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Low-overhead checkpoint for large-scale GPU-accelerated systems
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In HPC, the applications are periodically checkpointed to stable storage to
increase the success rate of long executions. Nowadays, the overhead imposed
by remote-disk based checkpoint is about 20% of the execution time and in the
next years it will be more than 50% if the checkpoint frequency increases as the
fault frequency increases. Diskless checkpoint has been introduced as a solution
to avoid the I/O bottleneck of remote-disk based checkpoint. However, the
encoding time, the spare nodes and the memory overhead imposed by diskless
checkpoint are significant obstacles against its adoption. At the same time,
heterogeneous computing is becoming more and more popular in HPC, with
new clusters combining CPUs and GPUs. In this work, we propose a way to
checkpoint GPU applications, and avoid the I/O bottleneck by using SSDs in
the compute nodes to significantly increase the checkpoint performance and
avoid the memory overhead of classic diskless checkpoint. Our technique does
not require spare nodes and can tolerate up to 50% of process failures with a
low checkpoint overhead. We plan to evaluate and present the first results of
our technique on TSUBAME 2.0.

1. Introduction

The huge amount of computational power that current scientific problems re-

quire has led the scientific community to develop high performance computers

that can execute more than one peta of floating operations per second (FLOP)

using tens of thousands of processors [1]. While the reliability of a single proces-

sor guarantee several years of usage, the reliability of a system with hundreds of

thousands of processors can only guarantee a MTBF of several hours.

In these circumstances it is necessary to use some fault tolerance technique
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for long executions. In HPC, checkpoint/restart is the most used technique to

deal with failures. In the classic disk-based checkpoint strategy, the processes

coordinate to create a coherent cut of the parallel application and then they

save their checkpoint data on remote stable storage. Since new supercomputers

can treat more data and scientific applications are getting larger, the amount of

checkpoint data is also getting larger creating an I/O bottleneck when writing

that data on remote storage. The overhead of this technique is about 20% of the

execution time and is increasing dramatically [2, 3]. Also, even for low memory

consuming applications, the checkpoint time can increase dramatically depending

on the pattern used to write the checkpoint data on the file system [4].

1.1 Contributions

In this work we propose a hybrid diskless checkpoint technique and we evaluate

our technique in a heterogeneous architecture using a Nbody simulation and the

Himeno benchmark which has been implemented on CPUs [6] and GPUs [7].

• We explain how one can do a better usage of the idle resources in GPU-

accelerated clusters to implement scalable low-overhead diskless checkpoint.

• Our proposed technique can checkpoint CPU and GPU applications at a

user level, checkpointing only the necessary data and delegating the encoding

process to idle resources present on the node.

• We present a strategy for hybrid architectures where the encoding process

is done in parallel with the application execution decreasing the checkpoint

overhead at the point to be negligible in some cases, as presented in our

evaluation.

• We use SSDs to solve the memory overhead induced by the classic disk-

less checkpoint and demonstrate how they increase the checkpointing perfor-

mance.

• We evaluate our technique in different configurations with a high checkpoint

frequency and we show that for some configurations, it decreases the check-

point overhead significantly in comparison with a non-hybrid diskless check-

point technique.

The rest of this paper is organized as follows. Section II present the motivations

of this work. In section III we explain the related work Section IV explains our

hybrid diskless checkpoint technique, which is evaluated in section V and finally
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section VI concludes this paper.

2. Motivations

A large study [2, 3] done at Los Alamos National Laboratory (LANL) over nine

years shows that the frequency of failures increases with the size of the system.

In this study we can see that 60% of the failure have as root cause the hardware

and on 25% of the cases the root cause is software. The reliability of a single

processor can guarantee its usage for years without failures, but a system with

tens of thousands of these processors will have a mean time to failure (MTTF)

of only a couple of hours [9, 10].

2.1 Disk-based checkpoint

Most of current large clusters and supercomputers are composed of hundreds

or thousands of multi-socket computing nodes connected by a network such as

Infiniband and communicate with the parallel file system trough dedicated I/O

nodes. There are several different file systems such as Panasas file system [11],

GPFS [12] or Lustre [13] that can reach several tens or hundreds of GB/s of

I/O bandwidth. However, the constantly increasing system size is making the

checkpoint data of current applications so large, that the I/O bandwidth becomes

a bottleneck at the checkpoint time, generating more than 20% of checkpoint

overhead [9].

