Bandwidth of Convex Bipartite Graphs and Related Graph Classes

Anish Man Singh Shrestha , ${ }^{\dagger 1}$ Satoshi Tayu, $\dagger 1$ and Shuichi Ueno ${ }^{\dagger 1}$

Abstract

It is known that the bandwidth problem is NP-complete for chordal bipartite graphs, while the problem can be solved in polynomial time for bipartite permutation graphs, which is a subclass of chordal bipartite graphs. This paper shows that the problem is NP-complete even for convex bipartite graphs, a subclass of chordal bipartite graphs and a superclass of bipartite permutation graphs. We provide polynomial-time approximation algorithms for convex inatite graphs. We also provide a polynomial-time approximation algorithm for 2-directional orthogonal ray graphs which is a subclass of chordal bipartite graphs and a superclass of convex bipartite graphs.

1. Introduction

A linear layout of a graph G with vertex set $V(G)$ is a bijection $\pi: V(G) \rightarrow$ $\{1,2, \ldots,|V(G)|\}$. The bandwidth of π is defined as $b_{\pi}(G)=\max \{|\pi(u)-\pi(v)| \mid$ $(u, v) \in E(G)\}$. The bandwidth of G is defined as $b(G)=\min b_{\pi}(G)$ where π ranges over all linear layouts of G. A layout π of G is said to be optimal if $b_{\pi}(G)=b(G)$. Given a graph G and an integer k, the bandwidth problem asks whether the bandwidth of G is at most k. Since the bandwidth of a graph is the maximum bandwidth over all its connected components, we shall consider only connected graphs.
Let G be a bipartite graph with bipartition (X, Y). The ordering \prec of X is said to fulfill the adjacency property if for each $y \in Y$, the set of neighbors of y consists of vertices that are consecutive in the ordering \prec of $X . G$ is said to be convex if there is an ordering of X that fulfills the adjacency property. G is said to be biconvex if there is an ordering of X and an ordering of Y that fulfill

[^0]the adjacency property. A graph G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$ is called a permutation graph if there exists a pair of permutations π_{1} and π_{2} on $N=\{1,2, \ldots, n\}$ such that for all $i, j \in N,\left(v_{i}, v_{j}\right) \in E(G)$ if and only if $\left(\pi_{1}^{-1}(i)-\pi_{1}^{-1}(j)\right)\left(\pi_{2}^{-1}(i)-\pi_{2}^{-1}(j)\right)<0$. A bipartite graph which is also a permutation graph is called a bipartite permutation graph. A bipartite graph G is said to be chordal if G contains no induced cycles of length greater than 4. A tree is a chordal bipartite graph by definition. A bipartite graph G with bipartition (X, Y) is called a 2-directional orthogonal ray graph if, in the $x y$ plane, there exist a family $\left\{R_{a} \mid a \in X\right\}$ of horizontal rays (half-lines) extending in the positive x-direction and a family $\left\{R_{b} \mid b \in Y\right\}$ of vertical rays extending in the positive y-direction, such that two rays R_{a} and R_{b} intersect if and only if a and b are adjacent in G. The following relationship between these classes of graphs is known ${ }^{4), 10)}:\{$ Bipartite Permutation Graphs $\} \subset\{$ Biconvex Bipartite Graphs $\} \subset\{$ Convex Bipartite Graphs $\} \subset\{2$-directional Orthogonal Ray Graphs $\}$ $\subset\{$ Chordal Bipartite Graphs $\}$.
Papadimitriou ${ }^{9}$) showed that the bandwidth problem is NP-complete for general graphs. Monien ${ }^{8)}$ showed that it is NP-complete even for caterpillars of hair length at most 3 , which are very special trees. This implies that it is also NP-complete for chordal bipartite graphs. On the other hand, Heggernes, Kratsch, and Meister ${ }^{5}$ recently showed that the bandwidth of bipartite permutation graphs can be computed in polynomial time. Uehara ${ }^{13)}$ proposed a faster algorithm for the same problem. Polynomial-time algorithms are also known for chain graphs ${ }^{6}$, interval graphs ${ }^{12)}$, and caterpillars of hair length at most $2^{1)}$. To the best of our knowledge, there are no prior results ascertaining the complexities of the bandwidth problem for 2-directional orthogonal ray graphs, convex bipartite graphs, or biconvex bipartite graphs. We show in Section 2.1 that the bandwidth problem is NP-complete even for convex trees and therefore for 2directional orthogonal ray graphs. In Section 4, we show that the problem can be solved in polynomial time for biconvex trees
Several results regarding approximation algorithms to compute bandwidth are known for general and special graph classes. Unger ${ }^{14)}$ showed that it is NP-hard to approximate the bandwidth of general graphs within some constant factor. Blache, Karpinski, and Wirtgen ${ }^{2}$ showed that it remains so even for trees (and

