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EFSM-based Weight-oriented Concolic Testing

for Embedded Software
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In the context of the model-based design paradigm, this paper introduces
a new concolic testing approach for embedded software modeled via extended
finite state machines (EFSMs). It aims at overcoming the limited width of
the search based on concrete simulation and the limited depth of the symbolic
execution, by interleaving long-range constraint-based heuristics and a sym-
bolic multi-level backjumping technique. The combined approach is based on
a weight-oriented dependency analysis over EFSMs which permits to achieve
a high controllability of EFSM transitions. The effectiveness of the proposed
framework has been evaluated on several case studies.

1. Introduction

With the increasing popularity of model-based design for embedded software

(ESW), many test approaches have been developed on the top of the model of the

system1). In this context, the extended finite state machines (EFSMs) permit to

efficiently represent ESW2). Indeed, ESW is an interactive system which answers

to event occurrences and mixes control and data flow.

There are two main categories for classifying ESW testing techniques: concrete

execution and symbolic execution methods. The concrete execution is considered

a narrow-width and long-range exploration method, since it reaches deep states

of the program space by executing a large number of long paths, but it is far to

be an exhaustive approach. The symbolic execution represents an alternative for

overcoming concrete-execution limitations3), but it suffers the solver limitations.

Thus, it is considered a wide-width and short-range exploration method, since it
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Fig. 1 The EFSM-based concolic approach.

exhaustively analyzes the nearest states of the program space, without reaching

deepest state or requiring a long execution time.

This paper proposes an EFSM-based concolic (symbolic and concrete) testing

approach for ESW. Figure 1 graphically represents a traditional concolic ap-

proach, which alternates long-range-concrete and wide-width-symbolical search

techniques4). By using this approach, some corner-case states could remain hard-

to-reach, even when the symbolic technique is started in an intermediate state of

the execution. To overcome this problem, we propose a multi-level backjumping

strategy (MLBJ), which guides the concolic execution in covering corner cases.

The main contributions of this paper are the following:

• the proposed EFSM-based methodology is addressing the problem of ESW

test generation starting from a widely-used model of the system components

rather than their implementation, and thus the approach can be earlier inte-

grated into the ESW design flow;

• a concolic approach has been developed which combines biased-random test

generation, symbolic execution, and exploration heuristics over the system

model aiming at maximizing the EFSM transition coverage; moreover, the

proposed weight-based dependency analysis over EFSMs permits to identify

an effective interleaving strategy for the long-range and the wide-width ap-

proaches;

• finally, the paper empirically validates the efficiency of the proposed approach

by using different case studies.

In particular, the proposed approach early identifies possible symptoms of design
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errors by efficiently exploring the EFSM model of the application, and generates

effective input sequences to be used in further verification steps which require to

stimulate the ESW.

The remainder of this paper is structured as follows. Section 2 describes the

EFSM model. Section 3 presents the actual methodology before Section 4 gives

some experimental results. Finally, this article closes with a summary and con-

clusions.

2. Extended finite state machines

An extended finite state machine (EFSM) is a Mealy FSM augmented with

a finite number of internal variables, which are not part of the set of explicit

states. Each EFSM transition has an enabling precondition, often named enabling

function. Traversing a transition changes the EFSM state, produces some output,

and modifies the variables values. All these effects are defined by the transition

update function.

An EFSM is defined as a 7-tuple M = ⟨S, I,O,D,E,U, T ⟩. S is the finite set

of states, I is the set of possible inputs I = I1 × . . .× In, O is the set of possible

outputsO = O1×. . .×Om, andD the set of possible variables valuesD1×. . .×Dk.

Informally, Ii, Oi, and Di represent the domain of the i-th input, output, and

internal variable, respectively. E = (I × D → {0, 1}) is the set of enabling

functions, which are a boolean predicates over inputs and internal variables.

U = (I × D × O → D × O) is the set of update functions. Commonly, these

are implemented as sequences of assignments with the semantics that unassigned

variables retain their original value. T ⊆ S×S×E×U is the transition relation.

