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A Monte Carlo based algorithm is proposed to predict gene regulatory net-
work structure of mouse nuclear receptor superfamily, about which little is
known although those genes are believed to be related with several difficult
diseases. The gene expression data is regarded as sample vector trajectories
from a stochastic dynamical system on a graph. The problem is formulated
within a Bayesian framework where the graph prior distribution is assumed
to follow a Zipf distribution. Appropriateness of a graph is evaluated by the
graph posterior mean. The algorithm is implemented with the Exchange Monte
Carlo method. After validation against synthesized data, an attempt is made
to use the algorithm for predicting network structure of the target, the mouse
nuclear receptor superfamily. Several remarks are made on the feasibility of the
predicted network from a biological viewpoint.

1. Introduction

1.1 Introduction
Genes in cells code for one or more proteins, many of which, in turn, regulate

expression of genes through regulatory pathways. Deciphering such regulatory
networks from experimental data is extremely important for understanding bio-
logical processes. Since the behaviors of genes are interrelated in complex ways
rather than acting in isolation, the deciphering method needs to consider exper-
imental data as a whole, which is far from trivial. This is currently one of the
exciting challenges for machine learning. As such, there is much literature on
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gene regulatory network prediction 1)–18).
This study regards gene expression time-series data as trajectories of stochastic

dynamical systems on a graph G defined by genes. A gene is represented by a
node in the graph. An arc between nodes is present if a gene influences another
gene, and an arc is not present otherwise.

Let x(t) := (x1(t), · · · , xN (t)) be the expression vector at time t, where N

denotes the number of nodes (genes), and let x := (x(0), · · · , x(T )). The Bayes
rule gives

P (G|x) =
P (x|G)P (G)∑

G′∈G
P (x|G′)P (G′)

(1)

where G stands for the set of all possible graph configurations with a given number
of nodes, and P (G) is the prior distribution for the graph. The first factor of the
numerator P (x|G), the marginal likelihood for G, typically comes from

P (x|G) =
∫

P (x|θ,G)P (θ)dθ, (2)

where θ is a parameter vector describing the likelihood function for the data, and
P (θ) is the prior distribution for θ.

Three novel aspects of this study should be noted:
(i) Recent studies on topological structures of a variety of networks, including

gene regulatory networks, revealed the presence of the Zipf law, that is, a power
law 16),17). This can be thought of as a particular type of sparseness of the network
topology. This study naturally incorporates such findings as prior information
within a Bayesian framework and uses Eq. (1) for making predictions.

(ii) An important issue to be addressed in general prediction problems within
a graphical setting, particularly gene regulatory network prediction, is the com-
putational complexity of evaluating the performance criteria 1)–15). Most of the
proposed algorithms, if not all, evaluate performance criteria to select optimum
or good models for making predictions. Because of the nature of the problem,
the performance criterion for gene regulatory network prediction is naturally a
function of the graphical structure of the underlying model.

To be more specific, first note that both Eqs. (1) and (2) are exact. Evaluation
of Eq. (1) is performed in two steps. The first step is the marginalization (2).
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Generally, this is non-trivial; however, if one assumes a conjugate prior P (θ) for
θ, then analytical marginalization in closed form is possible. Evaluation of Eq. (1)
is harder than it looks. The computational cost of evaluating the denominator
of Eq. (1) is often enormous. For instance, it is known 20) that if the number of
nodes of a graph is 40, the number of all possible directed non-cyclic graphs is
in the order of 10276. Our formulation presented in Section 2 does not exclude
cyclic graphs. Therefore, exhaustive evaluation will be even more difficult. This
study attempts to make predictions by computing the posterior mean instead
of a single graph via a Monte Carlo method which avoids exhaustive evaluation
while automatically searching for regions where probabilities are high.

More precisely, the proposed algorithm draws posterior samples of arcs from
Eq. (1) via the Exchange Monte Carlo method without knowing the denominator
and computes the Monte Carlo posterior mean for the graph structure prediction:

∑
G∈G

GP (G|x) ≈ 1
S

S∑
k=1

G(k). (3)

where G(k) stands for the k-th sample from the graph posterior (1).
After testing the prediction capabilities of the proposed algorithm, predictions

are made for the target data.
A third novel aspect of this study is the target material:
(iii) Target experimental data used in this study is gene expression time-series

data of nuclear receptors in proliferating neural progenitor cells (NPCs) derived
from adult mouse brain, where little is known about the regulatory network struc-
ture. Those nuclear receptors are understood to be involved in several cancers,
diabetes mellitus, hyperlipidemia, atherosclerosis, and immune system disorders,
among others.

