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We sometimes meet an experiment in which its rate constants cannot be de-
termined in this experiment only; in this case, it is called an underdetermined
experiment. One of methods to overcome underdetermination is to combine re-
sults of multiple experiments. Multiple experiments give rise to a large number
of parameters and variables to analyze, and usually even have a complicated
solution with multiple solutions, which situation is unknown to us beforehand.
These two difficulties: underdetermination and multiple solutions, lead to con-
fusion as to whether rate constants can intrinsically be determined through
experiment or not. In order to analyze such experiments, we use ‘prime ideal
decomposition’ to decompose a solution into simpler solutions. It is, however,
hard to decompose a set of polynomials with a large number of parameters and
variables. Exemplifying a bio-imaging problem, we propose one tip and one
technique using ‘resultant’ from a biological viewpoint.

1. Introduction

In biological problems, we sometimes meet an underdetermined experiment.
Underdetermination arises from insufficient data from a single experiment to
determine concrete values of rate constants. We proposed a method to over-
come such underdetermination by combining two experiments in the previous
papers 1),2), to allow the rate constants for Parkinson’s disease diagnosis to be
determined. In this paper, we also propose an approach for determining rate
constants by combining multiple experiments.

Combination of multiple experiments, however, yields two difficulties. One is
the existence of a large number of parameters and variables. The other is that a
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solution to a system of equations is decomposed into multiple distinct solutions
that are of various dimensions. For instance, imagine that a set of polynomials
describing some experiment is: {z2−2, y2 +2y−1, xy+xz−yz +x−z−2}. The
solution to this set can be decomposed into two solutions: {z2−2, y+z+1} of one
dimension, and {z2−2, y− z +1, x− z} of zero dimension. We cannot determine
the variables, x, y and z, with the former, but we can determine them with the lat-
ter. Further, under a biologically acceptable condition, x > 0∧y > 0∧z > 0, this
decomposition means the variables are identifiable (x = z =

√
2, y =

√
2− 1) be-

cause the only latter solution is biologically reasonable. It is necessary to perform
decomposition to analyze a system because we cannot know beforehand whether
experiments have a biologically acceptable solution. Indeed, the isochronicity of
an oscillator system and the multibody system were analyzed through ideal de-
composition 3),4). Such decomposition of algebraic equations is called prime ideal
decomposition. We hence have to perform prime ideal decomposition of a set of
polynomials with a large number of parameters and variables. Here we show one
tip and one technique for efficient calculation using ‘resultant.’

State of the arts
One can use various methods to decompose a zero-dimensional ideal (so-

lution) 5)–8). Nevertheless, the larger number of variables, the more difficult
straightforward decomposition becomes 9). For relatively large problems of zero
dimension, one can use the homotopy method to decompose their solutions 10).
The homotopy method is known to be a robust method for finding all isolated
zero-dimensional solutions 11). Since the homotopy method starts with a ran-
domly generated seed, it sometimes fails to trace its true solutions, indicating
that some higher-dimensional solutions make this method halt. This method is
more efficient, but is less robust than our method because, for multiple experi-
ments, we usually have to deal with an ideal (solution) of higher dimension like
the bio-imaging experiment addressed in this paper.

For an ideal of higher dimension, one can use a method shown in Ref. 12). This
method is sometimes more efficient than ours when the degree of a given set of
polynomials is low, but often halts without answer or is less efficient when the
degree is high as the example addressed here. As another method for higher
dimension, one can use the regular chains theory to decompose an ideal 13), but

62 c© 2010 Information Processing Society of Japan



63 Algebraic Approaches to Underdetermined Systems

it cannot often decompose an ideal generated by a lot of variables. Last, as a
numerical method, one can use a marching method for tracing curves 14). This
method is efficient, but can fail to trace all solutions because it starts to trace
from its singularity points. We hence propose algebraic approaches here because
some other methods are sometimes efficient, but can fail to obtain all solutions
and to decompose them.