2.2 Heterogeneous computing

During the last five years, accelerators have taken an important place in HPC.

Several supercomputers in the world use accelerators to improve the performance

of highly parallel applications and the energy efficiency of the machine. A re-

markable example of these heterogeneous systems is the LANL’s supercomputer,

Roadrunner [1], which became the first supercomputer to reach the Petaflop

barrier in 2008. Roadrunner is composed by AMD Opteron processors and

IBM/Sony/Toshiba PowerXCell accelerators.

Another example is the Tokyo Tech’s supercomputer Tsubame with AMD

Opteron 280s processors and nVidia Tesla GPUs cards [16]. The GPUs have in-

creased the performance of several libraries and applications [7] such as the dense

linear algebra (Linpack) [18] and the sparse finite difference Himeno benchmark

[6] in single precision. GPUs have become an important part of commodity clus-

ters, in particular with the last generation of general purpose GPUs (GPGPUs)

such as Tesla and Fermi [20]. The Fermi GPUs not only achieve good perfor-

mance in single-precision but also in double-precision. Moreover, this new GPU

card include ECC to tolerate bit-flip errors. In addition, the compute unified de-

vice architecture (CUDA) developed by nVidia really ease the programmer work

to implement algorithms in those GPUs. For these reasons, GPU-accelerated

clusters are getting more popular in HPC.

3. Related work

The scientific community have noticed the importance of fault tolerance in

HPC from long time ago. For this reason, there is a vast literature on check-

point/restart techniques. There are several possible implementations for check-

point/restart such us kernel-level checkpoint or user-level checkpoint. Each one

of these has several advantages and disadvantages. One well-known kernel-level

checkpoint library is Berkley Linux Checkpoint Restart (BLCR) [21-24]. BLCR

propose a disk-based checkpoint that has the advantage to be transparent for

the user. In order to deal with the I/O bottleneck, incremental checkpoint [25]

has been proposed as a spatial reduction of the checkpoint data; but not all the

applications can get a significant speed-up with this technique because of the

large amount of data modified between two checkpoints. Also, speculative check-

point [26] has been proposed as a temporal reduction of the checkpoint process,

but again, the accuracy of the predictions is a complex problem for most of the

scientific applications. In addition, some works propose local checkpoints with

new technologies such us Phase Change Memory (PCM) [33]. However, these

approaches do not solve the fundamental problem of disk-based checkpoint.

3.1 Diskless checkpoint

In 1997, diskless checkpoint [28, 29] has been proposed as a completely new way

of taking checkpoints. Diskless checkpoint propose to store the checkpoint data

in the memory or local disk of the computing nodes. In this way, the parallel file

system and the I/O nodes don’t participate in the checkpoint process avoiding

the overhead caused by the I/O bottleneck [19]. However, if one of the computing

nodes fail, the checkpoint data stored on that node will be unavailable. For this

reason, diskless checkpoint proposes two strategies to guarantee the reliability of
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the system, replication and redundancy codes.

Several encoding techniques [19, 30] can be used when implementing diskless

checkpoint. The simplest encoding technique used in diskless checkpoint is the

exclusive-OR (XOR) encoding [35]. Another encoding technique is the Reed-

Solomon encoding [14, 15, 27]. Reed-Solomon encoding can tolerate several si-

multaneous failures within the same group but it requires a complex and time

consuming encoding algorithm. In order to increase the number of simultaneous

failures tolerated and to deal with scalability, the system can be partitioned in

groups that will execute the encoding process in parallel increasing the check-

pointing performance [28, 32]. However, it is important to notice, that using this

approaches each group will have one or several spare nodes to encode and store

the encoded data. In every cluster, the users have a limited number of comput-

ing nodes and dedicating a significant number of these for fault tolerance implies

losing performance.

