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Sparse Learner Boosting for Gene Expression Data
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Gene expression analysis is commonly used to analyze millions of gene ex-
pression data points. Challenging in this process has been the development of
appropriate statistical methods for high-dimensional data. We propose Sparse
Learner Boosting for gene expression data analysis. Boosting is performed to
minimize the loss function, although this process can cause overfitting when
a large number of variables are present. Ordinary boosting utilizes all of the
potential weak learners in a given data set and constructs a decision rule. The
fundamental idea of Sparse Learner Boosting is to reduce the complexity of
the decision rule by using fewer weak learners than is usually required. This
reduction prevents overfitting and improves performance during classification.
Numerical studies support this modification for high-dimensional data, such
as that obtained from gene expression analysis. We show that the proposed
modification improves the performance of ordinary boosting methods.

1. Introduction

Microarray technology is commonly used for the analysis of gene expression
data in many laboratories. Although this technology enables researchers to col-
lect millions of gene expression data points quickly, analyzing many subjects
simultaneously remains difficult; normally, the maximum number of samples is
in the order of 100. This extremely unbalanced ratio of dimension p to sample
size n makes the application of classic statistical methods challenging without
specific modifications. Hastie and Tibshirani 1) referred to this as the p � n

problem, as one of the most challenging issues in bioinformatics.
We focus on the problem of sample classification using biomarkers from gene

expression data. Technological advances have enabled researchers to use gene
expression data for clinical purposes. This type of application was first reported
by Golub, et al. 2), who categorized leukemia samples into subclasses. Later,
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Bittner, et al. 3) used microarrays to subgroup melanomas. van’t Veer, et al. 4)

published a study using microarrays to classify metastasis from primary breast
cancer patients.

Boosting, which is introduced by Freund and Schapire 5) as one of the most pow-
erful methods for machine learning along with Support Vector Machine which was
reported by Vapnik 6). The underlying idea is that many “weak” classifiers can
be combined to build a “strong” classifier at the end of a series of learning steps.
There are a number of boosting algorithms proposed, the most popular of which
is AdaBoost, which is also proposed by Freund and Schapire 5). Dudoit, et al. 7)

compared AdaBoost to other classifiers using gene expression data analysis and
they concluded that AdaBoost did not perform at a comparable level. For high-
dimensional data, however, algorithms need to be modified to accommodate this
situation.

In this paper, we propose Sparse Learner Boosting, which can be used with
high-dimensional data. The key idea is to reduce the number of weak learner
candidates. If you consider a set of decision stumps, the set is fully constructed by
weak learners which are based on given features. We face a situation in which the
number of features is extremely large, consequently there is a superfluous number
of weak learners complicating the classification model. We propose truncating the
candidate of weak learners for learning while keeping informative weak learners.

The number of learning steps can cause overfitting during boosting as well.
Zhang and Yu 8) concluded that stopping the process early prevents overfitting,
however early stopping does not give any reasonable performance if the size
of the feature dimension is large or two class data is strongly overlapped. In
these cases, the boosting method needs more modification. Sparse Boosting was
first proposed by Bühlmann and Yu 9) as a variant boosting algorithm for high-
dimensional data. Sparse Boosting yields sparser solutions than L2 Boosting.
We will discuss this point further later.

In this paper, we begin with an overview of AdaBoost and η-Boost before
proposing Sparse Learner Boosting. Next we perform a simulation study to
examine the performance of Sparse Learner Boosting. We conclude with an
analysis of real data and a discussion of future work.
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2. Sparse Learner Boosting

We first prepared a standard framework for the classification procedure. We
let x be a feature vector of p dimensions and let y be a class label with values
of ±1. The given training data was {(xi, yi) : i = 1, . . . , N}. The function of x

into y, f(x) is referred to as a classifier.
2.1 AdaBoost
AdaBoost algorithm is used to construct a “strong” classifier as a linear combi-

nation of “weak” learners. The training data is sequentially reweighted and the
final classifier is based on a weighted vote of the weak classifiers. We used a set
of classifiers defined as follows:

F = {fj(x) : j ∈ 1, . . . , p}. (1)
Then, the final classifier was constructed using the weak classifiers,

F (x) =
T∑

t=1

αtft(x). (2)