2. Problem

A problem with respect to an underdetermined experiment i is described as a
system of differential equations as follows:

Problem (INPUT i): dCij(t)/dt = fij(Ci1(t), Ci2(t), . . . , Cini
(t), ei(t), �ki),

Si(t) = gi(Ci1(t), . . . , Cini
(t), �ki), (1)

where Cij(t) (1 ≤ j ≤ ni) denotes a concentration of chemical j in t, and ei(t) is
a concentration of an external data that we can never eliminate with Experiment
i only. �ki are rate constants to determine, and Si(t) denotes a polynomial to fit
experimental data as a polynomial, for instance, di0 + di1t + di2t

2.
The aim is to determine concrete values of �ki. For this purpose, first, we have

to perform two eliminations by using algebraic approaches. One is elimination
of Cij(t) that we cannot observe individually. We can observe only combination
of chemical concentrations, described by gi. The other is elimination of ei(t) by
combing other problems (experiments). Next, through these two eliminations, a
set of Problems 1, 2, . . . is converted to a set of polynomials over Q[dij , �ki] (i =
1, 2, . . . , j = 0, 1, 2) denoted by sp. The solution of sp usually divides into multiple
solutions. We hence have to perform prime ideal decomposition of sp. Last, when
we find zero-dimensional prime ideal(s) biologically acceptable and non-zero ones
not acceptable, the zero one is a targeted solution thereby we can determine
�ki (i = 1, 2, . . . ). That is, the output of INPUT 1, 2, . . . is

OUTPUT: zero-dimensional prime ideal(s) over Q[
⋃

i=1
�ki], (2)

which will provide us with concrete values of �ki (i = 1, 2, . . . ).

3. Methods

In Section 2, we mention two eliminations and prime ideal decomposition. First,
to perform one elimination of chemical concentrations, Cij(t) (1 ≤ j ≤ ni) in
Eq. (1), we use the differential elimination method 15)–17) �1.

Next, to perform the other elimination of ei(t) in Eq. (1), we combine multiple
experiments (problems) that lead to a linear relation of {ei(t)|i = 1, 2, . . . }. For
instance, in case of two experiments with a relation, e1(t)− e2(t) = 0, we obtain
a set of polynomials over Q[dij , �ki] (denoted by sp) that make e1(t) = e2(t) an
identity in t.

Last, to decompose sp, we perform prime ideal decomposition. For this pur-
pose, one can use the subroutine minAssChar supplied by the Singular 3-1-0

software 18) or ICS command of Epsilon 0.618 (C) 2003 by Dongming Wang.
But, it takes much time to decompose a set of polynomials with a lot of variables,
and we hence explain one tip and propose one technique in the next sub-sections.

3.1 A Tip for Decomposition
From a viewpoint of biology, we sometimes do not need to determine all of

the variables in
⋃

i=1
�ki. In this case, we can use a Gröbner basis in terms of

elimination order. Let �kr denote needed variables in
⋃

i=1
�ki. The procedure is

(i) calculate a Gröbner basis G in terms of elimination order (
⋃

i=1
�ki) \ �kr � �kr.

(ii) perform prime ideal decomposition of G ∩ Q[ �kr] denoted by GE . It usually
takes less time to decompose GE than G or the original set because of less number
of variables. It may be worth noting that all of these partial solutions cannot
possibly be extended to a full solution according to Extension Theorem, but it
seems like rare case in practical models.

3.2 A Technique for Decomposition
From another viewpoint of biology, we can use ‘not-equal’ condition that means

kij �= kil (j �= l) as well as kij �= 0. Here we have implemented an efficient
‘resultant-factorization technique’ where this condition is used during calculation.
This technique is implemented as follows:

�1 When a system of differential equations is composed only of linear terms, we can use the
ordinary elimination method using Gröbner base via Laplace transformation 2).
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Let BP = {BPi | 1 ≤ i ≤ n} be an original set of polynomials.
( 1 ) Procedure-1(sp, sf ): for an input of a set of polynomials, sp, and a set of

factors, sf , we remove factors from each polynomial in sp, and return its
result. In biological problems, we assume the above-mentioned ‘not-equal’
condition, indicating that sf contains kij − kil(j �= l) as well as a positive-
value condition, kij .