A transition, denoted as t, is an element of T , while s(t) ∈ S and d(t) ∈ S are

the transition source and destination state, respectively. Two transitions t and t′

are adjacent if d(t) = s(t′). A EFSM path is a sequence of adjacent transitions.

In this work we are considering deterministic EFSM, thus for every state, the

set of outgoing transitions have mutually exclusive enabling functions. A pair

⟨s, x⟩ ∈ S ×D is called configuration of M . The reset configuration is the pair

⟨s0, x0⟩ ∈ S × D of the reset state s0 and the reset values x0 of the internal

variables.

Fig. 2 reports both a graphical and a tabular representation of a simplified
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Fig. 2 An EFSM of a simplified in-flight safety system.

in-flight safety system EFSM where S = {Safe,Warning,Critical}. The in-

puts I = {t, p, o} represent the cabin temperature, pressure, and oxygen rate,

respectively. The outputs are O = {light, sound} and internal variables are

D = {tva,pva, ova}. For each transition, the enabling functions and update

functions are reported in the table.

3. EFSM-based concolic testing

In the concrete execution approaches, traversing an EFSM transition t depends

both on the values of the inputs and of the internal variables. The variable values

depend on the path leading from the reset configuration to t. In the following, we

identify a not-yet-traversed transition t as the target transition. For example, one

transition may assign the value 0 to a variable x while the enabling function of a

later target transition requires x > 0 despite of the value of x not having changed

between these transitions. Symbolic execution approaches typically overcome this

issue by exhaustively evaluating all possible input values along one or more paths

involving the target transition. However, the search range is severely limited by

the complexity of the resolution procedures.

To solve this problem, this paper presents a concolic approach for ESW testing,

which is based on the EFSM model of the system and integrates biased random

execution, which reaches deep states of the system, and a symbolic technique

that is weight oriented and ensures exhaustiveness along specific paths leading

to the target transition. Algorithm 1 is a high-level description of the proposed

concolic approach. The input EFSM is assumed to have all update functions
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Algorithm 1: The EFSM-based concolic algorithm.

input: an EFSM M ; timeout, inactivity ∈ R+

1 TSeq ← ∅, RInf ← ∅
2 DGph ← DependencyAnalysis(M)

3 while elapsed time < timeout do

4 while coverage inactivity timeout not expired do

5 (TSeq, RInf) ← LongRangeSearch(M , RInf)

6 (TSeq, RInf) ← MlbjWideWidthSearch(M , RInf, DGph)

7 return (TSeq, RInf)

expressed as a sequence of assignments. Such a normal form can be obtained

from any EFSM by applying the transformations described in5). The output of

the algorithm is the test set and the coverage information. At first, the test set

TSeq is empty, and no reachability information (RInf ) is available (line 1). In

particular, RInf keeps track for each transition of the test sequences that lead

to its traversal and of the corresponding EFSM configurations. Such information

is used for restoring the system status when the algorithm switches between the

symbolic and concrete techniques. The test generation runs until a user specified

timeout expires (line 3). First the algorithm executes a long-range concrete

approach, then a symbolic wide-width approach, which exploits the MLBJ to

cover corner cases. The latter starts when the coverage remains steady for a

user specified inactivity timeout (line 4). The algorithm reverts back to the first

approach as soon as the wide-width search traverses a target transition. The long-

range search exploits constraint-based heuristics6), that focus on the traversal of

just one transition at a time. Such approaches scale well with design size and,

significantly improves the bare pure-random approach.