3.2 Spare-free diskless checkpoint

As presented above, the redundancy codes can tolerate several simultaneous

failures while generating a low amount of encoded data in comparison with the

replication approach. However, the spare nodes and the complex encoding pro-

cess usually discourage the use of this technique. Several works have proposed

spare-free diskless checkpoint techniques. An example of these works is the

scalable checkpoint restart (SCR) library [31] that propose XOR encoding in

a pipeline fashion, so the encoding process is not done on spare nodes but in the

computing nodes. Once the encoded checkpoint is generated it is spread in blocks

and replicated among the computing nodes; in this way the system does not need

any spare node. However, the SCR library still have the same fundamental issue

of XOR encoding, it only tolerates one failure per group.

Another example is the localized weighted checksum (LWC) [32] that proposes

a Reed-Solomon encoding, also using a pipeline algorithm and replication of the

encoded checkpoints among the computing nodes. This model can tolerate
√
k

failures in a group of k processes without need of spare nodes. Finally, in our

previous work we presented the distributed diskless checkpoint (DDC) model [5]

that can tolerate k
2 simultaneous failures in a group of k processes using a Reed-

Solomon encoding. In this work we extend the DDC model by implementing a

low overhead hybrid encoding algorithm and evaluate it with several benchmarks

and real applications.

3.3 GPU Reed-Solomon encoding

GPU technologies have been proposed as a solution to improve the efficiency of

storage systems in HPC [17]. Also, the Reed-Solomon encoding have been already

implemented on GPU previously. In order to increase the reliability of storage

system, a project at Sandia [34] is proposing GPU Reed-Solomon encoding on

RAID-type systems. They motivate the need for triple-disk redundancy and their

evaluation shows how GPUs outperform CPUs for this Reed-Solomon encoding.

However, the encoding techniques used for storage systems usually need a low

level of redundancy (Double-parity for RAID6) and the data to encode is a small

set of blocks that can be stored in one single node before the encoding work

starts.

4. Hybrid diskless checkpoint

As explained in section III, diskless checkpoint can be implemented in different

ways with different fault tolerance capabilities. The most reliable strategy is

Reed-Solomon encoding but it is also the most complex and time consuming. In

this section we start by explaining how Reed-Solomon encoding make a group of

k nodes able to tolerate m simultaneous node failures and how to recover the lost

data after a failure.

4.1 System topology

In our previous work [5], we proposed a new spare-free diskless checkpoint

technique. The approach used in this work is similar but not identical. In

order to deal with scalability, the encoding techniques, including the weighted

checksum, are usually implemented in groups. By partitioning the system in

groups, the encoding work can be done in parallel for different groups.

With our HDC technique we propose to divide the system in groups of k nodes.

Each node will take its checkpoint and they will generate m = k encoded check-

points. In theory, generating m=k encoded checkpoints should allow each group

to tolerate 100% failures. However, we will not store the encoded checkpoints

on spare nodes but among the computing nodes. For this reason, a node failure

will cause two erasures, a checkpoint and an encoded checkpoint, decreasing the

3 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-192 No.12
Vol.2010-HPC-128 No.12

2010/12/16



IPSJ SIG Technical Report

fault tolerance capability of each group from 100% to 50%. Tolerating 50% of

simultaneous failures within a group makes a system highly reliable, but it is also

important to guarantee a low overhead.

The size of the groups k is a parameter that can be fixed by the cluster ad-

ministrator or it can be chosen at the execution time by the user. However, it

is important to define some limits to this parameter. In theory, k = m > 1

is enough to have an encoding system working, but if we chose a number too

small, for example 2, then the system could fail with only two simultaneous node

failures if they occur within the same group. On the other hand, if we chose

a number too big, the group of nodes will need to generate a large amount of

encoded checkpoints, increasing the checkpoint overhead. In Fig. 1 we can see

an example of a group of 8 nodes with the checkpoints (in blue) and the encoded

checkpoints (in red), the group can tolerate up to 4 simultaneous node failures.

4.2 Avoiding the memory overhead

The system topology presented increases the capability to tolerate high fault

rates and eliminates the need for dedicated resources. However, this technique

will generate one checkpoint file and one encoded checkpoint for each process. If

all these checkpoints are stored in the main memory the application may start

to swap and the performance will decrease dramatically. In order to avoid the

memory overhead imposed by our model, we propose to use SSD devices. The

SSDs are data storage devices that use solid-state memory to store data per-

sistently. The SSDs have the advantage of being electronic devices instead of

electromechanical devices (no moving parts) such as classic Hard Disks Drives

(HDDs). For this reason, SSDs are less fragile, silent and faster than HDDs.