Fig. 1 Components of caterpillar C
therefore for chordal bipartite graphs). Constant-factor polynomial-time approximation algorithms are known for few special graph classes such as AT-free graphs and its subclasses as shown by Kloks, Kratsch, and Müller ${ }^{7)}$. Convex graphs or 2-directional orthogonal ray graphs are not contained in any of these classes. We provide in Section 2.2 a linear-time 4-approximation algorithm and an $O(n \log n)$ time 2-approximation algorithm for convex bipartite graphs, and in Section 3 an $O\left(n^{2} \log n\right)$-time 3 -approximation algorithm for 2-directional orthogonal ray graphs, where n is the number of vertices of a graph.

2. Bandwidth of Convex Bipartite Graphs

2.1 NP-completeness Result

A caterpillar is a tree in which all the vertices of degree greater than one are contained in a single path called a body. An edge incident to a vertex of degree one is called a hair. A generalized caterpillar is a tree obtained from a caterpillar by replacing each hair by a path. A path replacing a hair is also called a hair.

Monien ${ }^{8)}$ showed the following:
Theorem 1. The bandwidth problem is NP-complete for generalized caterpillars of hair length at most 3.
We can show the following by a simple modification of the proof of Theorem 1:
Theorem 2. The bandwidth problem is NP-complete for convex trees.
Proof. (Sketch.)As in the proof of Theorem 1, we reduce the multiple processor scheduling problem, which is known to be strongly NP-complete, to our problem. Given a set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of tasks (t_{i} being the execution time of task i), a deadline D, and the size m of a set $\{1,2, \ldots, m\}$ of processors, the multiple processor schedule problem asks whether the tasks in T can be scheduled on the m processors satisfying the deadline D. Corresponding to an instance of this problem, a convex tree C is constructed as follows.
Each task t_{i} is represented by a caterpillar T_{i} shown in Figure 1(a). Each processor i is represented by a chain P_{i} of length $D-1$. Special components called "barrier" and "turning point" are constructed as shown in Figure 1(b) and Figure 1(c), respectively. C is constructed from these components as shown in Figure 2. Task caterpillars T_{i} and T_{i+1} are separated by a chain L_{i} of length Δ. Processor chains P_{i} and P_{i+1} are separated by a $(p+1)$-barrier B_{i}. A turning point of height $p+2 n+1$ separates the upper task portion and the lower processor

Fig. 2 Instance of bandwidth reduced from multiprocessor scheduling problem
portion. A $(p+2 n+1)$-barrier B_{0} is attached to the left of P_{1}.
If we remove from C the degree- 1 vertices of the turning point, the remaining tree is a caterpillar. It is easy to see that a caterpillar is biconvex, and therefore both partitions of C have an ordering satisfying the adjacency property. If we restore the degree- 1 vertices, irrespective of their position in the ordering of their partition, they do not disturb the adjacency property of the ordering of the other partition. Thus C is a convex tree.

If we set the values of Δ and p such that $\Delta=2 \times(m(D+2)-2)$ and $p>$ $2 n(D+4)$, it can be shown that the tasks in T can be scheduled on the m processors if and only if C has a bandwidth of $k=p+1+2 n$. In fact, this proof is exactly the same as the proof of Theorem 1 , except only for a slight difference in the structure of the turning point. Therefore, we shall only briefly describe the idea of the proof here. For a detailed treatment, we refer to Monien ${ }^{8)}$.
If there exists a scheduling of the tasks in T such that tasks $t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{j}}$ are assigned to processor i, then C has bandwidth k and an optimal layout can be achieved by
(a) laying out the vertices of the body of $T_{i_{1}}, T_{i_{2}}, \ldots, T_{i_{j}}$ between barriers B_{i-1} and B_{i} (betwen B_{m-1} and turning point, for $i=m$) and
(b) laying out the vertices of B_{0} at the extreme left and those of the turning point at the extreme right.
Conversely, if C has bandwidth k, then in any optimal layout of C,
(a) the turning point must be laid out at one of the extreme ends, and barrier B_{0} must be laid out at the other,
(b) all the vertices of the body of each T_{j} must be laid out between two barriers B_{i} and B_{i+1} for some i (or B_{m-1} and the turning point for $i=m-1$), and
(c) for each i, if between B_{i} and B_{i+1} (or between B_{m-1} and turning point for $i=m-1$), bodies of $T_{i_{1}}, T_{i_{2}}, \ldots, T_{i_{j}}$ are laid out, then $t_{i_{1}}+t_{i_{2}}+\cdots+t_{i_{j}}<D$.
This gives us a scheduling of the tasks in T.

