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As a fundamental biological problem, revealing the protein folding mechanism
remains to be one of the most challenging problems in structural bioinformat-
ics. Prediction of protein folding rate is an important step towards our further
understanding of the protein folding mechanism and the complex sequence-
structure-function relationship. In this article, we develop a novel approach
to predict protein folding rates for two-state and multi-state protein folding
kinetics, which combines a variety of structural topology and complex network
properties that are calculated from protein three-dimensional structures. To
take into account the specific correlations between network properties and pro-
tein folding rates, we define two different protein residue contact networks,
based on two different scales Protein Contact Network (PCN) and Long-range
Interaction Network (LIN) to characterize the corresponding network features.
The leave-one-out cross-validation (LOOCV) tests indicate that this integra-
tive strategy is more powerful in predicting the folding rates from 3D struc-
tures, with the Pearson’s Correlation Coefficient (CC) of 0.88, 0.90 and 0.90
for two-state, multi-state and combined protein folding kinetics, which pro-
vides an improved performance compared with other prediction work. This
study provides useful insights which shed light on the network organization of
interacting residues underlying protein folding process for both two-state and
multi-state folding kinetics. Moreover, our method also provides a comple-
mentary approach to the current folding rate prediction algorithms and can
be used as a powerful tool for the characterization of the foldomics protein
data. The implemented webserver (termed PRORATE) is freely accessible at
http://sunflower.kuicr.kyoto-u.ac.jp/˜sjn/folding/.
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1. Introduction

A major issue in molecular biology today is to understand how a protein folds
into its characteristic three-dimensional (3D) structure and how to gain its bi-
ological function as a linear string of amino acid sequence 1). Unraveling the
protein folding mechanisms remains to be one of the most challenging problems
and has been considered as deciphering the second half of genetic code 2). Protein
folding rate is a measure for evaluating how slow or fast the folding of proteins
from the unfolded state to native three-dimensional structure 3), which is usually
described by the folding rate constant Kf , whose unit is sec−1. On one hand,
proteins can fold into their native structures at very different folding rates, vary-
ing from several microseconds to even an hour 4). On the other hand, subtle
changes in the solvent environment or protein sequence can dramatically alter
the protein folding kinetics, accounting for the distinct kinetic behaviors under
different experimental conditions 5). Further, the misfolding of proteins into non-
native states altered by the folding kinetics could lead to several degenerative
disorders, such as prion and Alzheimer’s disease 6). Numerous previous studies
of protein folding kinetics as well as its association with protein structure and
function, either from the perspectives of experimentalists or theoreticians, have
led to our improved understanding of the physical processes of protein folding
and the fundamental rules governing protein folding behaviors 7)–12).

Prediction of protein folding rate from its amino acid sequence is an important
step towards our understanding of the protein folding mechanism and the com-
plex sequence-structure-function relationship 4). Previous studies have indicated
that protein folding kinetics can be categorized into two kinetic orders: simple
two-state (TS) folding behaviors without the visible intermediates, and three-
state (or multi-state, MS) folding kinetics that exhibits the obvious intermediate
state during folding process under experimental conditions 4). Furthermore, some
proteins can undergo the switching process from two-state to multi-state or vice
versa, by single point mutations or simply changing the experimental conditions
such as the temperature or solvent concentration 13),14). With the increasing avail-
ability of protein folding data deposited in public databases as the consequence
of structural genomics projects 9),10), efficient computational tools are desired to
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be developed to predict protein folding rates, which will not only provide im-
portant complementary information for annotating protein folding data, but also
contribute to the deep understanding of protein folding mechanisms.

In the past two decades, a number of prediction studies have been performed
to infer protein folding rates using different topological parameters from three-
dimensional structures 5),7),8),12)–25). The majority of these analyses mainly fo-
cused on inferring the statistical significance of the correlations between protein
folding rate and different topological parameters, including contact order (CO)5),
absolute contact order (Abs CO)19), total contact distance (TCD)16), long range
order (LRO)15), long range contact order (LR CO)14), effective secondary struc-
ture length (Leff)4), the fraction of local contact (FLC)7),8) and chain topology
parameter (CTP)21). Gromiha, et al. implemented a web server FOLD-RATE,
which used multiple regression equations based on 49 physical-chemical, energetic
and conformational properties of amino acid residues to predict protein folding
rates from amino acid sequences3). More recently, Capriotti and Casadio devel-
oped K-Fold server to predict the protein folding kinetic order and folding rate
using support vector machine based on a dataset with 63 proteins26).