The main contributions of the present work are presented in the following sec-

tions. Section 3.1 proposes a weight-based analysis of the dependencies among

inputs, internal variables, and EFSM paths. Such a dependency analysis per-

mits to selectively choose a path for the symbolic execution when the concrete

approach fails. Indeed, an open problem of the combined concrete and sym-

bolic approaches is the selection of where to start the wide-width search7). If

the switch is premature, the target transition will be too far and it will not be

traversed because of the short range of symbolic methods. On the other hand, a

late switch will exclude necessary paths from the search. Our heuristics backward

propagates the data dependencies of the target-transition enabling function and

computes a measure of how much each transition affects the value of involved in-

ternal variables. The measure is easily extended to paths. Informally, the higher

is the dependence, the higher is the probability that the target transition will

also be covered while traversing the path. Section 3.2 describes the multi-level

backjumping technique. Such an approach addresses the selective symbolic exe-

cution of EFSM paths, which are terminating with the target transition and have

a high dependence on the inputs. The high dependence on the inputs guarantee

the controllability of the enabling function of the target transitions, therefore

the decision procedure most likely is able to find a solution for traversing the

symbolic path, which leads from an intermediate state of the concrete execution.

3.1 Dependency analysis

In the present work the dependencies between inputs, variables and EFSM

transitions are expressed by means of a weights associated to EFSM paths. The

higher is the value of the weight associated with a path, the greater is the input-

dependency between the target transition and the path. Thus, we define how

a given path π, whose last element is the target transition t, propagates and

consumes weight. The weight Cπ is a measure of how much the variable values at

the end of π have been influenced by the inputs read along π itself. The higher

is this value, the higher is the probability that the constraint solver will be able

to infer a test sequence for π that satisfies t’s enabling function. Actually, Cπ is

a measure of the input-data dependency of the target transition t with respect

to the path π.

Let A be the set of possible assignments. The function Mod: A → (D ∪O)

computes the target of an assignment, that is either a internal variable or an

output. The function Ref : A → ℘(D ∪ I) computes the set of variables and

inputs referenced by an assignment. For example, the assignment r[i] := r[j]

modifies r and references {r, i, j}, and the assignment r[i] := t[j] modifies r and

references {t, i, j}.
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Let the data-dependence coefficient⋆1 be ∆: A×D → R+ where for every

assignment a ∈ A and internal variable d ∈ D:

∆a(d) =

{
1

|Ref(a)| if d ∈ Ref(a),

0 otherwise.
(1)

The ∆ coefficient measures how much each assignment depends on the internal

variables. Similarly, let the input-dependence coefficient be Υ: A→ R+, defined

as:

Υa =

{
0 if Ref(a) = ∅,
|Ref(a)∩I|
|Ref(a)| otherwise.

(2)

The Υ coefficient measures how much the value of the variable modified by the

assignment a depends on the inputs. Given an EFSM, both these measures are

constant, computed before the test-generation phase, and associated with each

assignment in the EFSM. The computation of ∆ and Υ requires time proportional

to |D| and to the number of assignments in target transition update function.

Let a weight distribution be a function which associates a non-negative real

value with each internal variable of the EFSM, i.e. w : D → R+. We define

how such a weight distribution is propagated and consumed by an assignment

a ∈ A. Let the propagation function and consumption function be respectively

P : A× (D → R+)→ (D → R+) and C : A× (D → R+)→ R+ defined as:
Pa(w) = wl∆a + w[l/0],

Ca(w) = wlΥa.
(3)

where l = Mod(a), wl is the weight associated with the internal variable l, and

w[l/0] denotes the function that is equal to w on every element of its domain,

except for l where it evaluates to 0. These definitions say that the weight dis-

tribution is affected by a only when there is an initial positive weight on the

variable modified by a.

An EFSM update function is defined as a sequence α, in case empty, of assign-

ments. We define how a weight distribution w is affected by such a sequence. By

induction on the length of α, the empty sequence of assignments does not affect

the weight propagation nor consumes weight. Let α = a :: β be the concate-

nation of the assignment a with the sequence β, the propagation function and

⋆1 In the following, the symbol | · | is the cardinality operator which counts the elements that
occur in the set.

Algorithm 2: MultilevelBackJumping

input: target transition t̄ ∈ T , timeout ∈ R+

1 Let w̄ : D → R+ be the initial weight distribution

2 ∀d ∈ D . w̄(d) =

{
1 if d ∈ Ref

(
EnableFunction(t̄)

)
,

0 otherwise.