The organization of this paper is as follows. After describing related work
in the next subsection, Section 2 describes the proposed prediction algorithm
and its implementations. Section 3 examines the prediction capabilities of the
algorithm against synthesized data. Section 4 describes attempted network struc-
ture predictions on experimental data obtained from the mouse nuclear receptor
superfamily, followed by a discussion from a biological perspective. Section 5
concludes the paper.

1.2 Related Work
Friedman and Goldszmidt 1) observed that gene regulatory network predictions

can be viewed as a problem of inferring probabilistic interdependencies between
random variables, so that this particular class of prediction problems can be
formulated as a Bayesian network. Since the model is static, in this formulation,
it is crucial that there be conditional independence between various quantities
so that the joint distribution of all the random variables involved is defined in a
consistent manner, including the fact that the model graphs should be Directed
Acyclic Graphs (DAGs).

Friedman, et al. 2) proposed a dynamic version of their Bayesian network model
and examined the prediction capabilities. Since the model is dynamic, topological
constraints are much less stringent than the static version.

Murphy and Mian 3) proposed dynamic Bayesian networks with and without
hidden states. They also considered continuous state models with Gaussian tran-
sition densities and derived posterior distributions of the parameters with the
so-called “weight decay” prior on the parameters.

Friedman, et al. 4) applied their Bayesian network model to the data of
Spellman, et al. 5), which contains 76 gene expression measurements of the mRNA
levels of 6,177 Saccharomyces cerevisiae open reading frames (ORFs).

Kim, et al. 11) proposed a continuous state dynamic Bayesian network with B-
splines for data fitting. They proposed the criterion function BNRC-dynamic,
derived from the graph posterior, where parameters are integrated out via Laplace
approximation, with the graph prior being the reciprocal of the logarithm of the
number of parent genes.

Beal, et al. 15) formulated the problem as a continuous-state linear dynamical
system with observation noise and evaluated the marginal likelihood of a model
via a variational Bayes scheme.

In parallel with the developments described above, there has been recent in-
terest in the structure of various networks in general, including social networks,
computer networks, epidemiology networks, and biological networks. There has
been particular interest in their scale free properties, meaning that the number of
elements with rank order k with respect to some ordering is proportional to (k)−γ

for some real number γ > 0. Jeong, et al. 16) reports that a metabolic network
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follows the power law with γ = 2.2, whereas Yook, et al. 21) shows that protein-
protein network of Saccharomyces cerevisiae exhibits γ = 2.1–2.5. Basso, et al. 17)

proposed an algorithm to reconstruct a gene regulatory network of human B cells
taking into account this scale-free property.

2. Algorithm

2.1 Formulation
This study regards gene expression time-series data as trajectories of stochastic

dynamical systems on a graph G defined by genes. A gene is represented by a
node in the graph. An arc with an arrow directed from node j to node i represents
the fact that gene j influences gene i. No arc means no influence.

Recall that a graph G consists of a set of nodes V := {i}N
i=1, and a set of arcs

B := {bij}N
i,j=1. We regard B, and hence G, as a set of random variables. An arc

bij is regarded as a random variable with three discrete values: bij ∈ {−1, 0,+1},
where “0” means no influence, “+” means that gene j influences gene i, and “−”
means that gene i influences gene j.

The expression value at time t of gene i is represented as the state variable
xi(t). A gene i may influence other genes by influencing their expression via
proteins, in addition to influencing gene i itself. Such an influencing mechanism
is generally dynamic in the sense that the past expression values may influence
the current expression values. Thus, xi(t) may depend on xj(t − τ), for some j

not equal to i, where τ > 0, and also on the value xi(t−τ), where τ > 0, the past
value of the expression of gene i itself. An arc between nodes is present if such
an influencing mechanism exists, and an arc is not present otherwise. One of
the important distinctions between the dynamic model assumed here and static
models is that the underlying graph structure of the former can contain loops,
whereas the latter does not allow loops. In particular, the dynamic model allows
self loops. A dynamical system without self loops is a very restricted class of
dynamics. Note that the exclusion of loops from static models is necessary for
data consistency for statistical inference.

There could be at least two uncertainties associated with gene regulatory net-
work prediction problems. One is the uncertainty incurred from measurement
uncertainty in biological experiments. Another is the possible stochastic nature

of the gene expression itself 19). In order to take into account these uncertainties,
transition of the states is assumed to be stochastic. This study assumes a first-
order Markov process where the current expression value xi(t) depends on the
values xj(t− 1), as well as on xi(t− 1), in a probabilistic manner, where time is
discretized with an appropriate unit length, e.g., four hours. Generalizations are
possible to multiple time delay cases.