Graph theoretic approaches that model protein structures as connecting net-
works of interacting residues, from the perspective of complex networks27),28),
provide new insights into the importance of the key residues that are character-
ized by a relatively small number of vertices with large connectivity and play
an essential role in the protein folding process29)–33). Moreover, a most-recent
study indicates that both Protein Contact Network (PCN) and Long-range In-
teraction Network (LIN) exhibit the “assortative mixing” phenomena and their
corresponding assortative coefficients show positive correlations with the folding
rates of thirty singled-domain two-state proteins11). Based on the these views,
it would be interesting to investigate whether protein folding rates can be more
accurately predicted on the basis of the integration of various structural topology
parameters and the general complex network properties calculated from protein
3D structures.

In the present study, we propose a novel approach to predict the folding ki-
netic orders and folding rates for two-state and multi-state protein folders using
support vector regression (SVR) approach. We combine a variety of structural

topology parameters with complex network properties with respect to the PCN
and LIN networks as the input features into the SVR models, which allows ac-
curate quantification of the relationships between protein folding rates and these
structure and network properties. We construct the SVR models by mapping
these input feature vectors into a high-dimensional feature space using the non-
linear polynomial kernel functions. The rigorous leave-one-out cross-validation
(LOOCV) tests show that the generic complex network properties coupled with
structural topology parameters can significantly improve the prediction accuracy,
suggesting that this approach can be effectively utilized for reliable inference of
protein folding rates and folding kinetic orders, which could provide important
complementary information for the annotation of the foldomics data.

2. Methods

2.1 Datasets
A larger dataset that has been recently constructed by Ouyang and Liang12)

was used as the benchmark dataset in this study. It consists of 80 protein folders
with their folding rates experimentally determined. Among them, 45 proteins
exhibit two-state (TS) folding behaviors without the visible intermediates, while
the other 35 proteins belong to the three-state or multi-state (MS) folding kinet-
ics that exhibit the obvious intermediate state during the folding process under
experimental conditions. They belong to different structural classes: 18 are all-α
proteins, 32 are all-β proteins, and the remaining 30 are αβ proteins. The folding
rates of these 80 proteins range from lnKf = −6.9 to lnKf = 12.9 (where Kf

is the experimental folding rate), which is more than eight orders of magnitude.
The detailed PDB codes for these folders with the TS or MS folding kinetics, as
well as the experimentally determined folding rates can be found in their work 12).

2.2 Structural Topology Measures
Previous studies have indicated that several structural topology properties of

a protein have significant correlations with protein folding rates. In this study,
we selected and calculated eight topology measures to investigate their specific
correlations with the folding rates both for two-state and multi-state proteins,
by defining four different sphere radii Rd centered on three respective Cα, Cβ or
non-hydrogen atoms of the target residue, i.e., Rd=5, 6, 7 and 8Å 5). These eight
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parameters are defined as follows.
2.2.1 Contact Order (CO)
Contact order is given by:

CO =
1

ncnr

nc∑
k=1

|i−j|>2

ΔLij

where unless otherwise stated, nr is the number of amino acid residues in a
protein, nc is the total number of contacts, and ΔLij is the sequence separation
between contacting residues i and j in the protein sequence 5).