2.2 Approximation Algorithms for Convex Bipartite Graphs

In this section, we present two algorithms that approximate the bandwidth of convex graphs with worst-case performance ratios of 2 and 4.

Let G be a convex bipartite graph with bipartition (X, Y) and an ordering \prec of X satisfying the adjacency property with $X=\left\{x_{1}, x_{2}, \ldots, x_{|X|}\right\}$ and $x_{1} \prec$ $\ldots \prec x_{|X|}$. Assume $Y=\{1,2, \ldots,|Y|\}$. Define mappings $s: Y \rightarrow\{1,2, \ldots, n\}$ and $l: Y \rightarrow\{1,2, \ldots, n\}$ such that for $y \in Y, x_{s(y)}$ and $x_{l(y)}$ are, respectively, the smallest and largest vertices in \prec adjacenct to y. For each vertex $y \in Y$, let $m(y)=\lceil(s(y)+l(y)) / 2\rceil$.

2.2.1 Algorithm 1

Our first algorithm is described in Figure 3. Algorithm 1 takes as input G along with the mappings s and l and outputs a linear layout π of G. The idea of the algorithm is to lay out the vertices of X in the same order as they appear in \prec and insert the vertices of y between them, such that for each $y \in Y,\lfloor|N(y)| / 2\rfloor$ vertices of the set $N(y)$ of its neighbors are onto its left and the remaining to its right. Algorithm 1 starts by computing $m(y)$ for each vertex of Y and sorting the vertices according to their $m(i)$ values (Lines 1 and 2). It incrementally assigns labels to the vertices of X in the order in which they appear in \prec; stopping at each x_{j} to check whether there is a vertex in y with $m(y)$ value equal to j, in which case it assigns the current label to y. The process is repeated until all vertices have been labelled (Lines 3 through 8).

1 Compute $m(i)$ for each vertex $i \in Y$. Add a dummy vertex $|Y|+1$ to Y with $m(|Y|+1)=|X|+1$.
2 Let $\sigma(1), \ldots, \sigma(|Y+1|)$ be the vertices of Y sorted in the nondecreasing order of $m(i)$ value, where σ is a permutation on $\{1, \ldots,|Y|+1\}$.
Initialize $i \leftarrow 1, j \leftarrow 1, k \leftarrow 1$.
while $(j \leq|X|)$
if $j<m(\sigma(i))$ $\pi\left(x_{j}\right)=k ; j \leftarrow j+1 ; k \leftarrow k+1$.
else if $j=m(\sigma(i))$ $\pi(\sigma(i))=k ; i \leftarrow i+1 ; k \leftarrow k+1$.
return π

Consider a layout π output by Algorithm 1. For a vertex $y \in Y$, let G_{y} be the subgraph of G induced by the vertices in

$$
V_{y}=\left\{v \mid \pi\left(x_{s(y)}\right) \leq \pi(v) \leq \pi(y)\right\} \cup\left\{v \mid \pi(y) \leq \pi(v) \leq \pi\left(x_{l(y)}\right)\right\}
$$

The diameter of a graph is the least integer k such that a shortest path between any pair of vertices of the graph is at most k.
Lemma 3. The diameter of G_{y} is at most 4.
Proof. Let u, v be a pair of vertices of V_{y}.
Consider first the case that both $u, v \in V_{y} \cap X$. Since π preserves the ordering \prec of X, u must be x_{i} and v must be x_{j} for some $s(y) \leq i, j \leq l(y)$. Thus both u and v are adjacent to y. Hence the distance between u and v is 2 .