Fig. 1 HDC encoding group

We propose to use this technology to store the checkpoint data. Using SSDs

to store the checkpoints and encoded checkpoints we avoid the memory overhead

produced when storing the checkpoint data in the main memory. In addition,

the SSDs can be several times faster than the classic HDDs which will increase

the checkpoint performance. In order to determine the speedup of using SSD we

made some experiments with classic HDDs, a Super-talent SSDs and an ioDrive.

For our experiments we used a Western Digital HDD with a spindle speed of

7,200RPM, an average rotational latency of 4.20ms and a cache size of 16MB

plugged on the Serial ATA interface. The Super-talent SSD also uses the Serial

ATA interface, has an internal cache of 64MB and a latency of 0.1ms. The ioDrive

is a new SSD with an average access latency of 30s connected by a four lanes

PCI express 2.0.

The next comparison has been done using the iozone software [23] which is a

standard for IO benchmarks. The comparison presents the performance of the

standard HDD, the Super-talent SSD and the ioDrive. The benchmarks were

Fig. 2 Write speed of HDD, SSD and ioDrive
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realized on the same machines with the same software in the same conditions.

The comparison has been done for four different kinds of access: Write, Re-write,

Read and Re-read but for brevity we only show the results of the Write test, since

the other tests show similar results.

Iozone tests the speed of a device using a large range of file sizes and a large

range of record sizes for each file size. The file sizes vary between 16MB and 16GB

and the record sizes vary between 64KB and 16MB. The write test measures the

performance of writing a new file. Fig. 2 shows clearly the different performances

between the three different devices. We can see that both SSDs, with write

speeds of 215MB/s and 685MB/s for the ioDrive, outperform the HDD with a

write speed of only 55MB/s.

4.3 HDC implementation

In our prototype, we divided a node in two parts, the head and the body of the

node, as presented in Fig. 3 The head of the node will be a MPI process that

manage the whole checkpoint work. The body of the node is composed by the

several MPI processes participating in the application. At the checkpoint time,

the head will receive the checkpoint data from every process in the node and will

map it, in order to be able to re-scatter the checkpoint data of each process at

the restart time.

Once the checkpoint data has been gathered and mapped, the encoding process

can start. The head will then communicate with other heads to encode the check-

points. Notice that after the data has been gathered, the application processes

are able to continue the execution and they do not need to wait for the encoding

process. When the encoding process is done by the same hardware resources that

participate in the application, the cost of diskless checkpoint is usually the sum

between the time to make the local checkpoint and the encoding time. However,

when the encoding process is done by extra idle hardware resources present on

the nodes, the encoding process can be done in parallel and the checkpoint cost

will be reduced to the local checkpoint plus the extra data transfered on the

network. These are the advantages of dividing the nodes in two parts and gather

the checkpoint data in one single node checkpoint. However, it is important

to notice that this technique works well only when the checkpoint data of the

whole node can be held in memory by one MPI process. This is the case of most

GPU application, that are limited by the memory size of the GPU cards which

usually lower than the amount of memory present on each node. Please notice

that extra computing ressources on the computing nodes is different from spare

nodes because spare nodes are dedicated to hold the parity data and they do not

participate in the application execution causing much more overheads than our

scheme.

4.4 Checkpointing GPU applications

Many GPU applications require an MPI process per GPU. Since the number of

GPUs per node is most of the times smaller than the number of cores per node,

the nodes participating in the applications will have extra idle CPU cores. These

CPU cores can be used for fault tolerance, in this case to calculate the Reed-

Solomon encoding for diskless checkpoint, but where and how remain difficult

Fig. 3 HDC prototype
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questions when working with hybrid applications. First we need to analyze the

communication pattern of these hybrid applications. Multi-GPU applications

work by using the following data transfer scheme:

• The data is copied from the device memory to the host memory by calling

cudamemcpy.

• Then the data is transferred from a CPU to another using MPI communica-

tions.