2.2.2 Absolute Contact Order (Abs CO)
Absolute contact order (Abs CO) is defined by Ivankov et al.19):

Abs CO =
1

ncnr

nc∑
k=1

|i−j|>2

ΔLij

2.2.3 Total Contact Distance (TCD)
The total contact distance (TCD)16) is defined as:

TCD =
1
n2

r

nc∑
k=1

|i−j|>0

|i − j|

2.2.4 Long Range Order (LRO)
Long range order (LRO) denotes the residue contacts between two residues

that are close in space but far from each other in the sequence 15). It is defined
as:

LRO =
∑ ni,j

nr
,

{
ni,j = 1 if |i − j| > 12
ni,j = 0 otherwise

where i and j are two residues whose Cα–Cα distance is ≤ 8Å.
2.2.5 Long Range Contact Order (LR CO)
Long range contact order (LR CO) denotes the residue contacts between two

sequentially distant residues with the Cα–Cα distance less than a cutoff of Rd

(Rd = 5, 6, 7 and 8Å)14). It is defined as:

LR CO =
1
n2

r

nc∑
k=1

|i−j|>Lcut

|i − j|

where ΔLij is the sequence separation between contacting residues i and j in the
protein sequence. In this study, we set Lcut = 12.

2.2.6 Effect Protein Chain Length (Leff)
The effect length of protein chain is defined by

Leff = L − LH + l × NH

where L is the protein chain length, LH is the number of residues in helical
conformation, NH is the number of helices, and l denotes the chain length of the
α-helix turn (l ≤ 4)4). We set l = 3 in this study.

2.2.7 The Fraction of Local Contact (FLC)
The fraction of local contact (FLC), i.e. contacts between residues is defined

by

FLC =

∑
|i−j|≤4 δ(i, j)∑

i,j δ(i, j)

where δ(i, j) = 1 if residues i and j are in contact, and 0 otherwise 7),8).
2.2.8 Chain Topology Parameter (CTP)
The chain topology parameter (CTP) is defined by

CTP =
1

nrnc

∑
ΔL2

ij

where ΔLij is the sequence separation between the contacting residues i and j

in the protein sequence 21).
2.3 Complex Network Properties
In recent years, graph-theoretic approaches have well established that protein

structures can be modeled as complex networks of interacting residues that are
characterized by large values of the clustering coefficient C and small values of
the characteristic path length 27)–31),33). The representation of protein structures
as complex networks of interacting amino acid residues has been applied as a
powerful tool to study a variety of problems in structural bioinformatics in re-
gards to protein structure-function relationship, such as the identification of key
residues involved in protein folding 29),30), the correlations between network prop-
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erties and the determinants of protein folding 31), the identification of functional
residues in protein structures 34), the prediction of central residues at protein-
protein interfaces 33),35), the prediction of viable circular permutants 36) and the
assortative mixing in protein contact networks and protein folding kinetics 11).

It is of particular interest to investigate whether the complex network proper-
ties derived from protein structures can be used to accurately predict folding rates
for both two-state and multi-state protein folders. Here, we consider building two
kinds of network models based on two length scales 11): Protein Contact Network
(PCN) that takes into consideration all inter-residue contacts and Long-range In-
teraction Network (LIN) that considers only the long-range interactions formed
by the residues whose sequential distance Lcut ≥ 12 and excludes the short-range
interactions 15). For a better understanding of the difference between the PCN
and LIN, the graphical representations of the three-dimensional structure of the
Actin-binding protein (PDB ID: 2VIK) were provided as an illustration (Fig. 1).
Figure 1 A and B are its all-atom model and backbone representations, respec-
tively. Its LIN representation (Fig. 1 C) is actually a subset of its corresponding
PCN (Fig. 1 D) with the same numbers of nodes but lesser numbers of edges due
to the removal of the short-range interactions.

In this study, the Cα (or Cβ or the non-hydrogen atom) of each residue in a
protein structure is considered as the node of the network, two residues will be
regarded as in contact if their node atoms locate within a sphere of the threshold
radius Rd. We defined and calculated several types of complex network properties
on the two length scales of PCN and LIN:

2.3.1 Clustering Coefficient (CC)
The clustering coefficient for residue i is defined as Ci = 2Mi/[ki(ki−1)], where

Mi denotes the number of contacts among neighbors of residue i, and ki is the
number of contacts of residue i 27). Then we defined the average value of Ci as
the clustering coefficient:

CC =
1
nr

nr∑
i=1

Ci

where nr is the number of residues in a protein.