( 2 ) Procedure-2(sp): for an input of a set of polynomials, sp, we remove redun-
dant elements like p, p and p,−p ∈ sp, and return its result.

( 3 ) Procedure-3 (constant check)(sp): for an input of a set of polynomials, sp,
we check whether sp contains a monomial. If so, we trim this input and
halt because this set violates the ‘not-equal’ condition.

( 4 ) Procedure-4(sp): for an input of a set of polynomials, sp, if some element in
sp can be factorized into multiple factors over Q, say, f1 × f2 we return a
list of set of polynomials, say, corresponding 〈sp, f1〉 and 〈sp, f2〉, otherwise,
we return sp. This procedure is based on:√

〈I, f × g〉 =
√
〈I, f〉 ∩

√
〈I, g〉, (3)

where I is an ideal, f and g are polynomials.
( 5 ) Procedure-5 (variable choice)(sp): for an input of a set of polynomials, sp,

returns a variable to remove in the next (resultant) procedure. The proce-
dure to choose a variable is below:
If in sp there is a variable that is contained by only one polynomial, we
return this variable and the polynomial containing it. In this case, it is un-
necessary to actually calculate resultants in the next (resultant) procedure
because the resultant of polynomials p and q in x is qr, where q does not
have a variable x, and r is the degree of x in p.
Otherwise, we choose a variable as mentioned below:
( a ) We calculate d(i, j) as the degree of variable xi (1 ≤ i ≤ n) in a given

polynomial pj (1 ≤ j ≤ m). Then we denote by di the maximum
value among d(i, j) (1 ≤ j ≤ m).

( b ) If only one dk provides the minimum among di(1 ≤ i ≤ n), return
xk. Otherwise, that is, if multiple di’s provide the same minimum, let
y1, y2, . . . , yl be variables that provide this minimum. We calculate

ni (1 ≤ i ≤ l) as the number of polynomials that contain variable
yi (1 ≤ i ≤ l).

( c ) If only one nk provides the minimum among ni (1 ≤ i ≤ l), return yk.
Otherwise, that is, if multiple ni’s provide the same minimum, let
z1, z2, . . . , zj be variables that provide this minimum. We calculate
ti (1 ≤ i ≤ j) as the number of terms in the polynomials that contain
zi (1 ≤ i ≤ j). Return zk that provides the minimum and appear at
first in calculation.

As an accompanying output of the above (a)-(c), we return a polynomial
that contains the returned variable, and has the minimum number of terms.

( 6 ) Procedure-6 (resultant)(sp, v, pi) returns a set of resultants calculated
based on the variable and polynomial (v, pi) chosen in Procedure-5 (vari-
able choice). That is, we return a set of resultants of polynomials pi ∈ sp

and pj ∈ sp (i �= j) in variable v.
We perform the following Resultant-factorization algorithm, using the proce-

dures 1, 2, . . . , 6 above. In this algorithm, we set N empirically, and set RF

{kij − kil | j �= l} ∪ {kij}. Note that Procedure-4 can bring about branches of
procedures so that the main routine is recursively called.
Algorithm Resultant-factorization

Specification: Resultant-factorization(BP , N,RF )
Input: BP : a set of polynomials, N : the number of element where the compu-
tation exit while-loop, RF : the factors to remove in Procedure-1

Output: zero-dimensional prime ideal(s),
begin
sp ← BP

while TRUE do
sp ← Procedure-1(sp, RF );
sp ← Procedure-2(sp);
sp ← Procedure-3(sp)
if Procedure-3 halt then halt;

list← Procedure-4(sp)
for each element sp in list do
if the number of element of sp is greater than N then
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(v, pi)← Procedure-5(sp);
sp ← Procedure-6(sp, v, pi);
Call Resultant-factorization(sp, N,RF )

else
sp ← BP ∪ sp

if sp is 0-dimensional then
return sp

else
Perform prime ideal decomposition �1 of sp;
Return 0-dimensional prime ideal(s) among the obtained prime ideals

end-if
end-if

end-for
end-while
end

The technique introduced in this subsection is based on the following fact. Let
ideal I be 〈f1, f2, · · · , fr〉, (fi ∈ k[x1, x2, . . . , xn]), and let gi (1 ≤ i < r) be the
resultant of f1 and fi+1 with respect to, say, x1. Then 〈g1, g2, . . . , gr−1〉 ⊆ I ∩
k[x2, x3, . . . , xn] holds, leading to I = 〈f1, f2, . . . , fr, g1, g2, . . . , gr−1〉. Even when
neither of fi (1 ≤ i ≤ r) is reducible over Q[x1, x2, . . . , xn], some of gi (1 ≤ i < r)
are sometimes reducible, resulting in usage of Eq. (3) in Procedure-4.