• Finally, the data is copied from the host memory to the device memory by

calling cudamemcpy again.

Between those data transfers, the CUDA kernels are executed one or several

times. The CUDA kernels represent the core of the computing part of the ap-

plications and are executed by thousands of parallel thread inside the GPU.

Interrupting a CUDA kernel execution to make a checkpoint is not a good strat-

egy because to save and restore the data distributed among the different memory

levels of the GPU can be a very complex problem.

We checkpoint the application during the data transfers. When a CUDA kernel

execution is finished and the data is copied from the device to the host, is an ideal

moment to make a fast copy of the data to the head of the node, and then let the

application process continue its execution. In our prototype, the checkpoint of an

application process is done by calling a function that require as parameters the

data to checkpoint and the size of the data. We assume that the user coordinates

the communications or use an MPI implementation that supports coordinated

checkpoint to guarantee a consistent global state.

It is important to be able to choose the appropriate moment to make the

checkpoint in order to avoid the interruption of the CUDA kernels, this is an

advantage of user-level checkpoint. Notice that kernel-level checkpoint libraries,

such as BLCR, cannot currently checkpoint GPU applications. Another advan-

tage of user-level checkpoint is that the user can choose only the necessary data to

checkpoint decreasing the memory the size of the checkpoint data significantly,

which is consistent with the in-memory checkpoint strategy used in our HDC

technique. A disadvantage of user-level checkpoint is that is not always easy to

manage the checkpoint interval. However, in our prototype is easy to control by

adding a timer in the head of the node, then the application processes will ask

permission to the head before copying the checkpoint data. This can happen sev-

eral times within the same checkpoint interval, but the head will only allow the

checkpoint after the timer expiration, then it will reset it for the next interval.

Finally, when the checkpoint data has been gathered by the head of the node,

the encoding process can start. The Reed-Solomon encoding will be done in

parallel with the application execution, using the idle CPU cores. The application

can then continue without waiting for the coordination between head of the nodes.

The CPU encoding algorithm is basically the same presented in our previous work

[5]. The checkpoint data transfer to the head of the node and the extra data

present on the network generated by the encoding process are the only overhead

that this technique has. When the checkpoint data size is not too large, the

overhead imposed to the GPU application should be almost negligible.

4.5 Checkpointing CPU applications

CPU applications are easier to checkpoint than GPU applications and there is

a large literature about it. When checkpointing CPU applications using our HDC

technique the Reed-Solomon encoding will be done with the idle GPU cards. The

scheme presented is basically the same one used for CPU applications. The dis-

tribution matrix is spread among the nodes of each group, then sent to the device

memory at the beginning of the application and kept there all along the execu-

tion. The checkpoint data is divided in blocks, when a block is being encoded,

another one is being transferred, overlapping communications and computation.

An extra CPU core and a GPU card will be used per node for the encoding

process. All the computations of the encoding algorithm have been implemented

in one single CUDA kernel so the CPU only manage the communications.

Some applications require a specific number of MPI processes, such as power

of two processes, that does not match the number of MPI processes that the user

can launch within the number of nodes allocated at the reservation time. Obvi-

ously, the user will reserve the minimum number of nodes necessary to launch its

application and leave some idle CPU cores. In this case, the checkpoint overhead

generated should be similar to the checkpoint overhead for GPU applications.

Other applications do not have any number of processes restriction and can use

all the CPU cores of each node, leaving idle only the GPU cards. In this case,

one CPU core per node, that could participate in the application, has to be used
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for fault tolerance in our HDC technique. The overhead generated in this case

will be larger than the overhead mentioned in the two precedent cases. However,

when the number of MPI processes that can be launched per node increases, the

checkpoint overhead decreases. All these three cases have been treated in our

evaluation.

5. Evaluation

A comparison of several diskless checkpoint schemes was made in our previous

work [5] showing better fault tolerance rates and lower risk of catastrophic failure.