Fig. 1 Graphical representations of the three-dimensional structure of the Actin-binding pro-
tein (PDB ID: 2VIK) in four different manners. (A) The all-atom model representation;
(B) The backbone model representation highlighted in red color while the surface was
shown in gray; (C) The Protein Contact Network (PCN) representation; (D) The Long-
range Interaction Network (LIN) representation. The radius cutoff was set at Rd = 8Å
to construct the PCN and LIN. The black edges denote the main chain, while the green
edges represent the inter-residue contact. A and B were rendered using UCSF Chimera
package40), and C and D were generated using network software Pajek41).

2.3.2 Cyclic Coefficient (CYC)
The cyclic coefficient of residue i is defined as
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CY Ci =
2

ki(ki − 1)

∑
〈jh〉

(Si
jh − 2)−1

where ki is the number of contacts of residue i, and 〈jh〉 is for all the pairs of
neighbors of the residue i. Si

jh is the smallest size of the closed path that passes
through residue i and its two neighbor residues j and h 37).

Then we define the average value of CY Ci as the cyclic coefficient:

CY C =
1
nr

nr∑
i=1

CY Ci

2.3.3 Triangle Density (TD)
We define the triangle density as,

TD =
3T

nr

where T is the number of triangles in a network 38).
2.3.4 Characteristic Path Length (CPL)
The characteristic path length is defined as follows

CPL =
1

nr(nr − 1)

∑
ij

d(i, j)

where d(i, j) is the shortest path length between residues i and j 27).
2.3.5 Assortative Coefficient (AC)
The assortative coefficient is defined as

AC =
4〈kikj〉 − 〈ki + kj〉2

2〈k2
i + k2

j 〉 − 〈ki + kj〉2

where ki and kj are the number of contacts of two residues at the ends of a
contact (edge), and 〈. . . 〉 denotes the average overall contacts 39).

2.4 Support Vector Regression
Support vector machine (SVM) is an efficient machine learning technique based

on Statistical Learning Theory 42). This algorithm separates the positive from the
negative samples by mapping the data into a higher dimensional feature space
and constructing an optimal separating hyperplane (OSH) that maximizes its

distance from the closest training samples. SVM can usually perform better
than other machine learning algorithms due to its excellent capacity and abil-
ity to control error without causing overfitting to the data. It has been widely
used in many classification problems of bioinformatics and computational biol-
ogy, such as microarray data analysis 43), protein subcellular location 44), single
nucleotide polymorphisms (SNPs) prediction 45), proline cis/trans isomerization
prediction 46), protein fold recognition 47), residue contact prediction 48), disul-
fide connectivity prediction 49), protein-protein interaction 50),51) and DNA-repair
protein prediction 52).

SVM has two practical modes: support vector classification (SVC) and support
vector regression (SVR). Compared with SVC, SVR has outstanding ability in
predicting the property values of testing samples. SVR has attracted increas-
ing attention in recent years and has been successfully applied in the real-value
prediction studies of accessible surface area 53), residue contact number 54)–56),
residue-wise contact orders 57),58), missing value estimation in microarray data 59),
disulfide connectivity pattern 60), half-sphere exposure 56), residue depth 61)–63)

and caspase substrate cleavage sites 64).
As an implementation of the SVR approach, the SVM light package 65) was

used in this study to train and build the SVR classifiers for the two-state and
multi-state protein folding kinetics. The regularization parameter C and the
polynomial kernel degree d need to be determined in advance. The selection
of the kernel function parameters is an important step for SVR training and
testing, because it implicitly determines the structure of the high dimensional
feature space when constructing the OSH. In the present study, we selected
different combinations of optimal parameters of polynomial kernel functions to
build the different SVR models with respect to the TS and MS protein folders.

2.5 Performance Evaluation
In order to objectively evaluate the performance and avoid the over-fitting, we

performed the back-check and the leave-one-out cross-validation (LOOCV) tests.
In the LOOCV test, one sample was singled out in turn as the testing dataset,
while all other samples in the dataset were merged into the training dataset to
infer prediction rules and build SVR models.