4. Bio-imaging Example

We exemplify experiments for bio-imaging of living mice. Two experiments are
illustrated in Fig. 1. Experiments 1 and 2 correspond to Problems 1 and 2 in
Eqs. (4) and (5) respectively.

Problem 1:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dC11(t)/dt =k11e1(t)−k12C11(t)−k3C11(t)C13(t)+k4C12(t),

dC12(t)/dt =k3C11(t)C13(t)−(k4+k15)C12(t),

dC13(t)/d =k16−k17C13(t)+k4C12(t)−k3C11(t)C13(t),

S1(t) =(C12(t)+C13(t))/kc,

(4)

�1 Because of summation (sp ← BP ∪sp in the above), this prime ideal decomposition is easier
to calculate that that of BP only.

Fig. 1 The experiments for bio-imaging. (a) Experiment 1. (b) Experiment 2. In biology,
such an experiment is sometimes called ‘reference experiment’ because this is much the
same as Experiment 1 except for the observed part.

where e1(t) denotes an external data, and we can observe only the amount of
(C12(t) + C13(t))/kc to fit as d10 + d11t + d12t

2, which form suffices in this bio-
imaging experiment.

Likewise,

Problem 2:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dC21(t)/dt =k21e2(t)−k22C21(t)−k3C21(t)C23(t)+k4C22(t),

dC22(t)/dt = k3C21(t)C23(t)− (k4 + k25)C22(t),

dC23(t)/d = k26 − k27C23(t) + k4C22(t)− k3C21(t)C23(t),

S2(t) = (C22(t) + C23(t))/kc,

(5)

where e2(t) denotes an external data, and we can observe only (C22(t)+C23(t))/kc

to fit as d20 + d21t + d22t
2. Note that variables kc, k3 and k4 are common in

Problems 1 and 2.

5. Result

We determined the rate constants, �k1 and �k2 in Problems 1 and 2
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through our method. First, we derived a formula containing only e1(t), �k1,

(e2(t), �k2) and t by applying the differential elimination package, diffalg with
ranking=[[C11, C12, C13], [e1]] ([[C21, C22, C23], [e2]]) to Problem 1 (2) in Eq. (4)
(in Eq. (5)) over MAPLE 11.02. Together with partial fraction decomposition,
ei(t) (i = 1, 2) are obtained as follows:

ei(t) = ai0 + ai1t + ai2t
2 +

ai3 + ai4t

ai7 + ai8t + t2
+

ai5 + ai6t

(ai7 + ai8t + t2)2
(6)

with

ai0 =
2k3ki5di2kc + k2

i5ki2k17 − · · ·
ki5ki1k3(ki7 − ki5)

,

ai1 =
2k3k

2
i5kcdi2 + k3di1kck

2
i5ki7 + 2k3ki5kcdi2ki7

ki5ki1k3(ki7 − ki5)
, ai2 =

ki5kcdi2ki7

ki1(ki7 − ki5)
,

ai3 =
k2

i5di0ki2ki7 + 2k2
i5di2 − ki5ki2ki7di1 − · · ·

di2k2
i5k3ki1

ai4 =
−2ki2k

2
i5di2 − 2ki5ki2k4di2 + 2ki2k4ki7di2

di2k2
i5k3ki1

,

ai5 =
k2

i5di1k
2
i7di0 − 4k3

i5di2di0 − k3
i5di1di0ki7 + · · ·

k3
i5d

2
i2k3ki1

,

ai6 =
−2k2

i5di2k4di0ki7 − 2k2
i5k4di2di1 − · · ·

k3
i5d

2
i2k3ki1

,

ai7 =
−di0ki7 + ki5di0

ki5di2
, ai8 =

ki5di1 + 2di2

ki5di2
. (7)

From a biological assumption Ci2(0) = 0 (i = 1, 2), we obtained relations, ki6 =
kc(di0ki7 +di1). Therefore, in what follows, we substituted ki6 with the formulae
on the right-hand side.