A performance comparison between different techniques with different levels of

reliability (e. g. XOR encoding, partner replication) is presented in [31]. The

goal of our current experimentation is to evaluate the overhead of the technique

proposed for different applications and configurations and compare it with our

previous model DDC [5], in order to understand in which conditions HDC can

be more advantageous. The results of this time-division (DDC) vs. spatial-

division (HDC) comparison of Reed-Solomon encoding should coincide with the

theoretical overheads explained above. All our evaluation has been done on

Tsubame 1.2 supercomputer with nodes composed by 8 AMD dual core Opteron

processors (in total 16 cores) and 32 GB of memory. Each node is connected to

two nVidia Tesla GPUs with over 1Teraflops of performance in single precision

and over 100 GB/s of memory bandwidth. Tsubame has a 100 Gigabit network

with a performance of 20 Gbps (10Gbps infiniband x2 per node).

5.1 N-Body simulation

First, we study the case when a CPU application can use all the CPU cores

available in each node and the batch constraints do not allow the user to share a

CPU core between application process and checkpointing process. To illustrate

this case we will use a classic N-Body simulation. In this example we scale from

8 to 32 nodes, using a very simple implementation [36] and launching the appli-

cation in four different configurations. In the first and second configurations, we

launch the application using 16 and 15 CPU cores per node without checkpoint-

ing. Then, we make a third experiment launching 15 application processes per

node and using an extra CPU core for fault tolerance (16 w/HDC). In the last

experiment too, we launch 16 processes per node but this time we checkpoint

the application using the model (DDC) presented in our previous work [5]. The

result of this evaluation is presented in Fig. 4.

In the HDC technique, we are losing 1/16 of performance plus the overhead

mentioned above. The result of our evaluation shows an average overhead of 7%

for HDC. As we can see in Fig. 4, in the DDC case, the overhead grows slightly

with the number of nodes. We measured the encoding time and it remains con-

stant from 8 nodes to 32 nodes. However, the coordination between processes

at the checkpoint time gets more and more complex as the system size grows.

An important difference between both techniques are the coordination and de-

pendencies between processes at checkpoint time. In the HDC technique, the

processes just have to copy the data to the head of the node and the heads will

coordinate to encode the checkpoints, so there is no dependency between ap-

plication processes added by the HDC technique. On the other hand, the DDC

technique add dependencies between application processes, because processes be-

longing to the same encoding group will have to coordinate before starting the

encoding work and processes belonging to different groups may have to wait for

each other if the encoding work of both groups finish at different moments.

The hierarchical strategy (head-body) used in HDC decreases the number of

MPI communications needed and the dependencies between processes. By de-

creasing the number of processes participating in the encoding work, this tech-

nique gets more scalable but the whole encoding work is delegated to a single CPU

core per node making it more time consuming. This is why GPU-acceleration

is important, in order to have a fast encoding work that allows the user to use

smaller checkpoint intervals. The combination of these two features contributes

to the scalability of the hybrid approach, leading to better performance for larger

number of nodes.

Notice that when the number of cores per node is larger the overhead of HDC

decreases; for example a cluster with 16 cores per node loses 7% of performance

with HDC, but a cluster with 32 cores per node loses only around 3% of per-

formance with HDC, making HDC significantly faster. On the other hand, a

larger checkpoint interval will benefit more a non-hybrid approach such us DDC,

than our HDC technique. We developed the following model in order to under-

stand when HDC is more advantageous than non-hybrid diskless checkpoint for
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Fig. 4 Nbody simulation Fig. 5 Himeno benchmark on CPU Fig. 6 Himeno benchmark on GPU

applications that use all the CPU cores on the nodes:

1

Ncpn
+

tcpy ∗ 100
TChI

<
tenc ∗ 100
TChI

where Ncpn is the number of CPU cores per node, tcpy is the time to copy

the checkpoint data to the head of the node, tenc is the time to encode the

checkpoints and TChI is the checkpoint interval. The time to copy and encode

the checkpoints will depend on the size of the checkpoints and the characteristics

of the machine, in our previous work [5] we defined a model to calculate this

values. As explained above, the overhead of HDC in percentage is the CPU

core sacrificed in every node ( 1
Ncpn

) plus the overhead of the data copy work at

each checkpoint interval (
tcpy∗100
TChI

). On the other side of the formula we can see

the overhead of the encoding work for DDC. By using this model, the user can

understand whether HDC is faster or not for his checkpointing requirements and

the characteristics of the machine where he wants to execute his application.