For the classification task of predicting protein’s folding kinetic orders, we
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evaluated the performance by calculating the overall accuracy (ACC), Sensitivity,
Specificity and the Matthew’s correlation coefficient (MCC):

ACC =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
For the regression task of predicting protein folding rates, the Pearson’s corre-

lation coefficient (CC) between the predicted and observed folding rates and the
root mean square error (RMSE) are used to evaluate the prediction performance.

3. Results

3.1 The Difference between the TS and MS Folders Indicated by
Topology and Network Properties

We calculated topology measures and network properties for the TS and MS
protein folders (Appendix Table 4). The results indicate that there are two
significant topology measures that show distinguishable preferences for the TS
and MS proteins. One significant measure is CO which was originally proposed by
Plaxco et al.5) to describe the complexity of protein topology and has been shown
to be strongly correlated with the folding rates of the TS proteins. The average
value of CO measure of TS proteins is significantly larger than that of the MS
proteins (p-value=0.005 by the t-test), indicating that the topological structure
of TS proteins are more complex than that MS folders. The other significant
topology parameter is LR CO (p-value = 0.002), which is a measure of long-range
contact order. The TS proteins have much higher LR CO values in contrast to
the MS proteins, which is in a good agreement with previous work by Ma, et
al.14). On the other hand, five out of ten different complex network properties
exhibit significant statistical significance between the TS and MS protein folding
kinetics, including four properties of PCN (CC PCN, CYC PCN, CPL PCN and
AC PCN) and one property of LIN (AC LIN). These results also indicate the

differences between the topological characteristics of PCNs and LINs. The PCNs
have larger clustering coefficients, cyclic coefficients and triangle densities than
the corresponding LINs, which on the contrary have larger characteristic path
lengths and larger assortative coefficients than the PCNs (due to the reduced
number of short-range residue contacts in LINs 11)).

3.2 Specific Correlations Between Topology Parameters, Network
Properties and Protein Folding Rates

We next computed the Pearson’s correlation coefficients between topological
parameters/network properties and the corresponding protein folding rates in our
dataset (Table 1). We observed that five topology parameters (CO, Abs CO,
TCD, LRO and CTP) show significant negative correlations, and FLC has signif-
icant positive correlation with the folding rates of TS proteins. However, in the
case of the MS protein folders, CO and LR CO exhibit positive correlations with
their folding rates. This correlation differentiation between the same topology
measures with the folding rates might imply the difference of folding mechanisms

Table 1 Correlation coefficients between topology parameters, network properties and the
corresponding folding rate lnKf values. The results are computed with the tradi-
tional threshold Rd = 8Å using the Cα atom for the TS proteins as the node and
Rd = 8Åusing the non-hydrogen atom for the MS proteins as the node, respectively.

Measures Two-state Multi-state Overall

Topology

CO − 0.725 0.406 −0.191
Abs CO −0.512 −0.845 −0.583

TCD −0.746 0.095 −0.291
LRO −0.733 – −0.585

LR CO −0.020 0.572 0.297
FLC 0.678 0.587 0.498
CTP −0.567 −0.771 −0.570

Prolength −0.108 −0.838 −0.428

Network

CC PCN 0.321 0.803 0.516
CC LIN −0.753 −0.041 −0.494

CYC PCN 0.278 0.810 0.504
CYC LIN −0.708 −0.227 −0.512
TD PCN −0.411 −0.600 −0.401
TD LIN −0.756 −0.637 −0.555

CPL PCN 0.048 −0.656 −0.230
CPL LIN 0.398 −0.175 0.129
AC PCN 0.186 −0.351 −0.137
AC LIN 0.353 −0.353 −0.062
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Table 2 Prediction performances in terms of CC and RMSE using different SVR models based on topology, network and the combined features.

SVR models
Topology Network Combined

Back-check Jack-knife Back-check Jack-knife Back-check Jack-knife

Two-state
CC 0.810 0.780 0.856 0.791 0.933 0.853

RMSE 2.20 2.34 1.93 2.29 1.34 1.95

Multi-state
CC 0.872 0.821 0.831 0.813 0.882 0.824

RMSE 1.84 2.14 2.08 2.18 1.77 2.12

of the TS and MS proteins. The overall correlations between folding rates and
topology parameters based on the whole dataset without TS and MS classification
are also presented as a comparison in Table 1.