Next, we had to derive a set polynomials that makes e1(t) = e2(t) an identity
in t. From Eq. (6), we obtained polynomials w.r.t. aij (i = 1, 2, 0 ≤ j ≤ 8).
These polynomials themselves were complicated, but prime ideal decomposition
of them yielded the following three relations: (A) {a1j − a2j |0 ≤ j ≤ 8} (B)
{a1j−a2j |0 ≤ j ≤ 2}∪{aij |i = 1, 2, 3 ≤ j ≤ 6} (C) {a1j−a2j |j = 0, 1, 2, 4}∪{a13−

a23−a18a24+a24a28, . . . , 2a2
25−8a2

23a
2
27+8a24a26a

2
27−· · ·−a2

24a27a
4
28+a23a24a

5
28}.

Relation (B) violates the ‘not-equal’ condition: kij �= 0. Relation (C) is not
biologically acceptable because the last term of (C) contains {a2j |0 ≤ j ≤ 8}
only, meaning that this term is an artificial constraint composed only of the
rate constants of Experiment 2. Thus consideration of Relation (A) suffices, and
consequently, we obtained the following set of 12 polynomials:

{−k15d12k25d21 − 2k15d12d22 + k25d22k15d11 + 2k25d22d12, d10k25d22k15

− d10k25d22k17 − d20k15d12k25 + d20k15d12k27, (−d10k25d22k17 + d20k15d12k25

+ d10k25d22k15 − d20k15d12k27)(d10k25d22k15 − d10k25d22k17 − d20k15d12k25

+ d20k15d12k27),−2k2
15d

2
12k

2
25d22d20 + 2k2

15d
2
12k27d22k25d20 − k2

15d
2
12k

2
25d

2
21

− 4k2
15d

2
12d22k25d21 − 4k2

15d
2
12d

2
22 + · · · }. (8)

Notice that kc, k3 and k11, k21 always appear in the form kc × k3 and k11/k21,
respectively, throughout the formulae; each of kc× k3 and k11/k21 is accordingly
dealt with as single variables kc3 and k1121 hereafter.

As mentioned in Section 3, to extract a zero-dimensional solution from set
(8), we have to decompose it. Before decomposition, we substituted rationalized
experimental data, d10 = −201719/100000000, d11 = 100991/25000000, d12 =
−83061/500000000, d20 = −3/1000, d21 = 1/500, and d22 = −1/2500 into the
set (8). There are two cases for decomposition.

(i) When the rate constants we need to determine are limited, it is suffi-
cient to decompose an elimination ideal of the set (8) w.r.t. the limited vari-
ables. For instance, it took around 30 seconds to decompose an elimination ideal
w.r.t. {k17, k15, kc3, k4}, using ICS command of Epsilon 0.618 (C) 2003 by

Dongming Wang over MAPLE 11.02 with Intel R© Xeon R© W5590 CPU 3.33 GHz

processor.
(ii) Considering when we have to determine all of the rate constants, we tried

three packages: (a) ICS command of Epsilon 0.618 over MAPLE 11.02, (b)
minAssChar command of Singular 3-1-0, and (c) our implemented program
of ‘resultant-factorization technique’ addressed in Section 3.2 over Risa/Asir

Ver. 20090215. With the same machine as (i), it took around (a) 2040 (b)
3960 (c) 2.3 seconds to decompose Set (8). Through three methods, we have
found Set (8) to be decomposed into the following six components:
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[1 {k15, k17, k25}
[2 {k15, k25, k27}
[3 {k15, k25, 200000k1121 − 83061}
[4 {k12 − k22, k15 − k17, k25 − k27, 145865k17k27 + 15102k17 − · · · }
[5 {k12 − k22, k17 − k27, 300000k1121 − 201719, . . .}
[6 { k17 − k27, 68083149004k15 + 627193611k25 + 2329559010k27 − 4846277106,

−271342259053609005k25 + 41126605879556450610k2
27

−165667449307180431811k27 + 5483547450607526748,
(5884748387k27 − 232955901)k25 + · · · , . . . }.