The expression values, at least in this study, are discretized into finite discrete
values so that nonlinearity is captured by state transition probabilities associated
with stochastic dynamics. The prediction is formulated as a graph structure
prediction problem within a Bayesian framework, where a score is computed
using a graph posterior distribution.

Experimental data in this study consist of gene expression data {xi(t)} which
extend over genes, i = 1, · · · , N , as well as over time, t = 0, · · · , T . Consider a
graph G containing N nodes where node i represents gene i. Associated with
node i is its state variable xi(t), which represents the expression value of gene
i at time t. A gene i may influence other genes by influencing their expression
via proteins, in addition to influencing gene i itself. We assign an arc between
nodes i and j if such an influencing mechanism exists, and an arc is not present
otherwise. Each arc carries an arrow. If the arrow is directed from node j to
node i, it represents the fact that gene j influences gene i.

Under such a graph structure, this study attempts to capture two other possible
structures behind gene expression time-series data. First is the dynamics. We
assume that xi(t) comes from a dynamical system, so that it could be influenced
by the past expression values of other genes as well as its own. One of the
important distinctions of this formulation from a static formulation, is that this
formulation allows loops in the underlying graph, whereas a static formulation
excludes loops. In particular, the current formulation considers self loops.

Second is uncertainty associated with the data. One of the uncertainties is mea-
surement uncertainty of expression values, and another is the stochastic nature
of the expression process itself 19).

In this study, we treat the target problem within a Bayesian framework, for
which we need to define a likelihood function and prior distributions.
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2.2 Likelihood: Stochastic Dynamical System on a Graph
Recall that we regard each arc bij of a graph G as a ternary random variable

bij ∈ {−1, 0,+1}, where “+” means that gene j influences gene i, “−” means
that gene i influences gene j, and “0” means no influence. This study assumes
the likelihood function of the form

P (x(0), x(1), . . . , x(T )|G) :=
T∏

t=1

P (x(t)|x(t − 1), G)P (x(0)|G) (4)

where
P (x(t)|x(t − 1), G) (5)

is the conditional probability of x(t), the set of expression values at time t, given
x(t−1), those at the previous time t−1. Equation (4) amounts to considering the
target gene expression time-series data as a realization of a first-order Markov
process with transition probability (5) and initial state probability P (x(0)|G).
To be more precise, we need to consider the representation of xi(t). Although
the gene expression values obtained from experiments are real valued, we will
discretize them, at least in this paper, into K discrete values:

xi(t) ∈ {1, 2, . . . ,K}.
If xi(t) is influenced by genes xj(t − 1) for j belonging to some index set, the

state variables associated with such indexes may be called the parent states of
xi. Define

pai := {parent states of xi},
let paj

i be the j-th configuration of pai, j = 1, · · · , qi with qi being the number
of configurations 34) and set

P (xi(t) = k|paj
i , θi;G) := θi,j,k (6)

where

θi := {(θi,j,k)K
k=1}qi

j=1,

K∑
k=1

θi,j,k = 1 (7)

where G stands for the underlying graph structure.
In order to explain Eq. (6), consider a simple example illustrated in Fig. 1

where there are only three nodes. At node 1, the only arrow which comes in is

Fig. 1 A simple example with three nodes.

its self loop so that
P (x1(t) = k|x1(t − 1) = l;G) := θ1,j,k,

where subscript 1 stands for node 1, j stands for the configurations of parent
state x1(t − 1) = l, and k indicates that the value that x1(t) takes is k. At node
2, one arrow comes from node 1, in addition to the self loop, so that

P (x2(t) = k|x2(t − 1) = l, x1(t − 1) = m;G) := θ2,j,k

where j represents the configurations of the parent states. Finally at node 3, two
arrows come from the other nodes in addition to its self loop; thus

P (x3(t) = k|x3(t − 1) = l, x2(t − 1) = m,x1(t − 1) = n;G) := θ3,j,k

where j represents the configurations of the parent states.
Remarks
1. Note that this model is not a Hidden Markov Model because state is directly

observable. Note also that, in contrast with static cases, cyclic graphs and self
loops {bii}N

i=1 are allowed. In fact, a dynamical system without self loops is highly
restricted. Even without topological constraints, this class of dynamic models is
sometimes called dynamic Bayesian networks 2),3),11).

2. The initial state distribution P (xi(0)|G) in this paper will be uniform over
{1, 2, . . . ,K}, where
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P (x(0)|G) :=
N∏

i=1

P (xi(0)|G).