With respect to the complex network properties, we also observed that there
are significant correlations between three network properties (CC LIN, CYC LIN
and TD LIN) and the corresponding folding rates of the TS proteins, whose CCs
are −0.753, −0.708 and −0.756, respectively. All these network parameters have
strong negative correlations with the folding rates of TS proteins. It is particu-
larly interesting to notice that all LINs’ properties exhibit stronger correlations
with protein folding rates in contrast to the corresponding PCNs (Table 1). Nev-
ertheless, when it comes to the MS proteins, four PCN properties have significant
correlations with the folding rates. For example, CC PCN and CYC PCN have
significant positive correlations with MS folding rates, whereas TD PCN and
CPL PCN have strong negative correlations. Only one LIN property TD LIN
exhibits significant correlation with the MS folding rate. Based on these observa-
tions, we conclude that PCN parameters have better correlations with the folding
rates of the MS proteins, while LIN measures have stronger correlations with the
folding rates of the TS proteins. All these findings suggest that distinctive folding
mechanisms hold for the TS and MS protein folding kinetics.

3.3 Improving Folding Rate Prediction by Integrating Topology Pa-
rameters, Network Properties and Combined Features

To explore the possibility of improving the prediction of protein folding rates,
we further encoded these topology and/or network parameters as the input fea-
tures into SVR classifiers. Feature selection was performed using a recursive
elimination strategy: the SVR models were initially trained and built using all
the feature vectors based on eight topology parameters, ten network properties,

and as well as these combined features as the input. Then a feature that is con-
sidered as making no contribution to the predictive performance will be removed
from the input feature sets, if the subsequent performance of SVR remains steady
or even increases after its removal. The aim of this procedure is to improve the
prediction accuracy, due to the fact that using all the features might not lead
to the best prediction performance 56),57),60),63),64). When no further performance
improvements were observed, we fixed up the selected feature sets, re-trained
our SVR models and predicted the folding rates. The final feature sets used for
building the SVR models are described in Appendix Table 5 and the resulting
prediction performances are summarized in Table 2.

We assume that the uniquely networked structures (if there are any) can be
reflected and captured by these topology and network properties. We also com-
pared the performance based on different network sizes (network sizes depend
on the Rd thresholds. Assigning lower Rd values results to more densely con-
nected networks while higher Rd values lead to sparsely connected networks) and
found that the resulting performance differences have fluctuations but are not
significant. The preliminary results show that single-property SVR model (using
only one property at a time to build the SVR model to predict folding rate) can
provide relative success to predict folding rate, however, the performance of us-
ing single-property SVR models is worse than that of using multi-property SVR
models. This might imply that incorporating multiple properties in terms of
topology and network parameters that can provide complementary information
have potential advantages in improving the predictive performance.

The SVR classifier based on multiple topology parameters could predict the
folding rates with the CC of 0.780 and RMSE of 2.34 for the TS proteins and
with the CC of 0.821 and RMSE of 2.14 for the MS proteins, respectively, when
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Fig. 2 The scatter-plots of the observed and predicted folding rates of the TS and MS
protein folders by the jack-knife cross-validation test.

evaluated by the leave-one-out cross-validation (LOOCV) tests. The back-check
prediction results are also included here (Table 2). As a comparison, the SVR
classifier based on multiple network properties could provide prediction accuracy
with the CC of 0.791 and RMSE of 2.29 for the TS proteins, and with the CC of
0.813 and RMSE of 2.18 for the MS proteins, respectively. In the case of two-state
protein folding kinetics, the SVR classifier based on network properties performed
better than that based on topology parameters. In contrast, for the multi-state
protein folding, the SVR classifier based on topology parameter provides better
performance compared with that based on network properties (Fig. 2). We argue
that these results might be a reflection of the difference of folding mechanisms
between the two-state and multi-state protein folders.

