
IPSJ SIG Technical Report

Bandwidth of Convex Bipartite Graphs and

Related Graph Classes

Anish Man Singh Shrestha ,†1 Satoshi Tayu, †1

and Shuichi Ueno†1

It is known that the bandwidth problem is NP-complete for chordal bipar-
tite graphs, while the problem can be solved in polynomial time for bipartite
permutation graphs, which is a subclass of chordal bipartite graphs. This pa-
per shows that the problem is NP-complete even for convex bipartite graphs,
a subclass of chordal bipartite graphs and a superclass of bipartite permuta-
tion graphs. We provide polynomial-time approximation algorithms for convex
bipartite graphs. We also provide a polynomial-time approximation algorithm
for 2-directional orthogonal ray graphs which is a subclass of chordal bipartite
graphs and a superclass of convex bipartite graphs.

1. Introduction

A linear layout of a graph G with vertex set V (G) is a bijection π : V (G) →

{1, 2, . . . , |V (G)|}. The bandwidth of π is defined as bπ(G) = max{|π(u)−π(v)| |

(u, v) ∈ E(G)}. The bandwidth of G is defined as b(G) = min bπ(G) where π

ranges over all linear layouts of G. A layout π of G is said to be optimal if

bπ(G) = b(G). Given a graph G and an integer k, the bandwidth problem asks

whether the bandwidth of G is at most k. Since the bandwidth of a graph is the

maximum bandwidth over all its connected components, we shall consider only

connected graphs.

Let G be a bipartite graph with bipartition (X,Y). The ordering ≺ of X is

said to fulfill the adjacency property if for each y ∈ Y , the set of neighbors of

y consists of vertices that are consecutive in the ordering ≺ of X . G is said to

be convex if there is an ordering of X that fulfills the adjacency property. G is

said to be biconvex if there is an ordering of X and an ordering of Y that fulfill

†1 Department of Communications and Integrated Systems, Tokyo Institute of Technology

the adjacency property. A graph G with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G) is called a permutation graph if there exists a pair of permutations

π1 and π2 on N = {1, 2, . . . , n} such that for all i, j ∈ N , (vi, vj) ∈ E(G) if and

only if (π−1
1 (i) − π−1

1 (j))(π−1
2 (i) − π−1

2 (j)) < 0. A bipartite graph which is also

a permutation graph is called a bipartite permutation graph. A bipartite graph

G is said to be chordal if G contains no induced cycles of length greater than

4. A tree is a chordal bipartite graph by definition. A bipartite graph G with

bipartition (X,Y) is called a 2-directional orthogonal ray graph if, in the xy-

plane, there exist a family {Ra|a ∈ X} of horizontal rays (half-lines) extending

in the positive x-direction and a family {Rb|b ∈ Y } of vertical rays extending

in the positive y-direction, such that two rays Ra and Rb intersect if and only

if a and b are adjacent in G. The following relationship between these classes

of graphs is known4),10): {Bipartite Permutation Graphs} ⊂ {Biconvex Bipartite

Graphs} ⊂ {Convex Bipartite Graphs} ⊂ {2-directional Orthogonal Ray Graphs}

⊂ {Chordal Bipartite Graphs}.

Papadimitriou9) showed that the bandwidth problem is NP-complete for gen-

eral graphs. Monien8) showed that it is NP-complete even for caterpillars of

hair length at most 3, which are very special trees. This implies that it is

also NP-complete for chordal bipartite graphs. On the other hand, Heggernes,

Kratsch, and Meister5) recently showed that the bandwidth of bipartite permu-

tation graphs can be computed in polynomial time. Uehara13) proposed a faster

algorithm for the same problem. Polynomial-time algorithms are also known for

chain graphs6), interval graphs12), and caterpillars of hair length at most 21). To

the best of our knowledge, there are no prior results ascertaining the complex-

ities of the bandwidth problem for 2-directional orthogonal ray graphs, convex

bipartite graphs, or biconvex bipartite graphs. We show in Section 2.1 that the

bandwidth problem is NP-complete even for convex trees and therefore for 2-

directional orthogonal ray graphs. In Section 4, we show that the problem can

be solved in polynomial time for biconvex trees .

Several results regarding approximation algorithms to compute bandwidth are

known for general and special graph classes. Unger14) showed that it is NP-hard

to approximate the bandwidth of general graphs within some constant factor.

Blache, Karpinski, and Wirtgen2) showed that it remains so even for trees (and

1 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

.

. . .

︸ ︷︷ ︸

p− 1

︸ ︷︷ ︸

p− 1
︸ ︷︷ ︸

p− 1

ti
︷ ︸︸ ︷

. . .
︸ ︷︷ ︸

2p− 2

(a) Ti corresponding to task ti. (b) p-barrier.

. . .
︸ ︷︷ ︸

2p − 1

(c) Turning point of height p.

Fig. 1 Components of caterpillar C.

therefore for chordal bipartite graphs). Constant-factor polynomial-time approx-

imation algorithms are known for few special graph classes such as AT-free graphs

and its subclasses as shown by Kloks, Kratsch, and Müller7). Convex graphs or

2-directional orthogonal ray graphs are not contained in any of these classes. We

provide in Section 2.2 a linear-time 4-approximation algorithm and an O(n log n)-

time 2-approximation algorithm for convex bipartite graphs, and in Section 3

an O(n2 logn)-time 3-approximation algorithm for 2-directional orthogonal ray

graphs, where n is the number of vertices of a graph.

2. Bandwidth of Convex Bipartite Graphs

2.1 NP-completeness Result

A caterpillar is a tree in which all the vertices of degree greater than one are

contained in a single path called a body. An edge incident to a vertex of degree

one is called a hair. A generalized caterpillar is a tree obtained from a caterpillar

by replacing each hair by a path. A path replacing a hair is also called a hair.