2.3 Prior Distributions
There are two unknown quantities of interest: θ := {θi}N

i=1 and G. Due to the
formulation of the problem, the prior distribution should be of the form

P (θ,G) = P (θ|G)P (G). (8)
(A) Prior for θ

Observe that Eq. (6) gives rise to a multinomial distribution with parameter
θi,j := {θi,j,k}K

k=l, so that a Dirichlet distribution
Dir(θi,j ;αi,j), (9)

with hyperparameter αi,j := {αi,j,k}K
k=l, is a conjugate prior distribution. With

this, one can analytically marginalize our likelihood (5). To this end, let
θ := (θ1, · · · , θN )
θi,j := (θi,j,1, · · · , θi,j,K)

and assume independence among θi,j , as well as independence among θi. Let sijk

stand for the number of cases in which

xi(t) = k with pa(t − 1)j
i .

It follows from Eqs. (4), (6), and (9) that the marginal likelihood (2) is given by
N∏

i=1

∫ qi∏
j=1

K∏
k=1

(θi,j,k)sijk P (θi,j |G)dθij .

Because of the conjugacy, one sees that the analytical marginalization is possi-
ble 34):

P (x(t), · · · , x(1)|G) =
N∏

i=1

qi∏
j=1

Γ(Mij)
Γ(Mij + sij)

K∏
k=1

Γ(αijk + sijk)
Γ(αijk)

(10)

where αijk is the hyperparameter associated with the Dirichlet distribution,

sij :=
K∑

k=1

sijk, Mij :=
K∑

k=1

αijk,

and Γ(·) denotes a gamma function.

Note that one does not infer θ since it is integrated out in Eq. (10). Note
also that Eq. (10) is computable via counting the number of cases that the state
variables take.
(B) Prior for G

This study assumes the Zipf prior distribution for G with hyperparameter γ:

P (G) = P (G|γ) =
N∏

i=1

PZipf (k(G)
i ; γ) =

N∏
i=1

(k(G)
i )−γ

k
(G)
max∑

z=1
z−γ

, (11)

where k
(G)
i denotes the degree, or the number of arcs with node i, i = 1, · · · , N ,

and k
(G)
max is the maximum number of arcs of a single node.

Generally, the Zipf law states that the number of elements with rank order
k with respect to some ordering is proportional to k−γ . This law has been re-
ported in a variety of disciplines, including biological networks. See, for example,
Ref. 21). Observe that the Zipf law is a form of sparseness of arcs in a graph.
While many of the nodes have small degrees, there are nodes that have large
degrees, although they are few. Figure 2 is a simple illustration of the Zipf law,
and Fig. 3 is a schematic diagram showing a “random” graph, where the degree
distribution is centered around a particular value.

2.4 Posterior Distributions
Given a time-series data set (x(0), x(1), . . . , x(T )), x(t) := (x1(t), x2(t), . . . ,

xN (t)), the posterior distribution of G is given by

P (G|(x(0), x(1), . . . , x(T )), γ) =
P ((x(0), x(1), . . . , x(T ))|G)P (G|γ)∑

G′∈G
P ((x(0), x(1), . . . , x(T ))|G′)P (G′|γ)

(12)

where the first factor in the numerator is available from Eq. (10), and the second
factor in the numerator is the Zipf prior alluded earlier.

2.5 Implementation
Our goal in this paper is to evaluate Eq. (12) for predicting plausible G. In

order to achieve this goal, generally speaking, we need three different quantities:
(a) the marginal likelihood for G, which is the denominator of Eq. (12); (b) the
hyperparameter γ for the Zipf prior (11); and (c) the hyperparameters αi,j for
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Fig. 2 A schematic diagram demonstrating the Zipf law. While many of the nodes have small
degrees, there are nodes that have large degrees, although they are few. The numerals
show degrees at nodes. Self loops are omitted for simplicity.

Fig. 3 A schematic for a random graph. The degree distribution is centered around a partic-
ular value. The numerals show degrees at nodes. Self loops are omitted for simplicity.

the Dirichlet prior (9). Each of them is generally nontrivial to set. Note that θ

has been integrated out in Eq. (10). In this paper, we adopted a Markov Chain
Monte Carlo (MCMC) method to evaluate Eq. (12).