3 p←
{
(t̄, w̄, 0)

}
4 while elapsed time < timeout do

5 (t :: π,w, c)← remove top(p)

6 if t :: π is satisfiable then

7 if Cπ < Ct::π then

8 foreach configuration k ∈ IRef
(
s(t)

)
do

9 if k ∧ t :: π is satisfiable then

10 return target transition covered

11 foreach
{
t′ ∈ T

∣∣ d(t′) = s(t)
}
do

12 α← UpdateFunction(t′)

13 push
(
p,
(
t′ :: t :: π, Pα(w), Cα(w) + c

))

consumption function over sequences are defined as:
Pα(w) = Pa

(
Pβ(w)

)
,

Cα(w) = Ca

(
Pβ(w)

)
+ Cβ(w).

(4)

This says that the weight consumed by an update function is the sum of the

weights consumed by each assignment. This definition can be immediately ex-

tended to paths by considering the concatenation of the update functions.

3.2 Multi-level Backjumping

When the long-range-concrete approach does not produce any new coverage

point, the concolic algorithm switches to MLBJ-based wide-width approach.

Typically, some hard-to-traverse transitions, whose enabling functions involve

internal variables, prevent the random-based technique going further in the ex-

ploration. In this case, the MLBJ is able to selectively address paths, with high

4 c⃝ 2010 Information Processing Society of Japan

  Vol.2010-SLDM-147 No.4
2010/11/29



IPSJ SIG Technical Report

Table 1 Characteristics of the case-studies.

DUT LoC CC I O V T S GT
Ifss 282 157 77 6 65 36 3 -
Ciitp 324 54 255 274 80 28 6 -
Lift 297 172 82 16 48 30 4 -
Atm 282 91 168 48 80 42 10 -
Inres 158 37 41 4 32 21 4 -
Elevator 3391 460 8 32 5037 775 382 0.123
Filter 256 24 66 32 293 37 21 0.015
Thermostat 142 52 58 8 56 68 2 0.048

dependency on inputs, for symbolically simulating them. Such paths are leading

from an intermediate state of the execution to the target transition, thus the

approach is exhaustive in a neighborhood of the corner case.

Algorithm 2 presents a structured description of the multi-level backjumping

heuristics. A target transition t̄ is selected. A progressively increasing neighbor-

hood of t̄ is searched for paths π leading to t̄ having maximal consumed weight

Cπ. The symbolic execution is started only on transitions with a non null con-

tribute to Cπ (line 7). To further narrow the search space, we use the decision

procedure to check for input-control dependencies that may prevent in advance

a path from being traversed (line 6). More in details, a visit is started from t̄

that proceeds backward in the EFSM graph. The visit uses a priority queue p

that initially contains only t̄. Elements of p are paths that end in t̄. Each path

of p is accompanied by its weight distribution w and consumed weight c. At each

iteration, a path t :: π with maximal consumed weight c is removed from p. The

constraint solver is used to check if the path t :: π can be proved unsatisfiable in

advance; in this case t :: π is discarded so the sub-tree following t :: π will not be

explored. Otherwise, if the first transition t has apported a positive consumed

weight, then for each configuration k stored in the source state of t the constraint

solver checks the existence of a test sequence that from k leads to the traversal of

t ::π and thus of t̄. Finally, for each transition t′ that precedes t the path t′ :: t ::π

is added to p.

4. Experimental results

Eight case studies were conducted to demonstrate the feasibility of using the

proposed approach to generate high quality test sequences by traversing EFSM

Table 2 Result comparisons.