The coefficients αt and classifiers ft are defined in the following discussion.
AdaBoost algorithm is characterized by the minimization of the exponential

loss function, which is defined as

Lexp(F ) =
N∑

i=1

exp(−yiF (xi)). (3)

Consider an update from F to F + αf , the exponential loss function can be
written as,

Lexp(F + αf) =
N∑

i=1

exp(−yi(F (xi) + αf(xi))) (4)

= Lexp(F ){ε(f)eα + (1 − ε(f))e−α}, (5)

where ε(f) is weighted error rate and defined as

ε(f) =
∑N

i=1 I(yi �= f(xi)) exp(−yiF (xi))
Lexp(F )

. (6)

In addition, α is calculated by

arg min
α∈R

Lexp(F + αf) =
1
2

log
1 − ε(f)

ε(f)
. (7)

The optimal value of f is determined by minimizing the weighted error ε(f).
The details of the algorithm are as follows:
1. Set w1(i) = 1/N and F0 = 0
2. For any t = 1, . . . , T

a. Find
ft = arg min

f∈F
ε(f) (8)

where

εt(ft) =
∑N

i=1 wt(i)I(yi �= ft(xi))∑N
i′=1 wt(i′)

. (9)

b. Calculate

αt =
1
2

log
1 − εt(ft)

εt(ft)
. (10)

c. Update
wt+1(i) = wt(i) exp(−αtyift(xi)). (11)

3. The final classifier is given by sgn
(∑T

t=1 αtft(x)
)
.

2.2 η-Boost
η-Boost is proposed by Takenouchi and Eguchi 10) as a robust boosting algo-

rithm. AdaBoost reportedly can be easily influenced by outliers, which breaks
down the performance. η-Boost is defined by the loss function using the following
a mixture of the exponential loss and naive error loss functions as

Lη(F ) =
N∑

i=1

[(1 − η) exp(−yiF (xi)) − ηyiF (xi)]. (12)

where 0 ≤ η ≤ 1. η-Boost algorithm is written as follows.
1. Set w∗

1(i) = 1/N and F0 = 0
2. For any t = 1, . . . , T

a. Find
ft = arg min

f∈F
ε∗(f) (13)
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where

ε∗t (ft) =
N∑

i=1

w∗
t (i)I(yi �= ft(xi)). (14)

b. Calculate

α∗
t = log

√
1 − εt(ft) + (ηKt)2 + ηKt√

εt(ft)
(15)

where

Kt =
(1 − 2ε1(ft))

2
√

εt(ft)

(
(1 − η)Zt

N

)−1

(16)

with

Zt+1 =
N∑

i=1

exp(−yiFt(xi)). (17)

c. Update

w∗
t+1(i) =

(1 − η) exp(−yiFt(xi)) + η

Z∗
t+1

(18)

where

Ft(x) =
t∑

m=1

α∗
mfm(x) (19)

Z∗
t+1 =

N∑
i=1

(1 − η) exp(−yiFt(xi)) + η. (20)

3. The discriminant function is sgn
(∑T

t=1 α∗
t ft(x)

)
.

The derivations for Eqs. (14) and (15) are written in the Appendix.
2.3 Sparse Learner Boosting
We present here the details of Sparse Learner Boosting. Before we describe

further details, we define weak learners. We use decision stumps as weak learner
candidates, which are defined as

F = {fj(x, a, b) = a · sgn(xj − b) : j ∈ {1, · · · , p}, b ∈ R}, (21)

where a is given a value 1 or −1 and b ∈ R is a threshold value. The threshold
b is calculated using the following procedure. First, xj1 through xjp of the jth
feature vector are sorted as follows:

x(1)j ≤ x(2)j ≤ · · · ≤ x(n)j . (22)
Based on x(i)j , we defined (n − 1) thresholds to satisfy below,

x(1)j < b(1)j < x(2)j < · · · < b(n−1)j < x(n)j . (23)
For simplicity we specify b(i)j = (x(i)j + x(i+1)j)/2. The set of b(i)j is defined as

B =
{
b(1)j , . . . , b(n−1)j

}
. (24)

The idea of Sparse Learner Boosting is to reduce the number of weak learner
candidates. If two class distributions are strongly overlapped, the Boosting al-
gorithm learns from the overlapped samples in a greedy way. The discriminant
function becomes complex because of overfitting. Sparse Learner Boosting con-
trols the complexity by reducing the number of weak learner candidates using
false positive rate FP(f) and false negative rate FN(f) which are defined as