The first and probably the most difficult quantity: the marginal likelihood for
G. To obtain the marginal likelihood, we need to evaluate the sum,∑

G′∈G
P ((x(0), x(1), . . . , x(T ))|G′)P (G′|γ),

where G stands for the set of all graph configurations with the number of nodes
fixed. Note that the sum must run through all possible G’s, which is difficult due
to the magnitude of cardinality of G. One of the greatest advantages of the class

of MCMC methods which we use in this paper is the fact that the normalization
constant vanishes within the procedure. Exchange Monte Carlo designs a family
of target distributions instead of a single target distribution. While running
different Markov chains, it exchanges the states of different Markov chains with
some probability so that the chains will mix together and eventually give rise to
reasonable samples. Since MCMC is a widely used method, our explanation here
is brief and heuristic.

Hyperparameter γ is another quantity which is difficult to set. While there may
be methods of learning its value from the data, this paper uses an informative
prior, i.e., the value available from previous studies. In most of the literature
on the Zipf structure of biological networks reported so far, γ appears to be
between 2 and 3. This paper uses γ = 2.2 based on the result of Ref. 21), where
the authors studied protein-protein interaction networks and reported that the
γ values lie between 2.1 and 2.5.

Although the hyperparameters for the Dirichlet prior αi,j may be learned from
the data, we will set, at least in this work, all of them to unity. Our future
research will include learning these hyperparameters. This is equivalent to saying
that there is no prior information on the relative frequencies of xi(t) = k.

2.6 MCMC Procedure for Graph Posterior Samples
Let

P (G|x, γ) ∝ P (x|G)P (G|γ) (13)
be the target distribution with x := (x(0), . . . , x(T )), and consider the parame-
terized family of Q different distributions

Pq(G|x, γ) ∝ (P (x|G)P (G|γ))1/Tq ,

q = 1, . . . , Q,

0 < T1, < T2, . . . < TQ = 1.

(14)

And set

Pq(x|G, γ) := (P (x|G, γ))1/Tq ,

q = 1, . . . , Q.
(15)

Then, implementation is given as shown in Fig. 4.
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Fig. 4 The overview of exchange Monte Carlo procedures for graph posterior samples.
Precise steps for Procedures A. through C. are presented below.

Fig. 4 A. The details of initializing procedure.

Remarks
( 1 ) Our prediction in this paper is performed using the Monte Carlo posterior

mean of the graph:

1
S

τ+S∑
n=τ+1

Gn, (16)

where Gn is the posterior sample obtained by the Monte Carlo method
described above with a burn-in period τ .

Fig. 4 B. The details of graph transition procedure: Metropolis Sampler.

Fig. 4 C. The details of exchange procedures.
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( 2 ) It should be noted that the graph posterior consists of

P ({bij}N
i,j=1|(x(0), x(1), . . . , x(T )), γ), (17)

where bij ∈ {−1, 0,+1} together with the set of nodes V .
( 3 ) We do not need to know the normalization constants for P (G|x, γ),

Pq(G|x, γ), q = 1, . . . , Q, because βq and wq are the ratios.
( 4 ) Hyperparameter for the Dirichlet distribution in principle, may be learned

from the data. Because of the scarcity of the data for learning, we select
not to perform learning, at least in the present paper.

3. Experiment 1: Synthesized Data

This section examines the prediction performance of the proposed algorithm
against synthesized data. Figure 5 shows the target graph with the number
of nodes N = 20; many of the nodes have small degrees, and some have larger

Fig. 5 Target graph for prediction experiment with synthesized data. Self loops are omitted
for simplicity.

degrees. Time-series data is generated according to Eqs. (4)–(6) and the number
of discrete values of the state xi(t) is K = 3. Since the purpose of the experiment
with simulated data is to validate the performance of our proposed algorithm,
the number of data points is set to emulate the real data experiment described
in Section 4. Generally, the more the number of nodes the network has, the
more difficult it is to estimate its topology. To have equal footing among the
experiments, the ratio of the number of nodes N to the number of time points T

is fixed, i.e., T
N = const. The number of nodes N is restricted by the selection of

genes one is interested in. There is more flexibility in the selection of time points
T , as well as the number of experiments. In the biological experiment, N = 35,
and three sets of T = 19 data points are obtained. Therefore, for our experiment
in the synthesized data, given the number of nodes N = 20, we set three sets of
T = 19

35 × 20 � 11 as the number of data points. To explain the implementation
of our prediction algorithm, first let b

(k)
ij be an arc of a posterior sample graph

defined by Eq. (17) and note that it has one of three possible values: 0, +1, and
−1. We predict bij according to

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if 1
S {#b

(k)
ij |b(k)

ij �= 0, k = 1, . . . , S} < ξ

+1, if 1
S {#b

(k)
ij |b(k)

ij �= 0, k = 1, . . . , S} ≥ ξ

and 1
S {#b

(k)
ij |b(k)

ij = +1, k = 1, . . . , S}
< 1

S {#b
(k)
ij |b(k)

ij = −1, k = 1, . . . , S}
−1, else.