Consider next the case that $u \in V_{y} \cap X$ and $v \in V_{y} \cap Y$. Vertex v must be adjacent to at least one vertex u^{\prime} in $V_{y} \cap X$. If not, then it must be that v is connected to some x_{j} with $j<s(y)$ or $j>l(y)$, which means that $m(v)<s(y)$ or $m(v)>l(y)$, contradicting the assumption that Algorithm 1 placed v between $x_{s(y)}$ and y or between $x_{(l(y)}$ and y. If $u=u^{\prime}$, then the distance between u and v is 2 . Else, both u and u^{\prime} are at distance 2 from the earlier case, and therefore u and v are at a distance 3 .

Consider finally the case that both $u, v \in V_{y} \cap Y$. From the earlier case u must be adjacent to some vertex u^{\prime}, v must be adjacent to some vertex v^{\prime}. Also u^{\prime} and v^{\prime} are both adjacent to y. Hence the distance between u and v is at most 4 .
In all the above cases, the shortest path between any pair of vertices does not exceed 4 , and thus we have the lemma.

The following is a well-known lower bound for the bandwidth of a graph ${ }^{1)}$.
Lemma 4. For a graph $G, b(G) \geq \max \left\lceil\left(N^{\prime}-1\right) / D^{\prime}\right\rceil$, where the maximum is taken over all connected subgraphs G^{\prime} of G, N^{\prime} is the number of vertices of G^{\prime}, and D^{\prime} is the diameter of G^{\prime}.
We are now ready to show the approximation ratio of Algorithm 1.
Lemma 5. For layout π returned by Algorithm 1, $b_{\pi}(G) \leq 4 \times b(G)$.
Proof. Let $(x, y), x \in X, y \in Y$ be an edge of G such that $|\pi(x)-\pi(y)|=b_{\pi}(G)$. Let V_{y}^{\prime} be the set of vertices v such that v lies between x and y in π. Then $b_{\pi}(G)=\left|V_{y}^{\prime}\right|-1$. On the other hand, from Lemmas 3 and 4 , we get $b(G) \geq$
$\left\lceil\left(\left|V_{y}\right|-1\right) / 4\right\rceil$. Thus we have:

$$
\frac{b_{\pi}(G)}{b(G)} \leq \frac{\left|V_{y}^{\prime}\right|-1}{\left(\left|V_{y}\right|-1\right) / 4}
$$

Since the order of X in \prec is preserved in π, x must be $x_{s(y)}$ or $x_{l(y)}$, and therefore $V_{y}^{\prime} \subseteq V_{y}$. Thus we get:

$$
\frac{b_{\pi}(G)}{b(G)} \leq 4
$$

There exist graphs for which this ratio is asymptotically equal to 4. Figure 4 (a) shows an example of such a graph. Let us assume that the mappings s and l provided to Algorithm 1 are based on the left to right ordering of the vertices of the upper partition as shown in Figure $4(\mathrm{a})$. The layout π returned by Algorithm 1 will lay out between y and x_{n+1} all the vertices $x_{i}, x_{i}^{\prime}, y_{i j}, y_{i j}^{\prime}(1 \leq i \leq n, 1 \leq j \leq 2 n-1)$. Thus $b_{\pi}(G)=2 n^{2}+2 n+1$. On the other hand, the diameter of this graph is 4 , and so from Lemma 4,

Fig. 4 (a)An example for which the approximation ratio of Algorithm 1 is asymptotically equal to 4 . (b) A layout with bandwidth $\left\lceil\left(2 n^{2}+4 n+2\right) / 4\right\rceil$. Only the half right of y is shown as the left half contains the primed counterparts in a symmetric layout. The is shown as the left half contains the primed counterparts in a symmetric layout. The
regions denoted by black vertices denote the vertices $y_{i j}$, which can be laid out within regions denoted by bla
the same bandwidth.
$b(G) \geq\left\lceil\left(2 n^{2}+4 n+2\right) / 4\right\rceil$. In fact, for large values of n, there is a layout of bandwidth $\left\lceil\left(2 n^{2}+4 n+2\right) / 4\right\rceil$, as shown in Figure 4(b). Thus the approximation ratio $b_{\pi}(G) / b(G)$ is aymptotically equal to 4 .
Algorithm 1 can be implemented to run in $O(|X|+|Y|)$ time. So it follows from Lemma 5 that:
Theorem 6. Algorithm 1 computes a linear layout of a convex graph G with bipartition (X, Y) in $O(|X|+|Y|)$ time such that $b_{\pi}(G) \leq 4 \times b(G)$.
If only G, and not s and l, is given, we can compute an ordering satisfying the adjacency property (and thus s and l) in time linear to the number of vertices and edges of the graph, as shown by Booth and Lueker ${ }^{3)}$. In that case, the time complexity would be $O(|X|+|Y|+|E|)$, where E is the edge set of G. In the next subsection, we show a different algorithm that runs slower but improves the approximation ratio to 2 .