FP(f) =
1
n1

n∑
i=1

I(f(xi) �= yi, yi = −1) (25)

FN(f) =
1
n2

n∑
i=1

I(f(xi) �= yi, yi = +1) (26)

where n1 is the number of subjects having class label −1 and n2 having class
label +1. Let Fξ be a reduced set of weak learners which is defined as

Fξ = {f : min(FP(f),FN(f)) ≤ ξ, f ∈ F , ξ ∈ R}. (27)
Equation (27) is the criterion to trim weak learners, in which ξ controls the
sparseness. We refer to this criterion as trim overlapping learners criterion (TOL
criterion). Figure 1 shows an example of weak learners for both ordinary Boost-
ing and Sparse Learner Boosting. The left panel shows the weak learner candi-
dates for ordinary Boosting and the right panel is for Sparse Learner Boosting.
It can be seen that the weak learners at the overlapped area are trimmed.

We integrated Sparse Learner Boosting into AdaBoost and η-Boost. Sparse
Learner Boosting using AdaBoost and η-Boost is referred to as Sparse AdaBoost
and Sparse η-Boost, respectively. The procedure for calculating α is the same as
in AdaBoost and η-Boost. The discriminant function,
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Fig. 1 Typical example for weak learners. The dashed lines denote decision stumps. The left
panel showed the weak learners for ordinary boosting. The right panel is for Sparse
Learner Boosting where ξ = 0.

F (x) =
T∑

t=1

αtft(x) (28)

gives the classifier g(x) = sgn(F (x) − c∗), where c∗ is the optimum threshold
which is difined as follows,

c∗ = arg min
c

n∑
i=1

I(sgn(F (xi) − c) �= yi). (29)

We next compare the complexity of ordinary Boosting with Sparse Learner
Boosting. We use Vapnik-Chervonenkis dimension (VC dimension) which is in-
troduced by Vapnik and Chervonenkis 11). VC dimension is defined as the car-
dinality of the largest set of points that the weak learners can shatter for any
labeling of {x1, . . . , xn}. The VC dimension is denoted as VC and the set of de-
cision stumps is referred to as Fds. The VC shatter coefficient Sn(Fds) is defined
as

Sn(Fds) = max
{x1,...,xn}∈Rp

|{x1, . . . , xn} ∩ {x|f(x, a, b) = 1|f(x, a, b) ∈ Fds}|.
(30)

The VC dimension of Fds is defined as

VC(Fds) = max
n′

{n′|Sn′(Fds) = 2n′}. (31)

For each feature vector xj (j = 1, . . . , p), Fds yields a maximum of 2n different
subsets of {x1, . . . , xn} resulting in the following:

2pn ≥ 2n (32)
From the above we have

VC(Fds) < �2(1 + log2 p)	, (33)
where �·	 is the floor function. See Kawakita and Eguchi 12) for detailed discus-
sion.

We then calculate the VC dimension of Sparse Learner Boosting. The reduced
weak learner candidates by TOL criterion is a subset of ordinary Boosting weak
learner candidates. The number of weak learner candidates is defined by the
number of samples and variables. The number of weak learner candidates is
p(n−1). The reduced weak learner candidates can be written δp(n−1), 0 < δ ≤ 1.
Equation (32) for Sparse Learner Boosting is

2pδn ≥ 2n (34)
The VC dimensions of the reduced weak learners VC(Fξ) is

VC(Fξ) < �2(1 + log2 δp)	. (35)
Equation (35) expresses that weak learners trimed by TOL criterion are equiva-
lent to the δp variable selection. We also observe that the upper bound of VC(Fξ)
is less than that of VC(Fds). This means that Sparse Learner Boosting is less
complex model than ordinary boosting methods.

3. Simulation

In this section, we describe a number of simulation studies using synthetic and
real data. First, we compare the boundaries of AdaBoost and Sparse AdaBoost.
Then we show several synthesized and real data analysis results to compare the
performance of the proposed method with conventional boosting methods.