(18)

where S is the number of samples and ξ is a certain threshold.
Figure 6 shows our prediction with
• γ (the Zipf prior hyperparameter) = 2.2
• number of samples: 500,000 (burn in 1,000,000)
• number of replicas: 5 with temperature 1/1.0, 1/0.9, 1/0.8, 1/0.7, 1/0.6
The predicted result has only one error: a false negative indicated by the dashed

arrow. The remaining solid arrows indicate true positives.
In order to reveal the possible role of the Zipf prior, we drew a False Positive

Rate (FPR)-Sensitivity Receiver Operating Characteristic (ROC) curve. More
specifically, we define
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Fig. 6 Predicted network with the proposed algorithm. There is one false negative indicated
by a dotted arrow. The solid arrows indicate that the predictions are correct. Self
loops are omitted for simplicity.

TP (True Positive): number of correctly predicted nonzero arcs
FP (False Positive): number of predicted nonzero arcs where true graph does

not have nonzero arcs
TN (True Negative): number of correctly predicted zero arcs
FN (False Negative): number of predicted zero arcs where true graph has

nonzero arcs
Then, we have

Sensitivity := TP
TP+FN , Specificity := TN

TN+FP

FPR := 1 − Specificity, PPV := FN
TN+FP .

(19)

Let ξ be the threshold value below which the algorithm predicts that a target
arc assumes a zero value. Varying ξ from 0 to 1 produces a curve in the FPR-
Sensitivity plane, which is the ROC curve. A natural performance criterion will

Fig. 7 ROC curves for performance comparison between uniform prior and Zipf prior for the
graph. The larger the area under a curve, the better the prediction performance.
Prediction with the Zipf prior appears functional.

be the area under this curve.
Figure 7 shows the ROC curves for the target graph shown in Fig. 5, as before,

with the proposed Zipf prior with γ = 2.2 and the uniform prior shown on the
graph. The proposed Zipf prior appears to be better than the uniform prior.

4. Experiment 2: Real Data

Nuclear receptors represent a superfamily of ligand-dependent transcription
factors that regulate essential biological processes, including development, repro-
duction, and metabolism. The classical endocrine receptors that mediate the
actions, such as steroid hormones, thyroid hormones, vitamins A and D, and
orphan receptors whose endogeneous ligands are unknown, are included in this
superfamily.

In neural progenitor cells, which have unique capabilities of self-renewal and
pluripotency to differentiate into neurons, astrocytes and oligodendrocytes, it
has been shown that several nuclear receptors are critically required for their
differentiation or proliferation. For example, retinoids, the active metabolites
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of vitamin A, regulate complex gene networks through heterodimers between
the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Despite the
importance of these diverse aspects, the signal transduction and transcriptional
regulatory pathways of nuclear receptors are still not completely understood.

In this study, nesural progenitor cells derived from adult mouse brains were
applied as an experimental sample of particular interest and we aimed to investi-
gate the possible network of nuclear receptors by using a bioinformatics approach.
The number of members in the nuclear receptor superfamily has been shown to
be 48 in the human genome database 35). We selected the 48 genes reported in
the human genome database out of 49 genes in the mouse genome database 36).

Progenitor cells are important target for the challenge because of their multi-
potency to produce various types of cells. Among them, neural progenitor cells
in the adult brain are of particular interest, since it had been believed for long
time that neurogenesis never happens in adult.

Shown in Fig. 8 is a coronal section of adult mouse. Neural progenitor cells
locates in the region surrounding anterior lateral ventricle (aLV). Closed area
drawn by a pen shows a representative region including aLV.

Neural progenitor cells are prepared from the region surrounding aLV accord-
ing to the procedure in the Methods. Cultured neural progenitor cell forms
neurospheres as shown in Fig. 9.

In general, progenitor cells are designated as the cells with the ability for self

Fig. 8 Coronal section of an adult mouse.

renewal and multipotency. From neural progenitor cells, neurons and glial cells
are generated (see Fig. 10). To achieve the proliferation and the differentiation,
neural progenitor cells have the strict gene expression system, though its detailed
mechanism is unknown.

4.1 Animals and Cell Culture
Adult male C57BL/6J mice, 6 weeks old, were purchased from CLEA Japan

Fig. 9 Cultured neural progenitor cells form neurospheres.

Fig. 10 Proliferation and differentiation.
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Fig. 11 Proliferation experiments.