The first three components [1–[3 violate the positive-value condition for the rate
constants, and the fourth and fifth [4 and [5 violate the physiological fact: k12 �=
k22 meaning difference in dox between Experiments 1 and 2. Only the last
component [6 is biologically acceptable and zero-dimensional, providing us with
concrete values of the rate constants. The solution to the last component is
composed of 3 elements. For one of these 3 elements, there is a unique element
satisfying the positive-value condition. This element is:⎧⎪⎨

⎪⎩
k1121 = 0.67239667,

k12 = 1.22709628,

k22 = 2.72268751,

⎧⎪⎨
⎪⎩

k4 = 0.37006106,

k15 = 0.068209447,

k25 = 0.19991718,

{
k17 = k27 = 0.033043341,

kc3 = 32.67747679.
(9)

We have confirmed that the three packages provided the same result. Figure 2
represents an actual application of the resultant-factorization technique to set (8).
The complete list of this section is given at http://sites.google.com/site/codes86/.

6. Discussion

In this paper, we have extracted a biologically acceptable and zero-dimensional
solution with which we can identify the rate constants by combining two experi-
ments. In view of the last component [6 in Section 5, this component contains an
equality k17 = k27. This equality corresponds to a physiological feature that the
degradation rate of free tetR in Experiment 1 is the same as that in Experiment
2. This finding may provide profound insight into the function of tetR in tissues
in the near future.

Here we propose the combining-multiple-experiments method to overcome un-

Fig. 2 Application of the resultant-factorization technique to the real-life example. k? de-
notes a variable eliminated at each resultant Procedures 5, 6 in Algorithm Resultant-
factorization. The factor (k15 − k17) or (k25 − k27) can be ignored from biological
knowledge (Procedure-3).

derdetermination of a single experiment. We had to deal with the set of poly-
nomials (8), which corresponds to the combined experiments and consists of 12
polynomials having 9 variables corresponding to the rate constants. This system
might be accordingly thought of as being overdetermined because the number of
polynomials is more than that of variables. However, the dimension of the ideal
generated by these 12 polynomials is calculated as 6, indicating that this system
is actually underdetermined. Nevertheless, we can determine the rate constants
using these polynomials because, through prime ideal decomposition, we found
that their non-zero dimensional component are not biologically acceptable, but
their zero component is biologically acceptable. Such a confusing system is diffi-
cult to analyze.

To overcome underdetermination of a single experiment, one might think that
it would be good to combine multiple experiments until their solution itself is
zero dimensional. Under ‘not-equal’ conditions of rate constants, however, this
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scheme sometimes provides us with no biologically acceptable solution. Indeed,
if we combine another experiment with the two experiments introduced here, we
usually obtain no biologically acceptable solution. This is why we use prime ideal
decomposition and look into its output.

Applicability
In analyzing chemical reactions, it is known to be necessary to confirm whether

rate constants can be determined from the observed data (called identifiability
problem) 19)–21). Recently, in Ref. 22), they considered chemical reaction networks
where two sets of rate constants produce exactly the same dynamics, that is, the
constants are unidentifiable. To identify the constants in such a case, we need to
design other networks (corresponding to ‘experiments’ in this paper) of a distinct
nature so that the combined networks produce a zero-dimensional prime ideal,
confirming by the technique introduced in Section 3.2.

7. Concluding Remarks

In this paper, we propose algebraic approaches to analyse and solve underdeter-
mined systems. To overcome underdetermination, we have to combine multiple
experiments, which bring about complicated formulas with a large number of
parameters and variables. Through use of the resultant-factorization technique
under a biological condition, ‘not-equal’ condition, we were able to decompose
the system and to determine the desired rate constants efficiently.
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