2.2.2 Algorithm 2

Let G be a convex bipartite graph with bipartition (X, Y) and an ordering \prec of X satisfying the adjacency property with $X=\left\{x_{1}, x_{2}, \ldots, x_{|X|}\right\}$ and $x_{1} \prec$ $\ldots \prec x_{|X|}$. Let s and l be mappings defined in Section 2.2.1. Let G_{I} be a graph obtained from G by adding to it an edge (y_{1}, y_{2}) for each pair $y_{1}, y_{2} \in Y$ having a common neighbor. A graph is said to be an interval graph if for every vertex of the graph, there exists an interval on the real line, such that two intervals intersect if and only if their corresponding vertices are adjacent.
Lemma 7. G_{I} is an interval graph.
Proof. We can see that G_{I} is an interval graph by defining interval $[i, i]$ for each vertex $x_{i} \in X$, and interval $[s(y), l(y)]$ for each vertex $y \in Y$.

Lemma 8. $b\left(G_{I}\right) \leq 2 b(G)$
Proof. Let π be an optimal layout of G. Consider the bandwidth of the same layout of graph G_{I}. For edge $(u, v) \in E(G) \cap E\left(G_{I}\right), \pi(u)-\pi(v) \leq b(G)$. For edge $(u, v) \in E\left(G_{I}\right) \backslash E(G)$, there exists a common neighbor of u and v in G, and therefore $\pi(u)-\pi(v) \leq 2 b(G)$. Thus $b_{\pi}\left(G_{I}\right) \leq 2 b(G)$. Since $b\left(G_{I}\right) \leq b_{\pi}\left(G_{I}\right)$, we get $b\left(G_{I}\right) \leq 2 b_{\pi}(G)$.

Sprague ${ }^{12)}$ showed the following about interval graphs.

Lemma 9. For an interval graph with n vertices, the bandwidth problem can be solved in $O(n \log n)$ time if the interval model is provided.
Given a convex bipartite graph G and mappings s and l, Algorithm 2 simply constructs the interval model of G_{I} and applies the algorithm for interval graphs. The interval model of G_{I} can be constructed from s and l in time linear to the number of vertices in G, and therefore we have from Lemmas 8 and 9 the following theorem:
Theorem 10. Algorithm 2 computes a linear layout π of a convex graph G with n vertices in $O(n \log n)$ time such that $b_{\pi}(G) \leq 2 \times b(G)$.
For a path of length 3 , whose bandwidth is 1 , Algorithm 2 may return a layout of bandwidth 2. Therefore the above-mentioned bound is tight.

3. Bandwidth of 2 -directional Orthogonal Ray Graphs

Since the set of convex bipartite graphs is a proper subset of the set of twodirectional orthogonal ray graphs, the bandwidth problem is NP-complete for 2-directional orthogonal ray graphs, by Theorem 2. In this section, we show a 3-approximation algorithm for 2-directional orthogonal ray graphs.
Let G be a bipartite graph with bipartition (X, Y), and let $\left(\prec_{X}, \prec_{Y}\right)$ be a pair of orderings of X and Y, respectively. Two edges (x, y) and (x^{\prime}, y^{\prime}) of G are said to cross in $\left(\prec_{X}, \prec_{Y}\right)$ if $x^{\prime} \prec_{X} x$ and $y \prec_{Y} y^{\prime}$. If for every pair (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ that cross, $\left(x^{\prime}, y\right)$ is also an edge of G, then $\left(\prec_{X}, \prec_{Y}\right)$ is said to be a weak ordering of G. If for every pair (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ of crossing edges, both $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$ are edges of G, then $\left(\prec_{X}, \prec_{Y}\right)$ is said to be a strong ordering of G.
Spinrad, Brandstädt, and Stewart ${ }^{11)}$ gave the following characterization of bipartite permutation graphs.
Lemma 11. A graph G is a bipartite permutation graph if and only if G has a strong ordering.
In an earlier work ${ }^{10)}$, we showed the following characterization of 2-directional orthogonal ray graphs.
Lemma 12. A graph G is a 2-directional orthogonal ray graph if and only if G has a weak ordering.
Given a 2-directional orthogonal ray graph G with bipartition (X, Y), edge set E, and a weak ordering $\left(\prec_{X}, \prec_{Y}\right)$ of G, we can construct a graph $G_{B P}$ having
vertex set $V_{B P}=X \cup Y$ and edge set $E_{B P}=E \cup E^{\prime}$, where E^{\prime} is the set consisting of an edge $\left(x, y^{\prime}\right)$ for every pair of edges (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ that cross in $\left(\prec_{X}, \prec_{Y}\right)$.
Lemma 13. $G_{B P}$ is a bipartite permutation graph.