(Tokyo, Japan). All experiments were performed in a laboratory designated
for animal experiments according to the NIH Standards for the Treatment of
Laboratory Animals.

Adult mouse NPCs were prepared as previously reported 23),24), with some
modifications. Briefly, adult C57BL/6J mice were sacrificed by cervical dislo-
cation. Their brains were removed and covered with a 1.5% solution of low-
melting-temperature agarose (Cambrex, Rockland, ME) at 37̊ C. Each brain
was sliced on a vibratome into viable 500 μm coronal sections in cold oxygenated
phosphate buffered saline (PBS). Rostral sections containing the anteriorlateral
sub-ventricular zone (SVZ) were dissected under a microscope (SZ61, Olympus,
Tokyo, Japan) and enzymatically dissociated with 0.25% trypsin-EDTA (Invit-
rogen, Carlsbad, CA) for 15 minutes at 37̊ C. The tissue was then mechanically
triturated into a single cell suspension and serum-free DMEM/F12 (Invitrogen)
containing 0.5 mg/ml trypsin inhibitor (Invitrogen), and DNase I (Sigma) was
added. The solution was left for 15 minutes at 37̊ C. The cell suspension was then
centrifuged at 1,500 rpm for 5 minutes and the supernatant was removed. The
isolated primary cells were plated at a density of 20 viable cells/μl in HydroCell
low cell-binding culture plates (CellSeed, Tokyo, Japan). The cells were expanded
for 7 days in serum-free DMEM/F12 containing B-27 supplement (Invitrogen) di-
luted 50-fold, 20 ng/ml of EGF (PeproTech EC, London, UK), 20 ng/ml of bFGF
(PeproTech EC), 100 U/ml of penicillin, and 100μg/ml of streptomycin (P/S;
Invitrogen).

For the secondary culture, cells were dissociated with 0.25% trypsin-EDTA and
mechanically triturated into a single-cell suspension. The cells were reseeded and
cultured for a further 7 days under the same conditions as the primary culture.
We used cells derived from the secondary culture for experiments.

4.2 Adult NSPC Studies and Sampling
For proliferation experiments, the cells were replated on poly-L-ornithine and

fibronectin-coated dishes or plates at a density of 300,000 cells/ml in serum-free
DMEM/F12 supplemented with B27, EGF, bFGF, and P/S in a monolayer cul-
ture. At this stage, > 90% of the cells were Nestin-positive, a neural progenitor
marker. On the following day, the medium was replaced with fresh medium and
the cells were separated into two groups: undifferentiated NPCs with growth
factor, and differentiating NPCs without growth factor. It is generally accepted
that NPCs initiate differentiation upon removing the growth factor. Indeed, neu-
ronal and glial cells were produced in our study (data not shown). In the present
study, cells from the undifferentiated proliferating group were collected every 4
hours over a 70-hour period and the expression levels of 17 clock and clock-related
genes were examined by quantitative RTPCR (Fig. 11).

4.3 Real-time Quantitative RT-PCR
Real-time quantitative RT-PCR was carried out using the SYBR Green-based

method (ABI PRISM 7700 Sequence Detection System; Applied Biosystems, Fos-
ter City, CA), as previously described in Ref. 25). Briefly, total RNAs were iso-
lated from cultured cells using a RNeasy Mini Kit (Qiagen, Hilden, Germany),
and subjected to first-strand cDNA synthesisTM (Invitrogen) according to the
manufacturer’s instructions. PCR amplifications were performed using the fol-
lowing protocol: 2 minutes at 50̊ C, 10 minutes at 95̊ C, and 40 cycles of 15
seconds at 95̊ C and 1 minute at 60̊ C. Dissociation reaction plots were produced
to confirm the specificity of the PCR. The products were analyzed using the
sequence detection system software developed by Applied Biosystems (version
1.7). The SYBR Green signal for the glyceraldehyde-3-phosphate dehydrogenase
(Gapdh) gene amplicon was used as a reference. Samples derived from three
independent experiments were used for analysis of the relative gene expression
data using the comparative Ct method (User Bulletin #2; Applied Biosystems).

Information regarding the primer sequences for each member of the nuclear
receptor superfamily are available upon request.

4.4 Prediction
4.4.1 Preprocessing
There were 48 genes in our target superfamily. Three time-series data sets were

measured, each covering a 72-hour period with a sampling frequency of 4 hours,
so that each data set consisted of 19 points. Of the 48 genes, 13 consistently
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Fig. 12 Target time series data for 72 hours with sampling period 4 hours consisting of 19
points. Of the 48 genes, 13 consistently exhibited very small amplitudes in their
expression values so that they were discarded. The expression values are normalized
between 0 and 1 at least in this study.

exhibited very small amplitudes in their expression values. Those 13 genes were
discarded. Each expression time series was normalized between 0 and 1 and was
then discretized into three equally spaced discrete values, at least in this study.
The resulting time-series data is shown in Fig. 12. We will perform prediction
experiments with other types of preprocessing in our future work.