Moreover, after combining the topology and network properties, the resulting
SVR classifier further improves the prediction accuracy: for the TS proteins,
CC is equal to 0.853 and RMSE is 1.95, while for the MS proteins, CC is equal
to 0.824 and RMSE is 2.12. The prediction accuracy achieved by integrating
multiple topology parameters suggest that this prediction strategy is successful in

improving the performance compared with linear regression equation using single-
parameter as input. This observation is also consistent with previous studies
that using multiple topology parameters of protein structure can improve the
prediction performance of protein folding rates 16),26).

3.4 Formulating as a Two-class Prediction Problem and Comparing
Prediction Performance with Two Recent Studies

Since previous studies examined the predictive performance by a conventional
two-class classification, namely, to predict whether a protein folds via two-state
or multi-state kinetics, we also examined and compared our SVR classifier with
two recent methods, including the binary logistic regression (BLR) which uses
chain length as the feature 66) and the composition-based predictor which is based
on the differentiation of amino acid contents between the TS and MS folders 14).
To make an objective comparison, these methods are measured on the same
training and test datasets. The result comparison is presented in Table 3. As
can be seen, the SVR classifier performs much better than the BLR method,
with the ACC and MCC scores by 1.1% and 0.024 higher than those of the BLR,
respectively. The SVR classifier also compares favorably with the composition-
based predictor with the same accuracy of ACC of 80.8%. These results suggest
that this SVR classifier is at least competitive with, if not better than, the two
recently developed methods.

4. Discussion

Prediction of protein folding rates is an important step towards our deep un-
derstanding of the protein folding mechanism and remains to be one of most
challenging tasks in structural bioinformatics today. One of the main contribu-
tions of this paper is that we comprehensively integrate the complex network
properties along with a variety of structural topology features of protein struc-
tures as the input features to build the SVR classifiers in order to improve the
prediction performance. In particular, for the TS proteins, the predictive power
of network properties is stronger than that of structural topology parameters,
suggesting that network properties can be used to better describe the underlying
mechanism that dominates the TS protein folding process. On the other hand,
topology parameters are more indicative of the MS protein folders than the net-
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Table 3 Two-class prediction accuracy in terms of the Sensitivity, Specificity, ACC and MCC for the prediction of two-state and
multi-state protein folders by different approaches.

Methods
Prediction accuracy (%)

Sensitivity Specificity ACC MCC

Comparison with Ma, et al.
Composition-based predictor 79.7% 82.0% 80.8% –

SVR 76.0% 85.7% 80.8% 0.607

Comparison with Huang and Cheng
Binary logistic regression (BLR) 98.3% 72.0% 90.6% 0.774

SVR 90.6% 95.0% 91.7% 0.798

work measures, which might imply that the topology parameters are the most
important determinants in the case of the MS folding kinetics.

To improve the prediction performance of protein folding rates, we adopted
the recursive elimination strategy to optimize the feature selection of the SVR
by comparing the performance using different combinations of topology and net-
work parameters. The primary goal here was to improve the prediction accuracy,
due to the fact that using all the features together might not lead to the best
prediction performance. However, several ways may help to further improve
the prediction performance in the future. The first method is to use more accu-
rately determined PDB structure data with better resolutions, as it is well-known
that SVR has better performance when trained on larger dataset with adequate
training samples. The second strategy can be focused on improvement of feature
selection and SVR parameter selection procedures that have important effect on
the final prediction accuracy. The third way is to use high-quality folding rate
dataset that has refined data representation, which can ensure better represen-
tation particularly for the MS protein folders when fed into the SVR classifiers.
This might be applicable when more protein foldomics data are available 9),10).

It is likely that the improvement in prediction accuracy for both the TS and MS
protein folders is a reflection of the fact that the folding mechanism of a protein
is largely determined by its global structural topology and network organization
rather than its local inter-atomic interactions, as previously discussed by Bagler
and Sinha 11). The specific correlations between various network properties and
protein folding rates found in this study may further enhance our understanding
of the protein folding process from the perspective of complex network organiza-
tion. Our method provides useful insights by utilizing as many as ten different

properties of the complex networks in the form of the PCNs and LINs, which
could shed light on the network organization underlying the complex protein
folding process that applies not only to the two-state but also to the multi-state
protein folding kinetics.