Rand Cons Symb EC
DUT TC% Time TC% Time TC% Time TC% Time
Ifss 32.31 25.62 55.81 59.10 100.00 1024.10 100.00 12.72
Ciitp 96.15 6.81 96.15 18.71 100.00 180.33 100.00 23.83
Lift 11.11 0.71 81.48 63.55 100.00 1224.52 100.00 13.97
Atm 12.50 0.20 71.10 76.00 100.00 934.17 100.00 51.02
Inres 89.47 24.11 92.73 18.40 100.00 186.82 100.00 24.01
Elevator 69.31 30.23 69.34 190.90 1.42 4914.18 81.52 4459.62
Filter 62.85 0.81 62.85 2.74 68.57 3503.11 100.00 30.52
Thermostat 33.81 8.03 47.01 170.51 47.01 3402.32 60.21 37.60

model of ESW. Five of them, Ifss, Ciitp, Atm, Lift, and Inres, have been deduced

from the EFSM-based specifications of the ESW proposed in8). The other EF-

SMs, Elevator, Filter, and Thermostat, are industrial designs and they have been

automatically extracted from C sources.

Table 1 describes the characteristics of the case-studies. Columns LoC and

CC respectively show the number of lines of code and the McCabe Cyclomatic

Complexity. Columns I, O, and V respectively show the bit size of the inputs,

outputs, and internal variables. Columns T and S show the number of EFSM

transitions and states. For models originally written in C, the column GT shows

the EFSM generation time. The other EFSMs have been manually converted

from tabular specifications, so their generation time is not reported.

The reported cyclomatic complexity is a widely accepted language-independent

metric which provides a measure of the number of independent execution paths.

In particular it is an indicator of testability: a value higher than 50 usually means

a program difficult to test.

Table 2 compares the proposed EFSM-based concolic approach (EC) with a

pure random approach (Rand), a constraint-based heuristics (Cons), and a pure

symbolic approach (Symb). The Cons approach focuses on the traversal of

just one transition at a time. Despite Cons uses a constraint solver, it can be

considered a long-range concrete techniques as the Rand. For each approach,

the table reports the maximum achieved transition coverage (TC%) and the

execution time in seconds (Time). Each experiment was carried out with a time

threshold of 5000 seconds. The execution time refers to the time when the testing

engine achieved the last improvement in the transition coverage.
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Fig. 3 The transition coverage versus the test generation time.

We observe that: (1) for the case studies derived from the specifications8),

the proposed EC approach outperforms the Rand and the Cons in terms of

transition coverage. The Symb approach reaches the same coverage as the EC,

but the execution time is one or two orders of magnitude larger; (2) for the

industrial case studies, the EC outperforms all the other approaches in terms

of coverage. In particular, the coverage results of the Symb approach are poor

because of the complexity of the decision problems, which require execution time

higher than the fixed time threshold.

Fig. 3 presents the trend of the four approaches in terms of transition coverage

versus test generation time. For lack of space and for readability we selected one

industrial design (Filter) and one (Atm) from the set of EFSM-based specifica-

tion, and we limited the execution time up to 6 seconds. We observe that the

pure random Rand and the constraint-based Cons approaches very rapidly in-

crease the coverage, but achieve steady values, as they are unable to cover corner

cases. On the contrary, the symbolic approach Symb slowly increases the cov-

erage because of the high execution time of the decision procedure. Finally, the

EC uses a certain amount of time for the initial computation of the input- and

data-dependence coefficients. Then, the coverage presents two different trends. It

very rapidly increases as the long-range concrete approach is executed. As soon

as it is no more able to traverse new transitions, the wide-width search (based on

the MLBJ algorithm) is started. It is slower, because it requires more time for

solving path constraints, but it allows to exit from steady conditions achieving

very high transition coverage.

5. Concluding Remarks

In this paper we propose a testing approach for ESW based on EFSM, a widely

used model adopted in ESW design. The model-based technique permits the ear-

lier identification of design errors, and an efficient generation of input stimuli for

the following verification phases. With the aim of maximizing the EFSM tran-

sition coverage, a concolic technique has been developed which combines biased-

random test generation, symbolic execution, and exploration heuristics based

on the multi-level backjumping approach. The proposed weight-based depen-

dency analysis supports a selective symbolic-simulation strategy that overcomes

pure-random, constraint-based, and traditional symbolic-execution approaches.

Finally, the effectiveness of the proposed framework has been evaluated on several

case studies.
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