of CPUs. Hence, preprocessing incurred by partitioning might

be more severe for applications running on GPU(s). There exists several parallel

partitioning tools which might be an alternative to reduce preprocessing time.

Actually, it is required to use a parallel partitioning tool for bigger matrices, in

case of insufficient single-node memory - like in the PageRank case. Still, there

is a gap in performance scales of GPU computing and parallel partitioning tools

that are developed for CPUs. An alternative is to develop partitioning tools on

GPUs, although it is a challenging task. Partitioning tools use many heuristics.

Even if these heuristics are implemented efficiently on GPUs, catching the quality

of highly-developed CPU implementations requires some time.

References

1) N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors”, Proc. SC ’09: ACM/IEEE Conference on Su-
percomputing , Portland, OR, USA, 2009.

2) P. Boldi and S. Vigna, “The WebGraph Framework I: Compression Techniques”,
in Proc. 13th Int’l WWW Conf., pp. 595–602, 2004.

3) P. Boldi, B. Codenotti, M. Santini and S. Vigna, “UbiCrawler: A Scalable Fully
Distributed Web Crawler”, Software: Practice & Experience, vol.43, pp.711–726,
2004.

4) U.V. Çatalyürek and C.Aykanat, “Hypergraph-Partitioning-Based Decomposition
for Parallel Sparse-Matrix Vector Multiplication”, IEEE Trans. Parallel and Dis-
tributed Systems, vol. 10, pp. 673–693, 1999.

5) A. Cevahir, A. Nukada and S. Matsuoka, “Fast Conjugate Gradients with Multiple
GPUs”, Lecture Notes in Computer Science, Vol.5544, Springer, pp. 898–903, 2009.

6) A. Cevahir, A. Nukada and S. Matsuoka, “High Performance Conjugate Gradient
Solver on Multi-GPU Clusters Using Hypergraph Partitioning”, Proc. International
Supercomputing Conference, Computer Science - Research and Development (Spe-
cial Issue), Springer, 2010.

7) A. Cevahir, C.Aykanat, A.Turk, and B.BarlaCambazoglu, “Site-Based Partition-
ing and Repartitioning Techniques for Parallel PageRank Computation”, IEEE
Transaction of Parallel and Distributed Systems, 2010.

8) NVIDIA Corporation: NVIDIA CUDA Programming Guide, 2009.

6 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.21
Vol.2010-HPC-128 No.21

2010/12/17