5.2 Himeno benchmark on CPU

This benchmark [6] was created by R. Himeno in order to evaluate the perfor-

mance of computational fluid dynamics (CFD). It uses Jacobi iteration method

to solve Poisson’s equation systems and it measures the speed of the major loops.

We chose the Himeno benchmark because it has a total number of processes re-

striction (power of two) that may lead in many cases to extra idle resources on

the nodes and because it is a very bandwidth demanding code and it reveals

the worst-case scaling scenario for bandwidth intensive applications, even when

production CFD applications would be larger and more complex. Scores of the

Himeno benchmark are been published for a wide variety of architectures [8].

For our evaluation, we created two copies of the Himeno benchmark and we

checkpointed the application using HDC in one copy and DDC in the other, with a

group size of 8 in both cases. The checkpoint is done at the end of the major loop

in the Jacobi function. The HDC sample will be launched in the same number

of nodes but using an extra CPU core and a GPU card per node. Since the

checkpoint interval t must decrease when the number of processes p increase, we

tried to keep the product p*t almost constant during our evaluation. We used in

all the cases a large grid size (257 x 257 x 513) of Himeno benchmark. In the DDC

sample, the encoding process is not done by GPU, but by the same MPI processes
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that participate in the application, so the application must be stopped during

the encoding process as explained above. As we can see in Fig. 5, the overhead

generated by DDC slightly grows from 9% to 11%, when the overhead generated

by HDC is less than 2%. This is consistent with our analysis because the encoding

process is more complex and time consuming than the in-memory copy to the

head of the node, particularly when checkpointing at a high frequency like in this

experiment. In these circumstances, the HDC technique has a significantly lower

overhead, comparing with a diskless checkpoint strategy where the application is

stopped during the encoding work.

5.3 Himeno benchmark on GPU

The Himeno benchmark has been implemented also in CUDA [7] for GPU

clusters. First, one-dimensional block distribution is done along the X-axis across

multiple nodes. Then, MPI communications and Jacobi iterations are overlapped

to optimize the algorithm. Also, the benchmark has been optimized within a

GPU using shared memory and coalesced memory access. In this experiment

too, we chose the large grid size (257 x 257 x 513) and we maintain the problem

size for 4 and 8 GPUs.

In the checkpointed versions of this Himeno GPU benchmark, the checkpoint

is done after the execution of the CUDA kernels, just after the data is copied

back from the device to the host, before starting the MPI communications of

the current iteration. Again, the product p*t is kept constant. As result of this

experiment presented in Fig. 6, we get a checkpoint overhead not larger than 1%

for the HDC technique. This negligible checkpoint overhead was expected be-

cause the only two sources of overhead are the in-memory copy of the checkpoint

data and the extra data circulating on the network. The infiniband network of

Tsubame can easily absorb the overhead of the extra data transferred on the

network during the encoding process in this case because only a few MPI pro-

cesses are launched per node. For the DDC technique, we see again the overhead

generated by the synchronizations after and before the encoding work, but in

this case with a higher impact because of the high performance of GPUs.

6. Conclusions

Nowadays, heterogeneous computing is an important topic in HPC. In GPU-

accelerated clusters, many hybrid applications cannot use all the hardware re-

sources available on the nodes in an efficient way. For this reason, extra idle

resources are usually present on the nodes and they can be used for fault toler-

ance purposes. On the other hand, reliability is an important open problem for

next generation of supercomputers including hybrid machines. In this work, we

propose a scalable technique that uses those idle resources to tolerate up to 50%

simultaneous failures with a high checkpoint frequency and guarantee a very low

overhead.

As presented in our evaluation, the overhead is not larger than 7% in most of

the cases and when the application does not use all the CPU cores per node, this

checkpoint overhead becomes negligible, increasing significantly the checkpoint

performance in comparison with other diskless checkpoint strategies. For appli-

cations that use all the CPU cores of each node, such us the N-Body simulation

presented in our evaluation, the hierarchical strategy and the GPU-acceleration

increase the scalability of our hybrid technique, leading to a low checkpoint over-

head that is comparable with the DDC technique.

For our future work, we want to propose a hybrid diskless checkpoint library

and evaluate it with petascale applications in petascale machines.
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