4.4.2 Parameter Setting
The parameters were set as in our prediction described in Section 3.
4.4.3 Prediction Implementation
In order to cope with the sparseness of the data, we drew posterior samples from

100 independent MCMC simulations, in which parameters were set as described
in Section 3. We ranked ordered arcs bij by

1
S∗ {#b

(k)
ij |b(k)

ij �= 0, k = 1, . . . , S∗}
where S∗ denotes the total number of posterior samples from the 100 MCMC

Fig. 13 Prediction of the target network with the proposed algorithm.

simulations, namely, 100S. Those arcs ranked less than R were discarded and
the remaining arcs were predicted in a manner similar to that defined in Eq. (18).
Figure 13 is our prediction with R = 60.

4.5 Discussion
There is no ground truth for this network. There are, however, several well

known biologically plausible scenarios in the target genes of this study. For in-
stance, a previous biological study reported synergistic regulation of a cerebellum-
specific gene by ROR alpha and RAR 26). The predicted network (Fig. 13) ap-
pears to indicate the functional relationship between ROR alpha and RAR, as
indicated by the red arrow. ROR alpha has been shown to be a key regulator
for the cerebellum development 27). Another scenario is the RXR heterodimer
arc between PPAR and LXR, as revealed in Ref. 28). The green arrow in Fig. 13
appears to indicate this arc. It has also been verified that RXR with COUP-TF
interactions modulates rethinoic acid signaling 29). This relationship appears to
be indicated by the purple arrow in Fig. 13. It is also known 30) that the orphan
nuclear receptor NGFI-B (also called Nur77) can heterodimerize with RXR. This
appears to be indicated by the blue arrow. Finally, COUP-TFII with TH beta
heterodimer is also reported in Ref. 31). The orange arrow of Fig. 13 appears to
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indicate this.
It seems reasonable to conclude that NGFI-B genes are located upstream of

the gene regulation we predicted, since these genes are known to be immediate
early genes. Besides NGFI-B genes, our prediction suggests that GR, TLX, and
ERR alpha genes are located upstream of some nuclear receptor genes, including
PPAR delta and LXR beta. Both GR and TLX are suggested to play some
role in neurogenesis 32),33). Our prediction may provide further clues to identify
molecular cascades regulating the fate and function of neural progenitor cells.

For comparison, we tested the same data set using a greedy search method.
The greedy method could not find any of the relationship biologically verified in
the literature.

5. Conclusion

A Monte Carlo based algorithm was proposed for predicting a gene regula-
tory network from time-series expression data by formulating the problem as a
graph prediction problem on which a stochastic dynamical system is defined.
The prediction was performed by evaluating the graph posterior mean within a
Bayesian framework, where the graph prior distribution is assumed to follow the
Zipf prior, which is incorporated by taking into account several recent biological
studies. The algorithm was first tested against synthesized data for which the
ground truth is available, and the prediction was shown to be reasonable. Based
on this, an attempt was made to predict the gene regulatory network structure
of the mouse nuclear receptor superfamily. The prediction was discussed from a
biological perspective.

The graphical representation of gene regulatory networks proposed in this study
is from a bioinformatics view point. An arrow from gene j to gene i represents
the fact that gene j influences the expression values of gene i via proteins. Even
though further concreteness is not currently possible, the reported predictions
can serve as guidelines for biological experiment design to verify the predicted
interactions, which may lead to new biological findings.

It is a challenging problem to infer γ, the hyperparameter for the Zipf prior,
from the available data. It will be interesting to incorporate as a part of the graph
prior, if any, partial prior information about how genes are related with each

other from biologically verified data, besides those arcs discussed in Section 4.5.
A possible means of evaluating a graph structure other than our posterior mean is
the graph posterior mode, which could be our next topic of investigation. Another
project which is already underway is to make predictions with the continuous
data where the gene expression values are not discretized. An advantage of this
approach is that there is no information loss associated with discretization, while
a disadvantage is the difficulty of considering the tractable and yet reasonably
flexible transition probability density of stochastic dynamics.

The prediction results reported in this paper was on the expression time series
data in the proliferation mode. One of our future research topics will be pre-
dictions of the gene regulatory network in the differentiation mode and will be
reported elsewhere.
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