3.1 Case 1. Synthetic Data with Two-dimensional Feature Vectors
For comparing decision boundaries by ordinary boosting and Sparse Learner

Boosting, two variable data sets were generated. The data was defined as
{(xi, yi) : i = 1, . . . , 100} and xi = (x1i, x2i). The feature vectors with class
label +1 follow the normal distribution N((1, 1), I). The feature vectors with
class label −1 follow the mixture distribution of N((0, 0), I) and N((4, 4), I).
The prior probability of each distribution is 0.9 and 0.1 respectively. In Fig. 2,
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Fig. 2 The data generated by case 1. Squares and triangles denote data points with class
labels +1 and −1 respectively. The upper left panel is weak learners for AdaBoost.
The upper right panel shows weak learners for Sparse Learner AdaBoost. The lower
left panel shows the boundary which was built by AdaBoost. The lower right panel is
the boundary for Sparse Learner AdaBoost.

we show the boundaries for AdaBoost and Sparse AdaBoost. We also show weak
learners for each method. The squares and triangles denote feature vectors with
labels +1 and −1, respectively. The upper two panels are weak learners for Ad-
aBoost and Sparse Learner Boosting. The lower two panels are the boundaries
after the learning steps. The number of iterations was decided by cross validation.

We confirmed that Sparse AdaBoost results in a simple boundary in comparison
to AdaBoost. The panels of weak learners suggest that AdaBoost could construct
a complex boundary with too many weak learners.

Table 1 Test error rates for multivariate data. The number of variables, p =
(10, 100, 300, 500) were used. The number of iteration was decided by three fold
cross validation. The parameter η for η-boost was fixed to 0.1.

Variables
10 100 300 500

Test Error Test Error Test Error Test Error
AdaBoost Sparse 0.136 0.246 0.268 0.266

non-Sparse 0.311 0.378 0.349 0.347
η-Boost Sparse 0.136 0.243 0.232 0.288

non-Sparse 0.309 0.422 0.424 0.435

3.2 Case 2. Synthetic Multivariate Data
Next, we investigate the performance of Sparse Learner Boosting with conven-

tional Boosting methods. We set several multivariate data sets in a setting of
p � n. All feature vectors with class label y = +1 follow the normal distribu-
tion N(μ+1, 0.5Ip). The mean vector μ+1 = (0.1, . . . , 0.1)T . All feature vectors
with class label y = −1 were generated from the normal mixture distribution
which has a probability density p(x) = (1 − π)g(x) + πh(x). The probability
distribution of g(x) is the normal distribution N(μ−1, 0.5Ip) with mean vec-
tor μ−1 = (0, . . . , 0)T . The probability distribution of h(x) is N(μout, 0.5Ip)
with mean vector μout = (3, . . . , 3)T . The prior probability π is 0.1. We fixed
the number of observations n = 100 and changed the number of variables as
p = (10, 100, 300, 500). Weak learners for Sparse Learner Boosting were deter-
mined by Eq. (27). We used ξ = 0. The number of iterations was decided by
3-fold cross validation. 3-fold cross validation was repeated 50 times and the
number of iterations which showed the lowest cross validation error was used to
predict class labels of the test data. We generated 10 data sets for both train-
ing data and test data, so that the average test error rate were calculated. To
simplify comparisons, we set η = 0.1 for η-Boost.

Table 1 shows the result of the test error rate. Sparse Learning Boosting
showed better performance across all cases. On the other hand, even when the
number of iterations is decided by cross validation, non-Sparse AdaBoost and
non-Sparse η-Boost could not show good predictive power.
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4. Analysis of Real Data

We used the gene expression data reported by van’t Veer, et al. 4). This study
included 97 primary breast cancer patients, of which 78 were used for training
data to build the discriminant function. 19 were used as test data to evaluate the
classifier. Distant metastasis was observed within 5 years in 34 patients out of the
78 patients for training data, whereas the remaining 44 patients were disease-free
after at least 5 years. The dimension of feature vector was 24,481, or the number
of genes.

Observation values were normalized by taking the logarithm of the ratio of
individual RNA to pooled RNA during preprocessing. Filtering criteria (van’t
Veer, et al. 4)) were applied to reduce the dimensionality. Using two-fold change in
the expression level with P-value < 0.01 in five patients or more of the 78 patients
yieled approximately 5,000 genes. See Roberts (2000) for further details.

The correlation coefficient between the expression of each probe and dis-
ease outcome was calculated; 200 probes had less than 0.3 absolute value
of correlation coefficients. Those 200 probes were considered to be signifi-
cantly associated with the disease outcome. These 200 probes were determined
by training data, test data was not used. The original data is available at
http://www.rii.com/publications/default.htm.