Proof. We will show that $G_{B P}$ is a bipartite permutation graph by showing that $\left(\prec_{X}, \prec_{Y}\right)$ is a strong ordering of $G_{B P}$.
Let $e_{1}=\left(x_{1}, y_{1}\right)$ and $e_{2}=\left(x_{2}, y_{2}\right)$ be two edges of $G_{B P}$ that cross in $\left(\prec_{X}, \prec_{Y}\right)$.
We distinguish three cases: Case 1. both $e_{1}, e_{2} \in E$, Case 2. one each of e_{1}, e_{2} is in $E^{\prime} \backslash E$ and E, and Case 3. both $e_{1}, e_{2} \in E^{\prime} \backslash E$
Case 1: Since $\left(\prec_{X}, \prec_{Y}\right)$ is a weak ordering of $G,\left(x_{2}, y_{1}\right) \in E$. By definition of $E^{\prime},\left(x_{1}, y_{2}\right) \in E^{\prime}$. Hence both $\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right) \in E_{B P}$.
Case 2: Without loss of generality, assume $e_{1} \in E^{\prime} \backslash E$ and $e_{2} \in E$. By definition of $E^{\prime}, e_{1} \in E^{\prime} \backslash E$ implies that there exist $y_{1}^{\prime} \prec_{Y} y_{1}$ and $x_{1}^{\prime} \prec_{X} x_{1}$ such that $\left(x_{1}, y_{1}^{\prime}\right),\left(x_{1}^{\prime}, y_{1}\right) \in E$ and they cross. Since $\left(x_{1}, y_{1}^{\prime}\right)$ and $\left(x_{2}, y_{2}\right)$ also cross, $\left(x_{1}, y_{2}\right)$ must be in E^{\prime} and therefore in $E_{B P}$. To see that $\left(x_{2}, y_{1}\right) \in$ $E_{B P}$, we further distinguish three cases depending on the order of x_{1}^{\prime} and x_{2} in \prec_{X}.
Case 2.1. $x_{1}^{\prime}=x_{2}:\left(x_{2}, y_{1}\right)=\left(x_{1}^{\prime}, y_{1}\right)$ and hence $\left(x_{2}, y_{1}\right) \in E \subseteq E_{B P}$.
Case 2.2. $x_{2} \prec_{X} x_{1}^{\prime}$: since $\left(x_{1}^{\prime}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ cross, $\left(x_{2}, y_{1}\right) \in E \subseteq E_{B P}$.
Case 2.3. $x_{1}^{\prime} \prec_{X} x_{2}$: since $\left(x_{1}, y_{1}^{\prime}\right)$ and $\left(x_{2}, y_{2}\right)$ cross, $\left(x_{2}, y_{1}^{\prime}\right) \in E$; Moreover, $\left(x_{2}, y_{1}^{\prime}\right)$ and $\left(x_{1}^{\prime}, y_{1}\right)$ cross, implying that $\left(x_{2}, y_{1}\right) \in E^{\prime} \subseteq E_{B P}$.
In all the above subcases of Case 2, we have shown that $\left(x_{2}, y_{1}\right) \in E_{B P}$, and hence both $\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right) \in E_{B P}$.