5. Conclusion

In this work, we attempted to address the important problem of predicting
protein folding rates of proteins with two-state and multi-state folding kinetics,
by developing a multiple-feature framework based on support vector regression
(SVR) approach. Our method integrated a variety of structural topology and
complex network properties as the input features into the SVR models. We
comprehensively investigated the specific correlations between topology parame-
ters/network properties and protein folding rates, based on short-range and long-
range contact scales: Protein Contact Network (PCN) and Long-range Interac-
tion Network (LIN). Statistical analyses indicate that LINs show much stronger
correlations with protein folding rates in compassion with the corresponding
PCNs. Moreover, our approach could yield favorable or at least comparable pre-
diction performance in contrast to two recently published methods. The results
highlighted that our integrative approach is computationally competitive and can
be used as a powerful tool for the characterization of the foldomics protein data.
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Appendix

Table 4 The average values of structural topology and complex network measures. The
results are expressed as Mean±Standard Deviation.

Measures Two-state Multi-state p-value

Topology

CO 0.261±0.076 0.216±0.076 0.005
Abs CO 22.94±10.04 27.40±9.60 0.036

TCD 0.743±0.250 0.607±0.216 0.060
LRO 1.379±0.573 1.400±0.440 0.862

LR CO 0.455±0.097 0.386±0.113 0.002
FLC 0.596±0.115 0.599±0.096 0.122
CTP 6.66±3.53 8.04±3.50 0.049
Leff 76.8±48.0 113.9±57.3 0.016

Network

CC PCN 0.589±0.028 0.569±0.022 < 0.0001
CC LIN 0.297±0.108 0.305±0.084 0.174

CYC PCN 0.784±0.015 0.772±0.012 < 0.0001
CYC LIN 0.497±0.127 0.508±0.092 0.772
TD PCN 22.41±3.68 22.08±.3.31 0.229
TD LIN 5.37±2.69 5.21±2.17 0.480

CPL PCN 3.19±0.78 3.74±0.56 0.004
CPL LIN 8.90±1.44 5.51±1.21 0.159
AC PCN 0.247±0.099 0.274±0.095 0.005
AC LIN 0.367±0.105 0.449±0.106 0.002
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Table 5 The selected feature sets and the corresponding parameter options for building SVR models.

Feature sets and SVR parameters Topology Network Combined

Two-state

SVR option -t 1 -d 2 -c 0.1 -t 1 -d 2 -c 1.4 -t 1 -d 2 -c 1.5
Rd cutoff Cα atom, Rd = 8Å Cα atom, Rd = 8Å Cα atom, Rd = 8Å

Features CO, TCD, LRO, FCL, CTP
CC LIN, CYC LIN, TD PCN, CO, TCD, LRO, FCL, CTP,

TD LIN, CPL LIN CC LIN, CYC LIN, TD PCN, TD LIN

Multi-state

SVR option -t 1 -d 2 -c 0.02 -t 1 -d 2 -c 0.02 -t 1 -d 2 -c 0.002
Rd cutoff Heavy atom, Rd = 8Å Heavy atom, Rd = 8Å Heavy atom, Rd = 8Å

Features Abs CO, CTP, log10(Prolength), log10(Leff) CC PCN, CYC PCN, TD LIN, CPL PCN
Abs CO, CTP, log10(Prolength), log10(Leff),

CC PCN, CYC PCN, CPL PCN

Overall

SVR option -t 1 -d 2 -c 3.8 -t 1 -d 2 -c 0.7 -t 1 -d 2 -c 2.7
Rd cutoff Cα atom, Rd = 8Å Cα atom, Rd = 8Å Cα atom, Rd = 8Å

Features Abs CO, LRO, FLC, CTP, log10(Leff)
CC PCN, CC LIN, CYC PCN, CYC LIN, Abs CO, LRO, CTP, log10(Leff),

TD PCN, TD LIN CC PCN, CYC PCN, CYC LIN, TD LIN
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