The class label yi associates with the period in which cancer recurrence oc-
curred; the group of patients diagnosed with a recurrence within five years was
assigned −1, whereas the group that did not show a recurrence within five years
was represented by +1.

We applied Sparse Learner Boosting and non-Sparse Learner Boosting using
200 variables. The result was shown in Table 2. The number of iterations and ξ

Table 2 Test error rates for real data. The variables were sorted by correlation to the class
label. 200 variates were used.

Variables
200

AdaBoost Sparse 0.158
non-Sparse 0.316

η-Boost Sparse 0.211
non-Sparse 0.316

was determined by 3-fold cross validation. 3-fold cross validation was repeated 50
times. The lowest test error was shown in the table. We used η = 0.1 in this data
as well. Sparse AdaBoost showed 0.158 test error. Neither non-Sparse AdaBoost
nor non-Sparse η-Boost could achieve the low error rate given by Sparse Learner
Boosting.

5. Conclusions and Future Work

Simple modification of the current boosting methods was performed, resulting
in this Sparse Learner Boosting. We used Sparse Learner Boosting to analyze
synthesized data and real gene expression data, which both confirmed that Sparse
Learner Boosting improves classification performance.

We showed that Sparse Learner Boosting gives a drastic reduction in VC di-
mension compared to non-Sparse Learner Boosting. From the view point of
feature reduction, reducing the size of p by ranking methods or regularization
is common. On the other hand, we propose an efficient method to reduce weak
learners, called Sparse Learner Boosting. We decided the number of iterations
by cross validation in our simulation however we saw that classification perfor-
mance was affected by sparseness, in which early stopping is not good enough
to prevent overfitting. We note that the TOL criterion is useful to truncate the
weak learners candidates when the two class data is heavily overlapped. If there
is no overlap or a very small overlap, trimming weak learners candidates does
not show performance improvement.

Sparse Boosting proposed by Bühlmann and Yu 9) is designed to find sparser
solutions for high-dimensional data. These authors modified L2 Boosting. L2

Boosting minimizes the residual sum of squares, so that Sparse Boosting considers
all previous boosting iterations in addition to current residuals. Our proposed
method reduces the number of weak learner candidates and prevents overfitting
which is applicable for a wide class of boosting methods including L2 Boosting.

In conclusion, we propose a new boosting method, Sparse Learner Boosting,
and confirm its ability to analyze high-dimensional data.
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Appendix

A.1 Derivation of the η-Boost Algorithm
We here show derivations of Eqs. (14) and (15) from the η-Boost algorithm.

The η-Boost algorithm was derived by minimizing the loss function (12). Loss
function (12) is rewritten as follows,

Lη(F + αf) =
N∑

i=1

[(1 − η) exp{−yi(F (xi) + αf)} − ηyi(F (xi + αf))]. (36)

We define ft to minimize the gradient of the loss function Lη(F + αft) at α = 0

∂

∂α
Lη(F + αf)|α=0 =

N∑
i=1

[−yif(xi){(1 − η) exp(−yiF (xi)) + η}]. (37)

We rewrite Eq. (37) using the indicated function as follows:

∂

∂α
Lη(F + αtft)|α=0 =

N∑
i=1

[−I{yi = f(xi)}wt + I{yi �= f(xi)}wt]

= 2
N∑

i=1

[wtI{yi �= f(xi)}] −
N∑

i=1

wt, (38)

where wt = (1 − η) exp(−yiF (xi)) + η. From Eq. (38), we find a value of ft to
minimize the weighted error rate. This is the derivative of Eq. (14) Next αt is
calculated by minimizing η-Loss as follows:

αt = arg min
α

∂

∂α
Lη(F + αf), (39)

which implies that αt is a solution of the equation
∂

∂α
Lη(F + αf) = 0. (40)

The equation is written as follows:

(1 − η)e−α − A + (1 − η)e(+α)B − ηC = 0

which is solved by
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α = log

{
ηC

2(1 − η)B
+

√
A

B
+

(
ηC

(1 − η)B

)}

where

A =
∑

yif(xi)=1

e−yiF (xi)

B =
∑

yif(xi)=−1

e−yiF (xi)

C = 2

⎛
⎝ ∑

yif(xi)=−1

+1

⎞
⎠ − N.

This is the derivation of Eqs. (14) and (15).
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