Case 3: By definition of $E^{\prime}, e_{1} \in E^{\prime} \backslash E$ implies that there exist $y_{1}^{\prime} \prec_{Y} y_{1}$ and $x_{1}^{\prime} \prec_{X} x_{1}$ such that $\left(x_{1}, y_{1}^{\prime}\right),\left(x_{1}^{\prime}, y_{1}\right) \in E$ and they cross. Again by definition of $E^{\prime}, e_{2} \in E^{\prime} \backslash E$ implies that there exist $y_{2}^{\prime} \prec_{Y} y_{2}$ and $x_{2}^{\prime} \prec_{X} x_{2}$ such that $\left(x_{2}, y_{2}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}\right) \in E$ and they cross. Since $\left(x_{1}, y_{1}^{\prime}\right)$ and $\left(x_{2}^{\prime}, y_{2}\right)$ also cross, $\left(x_{1}, y_{2}\right)$ must be in E^{\prime} and therefore in $E_{B P}$. To see that $\left(x_{2}, y_{1}\right) \in E_{B P}$, we further distinguish three cases depending on the order of x_{1}^{\prime} and x_{2} in \prec_{X}.
Case 3.1. $x_{1}^{\prime}=x_{2}$: since $\left(x_{2}, y_{1}\right)=\left(x_{1}^{\prime}, y_{1}\right)$, we have $\left(x_{2}, y_{1}\right) \in E \subseteq E_{B P}$.
Case 3.2. $x_{2} \prec_{X} x_{1}^{\prime}$: since $\left(x_{1}^{\prime}, y_{1}\right) \in E$ and $\left(x_{2}, y_{2}\right) \in E^{\prime} \backslash E$ cross, we have
$\left(x_{2}, y_{1}\right) \in E_{B P}$ from Case 2 .
Case 3.3. $x_{1}^{\prime} \prec_{X} x_{2}$: we further distinguish three cases, depending on the
order of y_{2}^{\prime} and y_{1} in \prec_{Y}.
Case 3.3.1. $y_{2}^{\prime}=y_{1}$: since $\left(x_{2}, y_{1}\right)=\left(x_{2}, y_{2}^{\prime}\right)$, we have $\left(x_{2}, y_{1}\right) \in E \subseteq$ $E_{B P}$
Case 3.3.2. $y_{2}^{\prime} \prec_{Y} y_{1}$: since $\left(x_{2}, y_{2}^{\prime}\right) \in E$ and $\left(x_{1}^{\prime}, y_{1}\right) \in E$ cross $\left(x_{2}, y_{1}\right) \in E^{\prime} \subseteq E_{B P}$.
Case 3.3.3. $y_{1} \prec_{Y} y_{2}^{\prime}$: since $\left(x_{1}, y_{1}\right) \in E^{\prime} \backslash E$ and $\left(x_{2}, y_{2}^{\prime}\right) \in E$ cross, we have $\left(x_{2}, y_{1}\right) \in E_{B P}$ from Case 2 .
In all the above subcases of Case 3, we have shown that $\left(x_{1}, y_{1}\right) \in E_{B P}$, and hence both $\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right) \in E_{B P}$.
Thus we have shown that for every $e_{1}=\left(x_{1}, y_{1}\right)$ and $e_{2}=\left(x_{2}, y_{2}\right)$ of $G_{B P}$ that cross in $\left(\prec_{X}, \prec_{Y}\right)$, both $\left(x_{2}, y_{1}\right)$ and $\left(x_{1}, y_{2}\right)$ are also edges of $G_{B P}$; and therefore from Lemma 11, $G_{B P}$ is a bipartite permutation graph.

Lemma 14. $b\left(G_{B P}\right) \leq 3 \times b(G)$.
Proof. Let π be an optimal layout of G. Consider the same layout of $G_{B P}$. For an edge (x, y) of $G \cap G_{B P},|\pi(x)-\pi(y)| \leq b(G)$. For an edge (x, y) of $G_{B P} \backslash G$, there exist vertices $x^{\prime} \in X$ and $y^{\prime} \in Y$ such that $\left(y, x^{\prime}\right),\left(x^{\prime}, y\right),\left(y^{\prime}, x\right)$ are edges of G, and therefore $|\pi(x)-\pi(y)| \leq 3 \times b(G)$. Thus we have $b_{\pi}\left(G_{B P}\right) \leq 3 b(G)$. Since $b\left(G_{B P}\right) \leq b_{\pi}\left(G_{B P}\right)$, we get $b\left(G_{B P}\right) \leq 3 \times b(G)$.

We shall assume that along with a 2-directional orthogonal ray graph G, a weak ordering $\left(\prec_{X}, \prec_{Y}\right)$ is also provided as input. If not, then such an ordering as be computed in $O\left(n^{2}\right)$ time, where n is the number of vertices of $G^{10)}$. We can construct $G_{B P}$ from G in $O\left(n^{2}\right)$ time. This can be done by first remembering for each $x \in X$, its smallest neighbor y_{x} in \prec_{Y} and for each $y \in Y$, its smallest neighbor x_{y} in \prec_{X}, and then adding to G an edge (x, y) for each pair x, y for which $y_{x} \prec y$ and $x_{y} \prec x$. Uehara ${ }^{13)}$ showed that an optimal layout of a n-vertex bipartite permutation graph having bandwidth k can be computed in $O\left(n^{2} \log k\right)$ time. Then it follows from Lemma 14 that:
Theorem 15. There is an $O\left(n^{2} \log n\right)$-time algorithm which computes a linear layout π of an n-vertex 2-directional orthogonal ray graph G such that $b_{\pi}(G) \leq$ $3 \times b(G)$.

4. Bandwidth of Biconvex Trees

The 2-claw is a graph obtained from the complete bipartite graph K_{13} by replacing each edge by a path of length 2 . The following lemma can be quickly verified.
Lemma 16. The 2-claw is not a biconvex tree.
Biconvex trees can be characterized as follows:
Lemma 17. A tree T is biconvex if and only if T is a caterpillar.
Proof. The sufficiency is easy. To prove the necessity, suppose T is a biconvex graph. Let P be a longest path in T. If the length of P is less than five, T is trivially a caterpillar, and so we assume that it is greater than five. Suppose there exists a vertex not in P having degree greater than 1 . This implies that T contains the 2-claw as a subtree, contradicting the assumption that T is biconvex graph. Therefore T is a caterpillar.

Assmann, Peck, Sysło, and Zak showed the following:
Lemma 18. The bandwidth of generalized caterpillars of hair length at most two can be computed in linear time.
From Lemma 17 and Lemma 18, we have:
Theorem 19. The bandwidth of biconvex trees can be computed in linear time.
We conclude this paper with a note that the complexity of bandwidth problem for biconvex graphs is open.

References

1) Assmann, S.F., Peck, G.W., Sysło, M.M. and Zak, J.: The Bandwidth of Caterpillars with Hairs of Length 1 and 2, SIAM Journal on Algebraic and Discrete Methods, Vol.2, No.4, pp.387-393 (1981).
2) Blache, G., Karpinski, M. and Wirtgen, J.: On Approximation Intractability of the Bandwidth Problem, Technical report, University of Bonn (1997).
3) Booth, K.S. and Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, Vol.13, No.3, pp. 335 - 379 (1976).
4) Brandstädt, A., Le, V.B. and Spinrad, J.P.: Graph classes: a survey, Society for Industrial and Applied Mathematics (1999).
5) Heggernes, P., Kratsch, D. and Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time, J. of Discrete Algorithms, Vol.7, No.4, pp.533-544 (2009).
6) Kloks, T., Kratsch, D. and Muüller, H.: Bandwidth of chain graphs, Inf. Process. Lett., Vol.68, No.6, pp.313-315 (1998).
7) Kloks, T., Kratsch, D. and Muüller, H.: Approximating the Bandwidth for Asteroidal Triple-Free Graphs, Journal of Algorithms, Vol.32, pp.41-57 (1999)
8) Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete, SIAM J. Algebraic Discrete Methods, Vol.7, No.4, pp.505-512 (1986).
9) Papadimitriou, C.: The NP-Completeness of the bandwidth minimization problem, Computing, Vol.16, pp.263-270 (1976).
10) Shrestha, A. M.S., Tayu, S. and Ueno, S.: On Orthogonal Ray Graphs, Discrete Applied Mathematics, Vol.158, pp.1650-1659 (2010).
11) Spinrad, J., Brandstädt, A. and Stewart, L.: Bipartite permutation graphs, Discrete Appl. Math., Vol.18, No.3, pp.279-292 (1987).
12) Sprague, A.P.: An $O(n \log n)$ algorithm for bandwidth of interval graphs, SIAM J. Discrete Math, Vol.7(2), pp.213-220 (1994).
13) Uehara, R.: Bandwidth of bipartite permutation graphs, 19th Annual International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Vol.5369, pp.824-835 (2008).
14) Unger, W.: The Complexity of the Approximation of the Bandwidth Problem, FOCS '98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp.82-91 (1998).

[^0]: $\dagger 1$ Department of Communications and Integrated Systems, Tokyo Institute of Technology