Monien8) showed the following:

Theorem 1. The bandwidth problem is NP-complete for generalized caterpillars

of hair length at most 3.

We can show the following by a simple modification of the proof of Theorem 1:

Theorem 2. The bandwidth problem is NP-complete for convex trees.

Proof. (Sketch.)As in the proof of Theorem 1, we reduce the multiple processor

scheduling problem, which is known to be strongly NP-complete, to our problem.

Given a set T = {t1, t2, . . . , tn} of tasks (ti being the execution time of task i),

a deadline D, and the size m of a set {1, 2, . . . ,m} of processors, the multiple

processor schedule problem asks whether the tasks in T can be scheduled on the

m processors satisfying the deadline D. Corresponding to an instance of this

problem, a convex tree C is constructed as follows.

Each task ti is represented by a caterpillar Ti shown in Figure 1(a). Each

processor i is represented by a chain Pi of length D − 1. Special components

called “barrier” and “turning point” are constructed as shown in Figure 1(b) and

Figure 1(c), respectively. C is constructed from these components as shown in

Figure 2. Task caterpillars Ti and Ti+1 are separated by a chain Li of length ∆.

Processor chains Pi and Pi+1 are separated by a (p + 1)-barrier Bi. A turning

point of height p+2n+1 separates the upper task portion and the lower processor

T1 T2 Tn

︸ ︷︷ ︸

∆

︷
︸
︸

︷

∆

L1 L2 Ln−1 Ln

P1 P2 Pm−1 Pm

(p + 1 + 2n)

barrier

B0

(p + 1)

barrier

B1

(p + 1)

barrier

Bm−1

turning point of height p + 1 + 2n

︸ ︷︷ ︸

D − 1

︸ ︷︷ ︸

D − 1

. . .

. . .

. . .

Fig. 2 Instance of bandwidth reduced from multiprocessor scheduling problem

2 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

portion. A (p + 2n + 1)-barrier B0 is attached to the left of P1.

If we remove from C the degree-1 vertices of the turning point, the remaining

tree is a caterpillar. It is easy to see that a caterpillar is biconvex, and therefore

both partitions of C have an ordering satisfying the adjacency property. If we

restore the degree-1 vertices, irrespective of their position in the ordering of their

partition, they do not disturb the adjacency property of the ordering of the other

partition. Thus C is a convex tree.

If we set the values of ∆ and p such that ∆ = 2 × (m(D + 2) − 2) and p >

2n(D + 4), it can be shown that the tasks in T can be scheduled on the m

processors if and only if C has a bandwidth of k = p+ 1 + 2n. In fact, this proof

is exactly the same as the proof of Theorem 1, except only for a slight difference

in the structure of the turning point. Therefore, we shall only briefly describe

the idea of the proof here. For a detailed treatment, we refer to Monien8).

If there exists a scheduling of the tasks in T such that tasks ti1 , ti2 , . . . , tij are

assigned to processor i, then C has bandwidth k and an optimal layout can be

achieved by

(a) laying out the vertices of the body of Ti1 , Ti2 , . . . , Tij between barriers Bi−1

and Bi (betwen Bm−1 and turning point, for i = m) and

(b) laying out the vertices of B0 at the extreme left and those of the turning

point at the extreme right.

Conversely, if C has bandwidth k, then in any optimal layout of C,

(a) the turning point must be laid out at one of the extreme ends, and barrier

B0 must be laid out at the other,

(b) all the vertices of the body of each Tj must be laid out between two barriers

Bi and Bi+1 for some i (or Bm−1 and the turning point for i = m− 1), and

(c) for each i, if between Bi and Bi+1 (or between Bm−1 and turning point for

i = m−1), bodies of Ti1 , Ti2 , . . . , Tij are laid out, then ti1 +ti2 + · · ·+tij < D.

This gives us a scheduling of the tasks in T .

2.2 Approximation Algorithms for Convex Bipartite Graphs

In this section, we present two algorithms that approximate the bandwidth of

convex graphs with worst-case performance ratios of 2 and 4.

Let G be a convex bipartite graph with bipartition (X,Y) and an ordering ≺

of X satisfying the adjacency property with X = {x1, x2, . . . , x|X|} and x1 ≺

. . . ≺ x|X|. Assume Y = {1, 2, . . . , |Y |}. Define mappings s : Y → {1, 2, . . . , n}

and l : Y → {1, 2, . . . , n} such that for y ∈ Y , xs(y) and xl(y) are, respectively,

the smallest and largest vertices in ≺ adjacenct to y. For each vertex y ∈ Y , let

m(y) = ⌈(s(y) + l(y))/2⌉.

2.2.1 Algorithm 1

Our first algorithm is described in Figure 3. Algorithm 1 takes as input G along

with the mappings s and l and outputs a linear layout π of G. The idea of the

algorithm is to lay out the vertices of X in the same order as they appear in ≺

and insert the vertices of y between them, such that for each y ∈ Y , ⌊|N(y)|/2⌋

vertices of the set N(y) of its neighbors are onto its left and the remaining to its

right. Algorithm 1 starts by computing m(y) for each vertex of Y and sorting the

vertices according to their m(i) values (Lines 1 and 2). It incrementally assigns

labels to the vertices of X in the order in which they appear in ≺ ; stopping

at each xj to check whether there is a vertex in y with m(y) value equal to j,

in which case it assigns the current label to y. The process is repeated until all

vertices have been labelled (Lines 3 through 8).

1 Compute m(i) for each vertex i ∈ Y . Add a dummy vertex |Y | + 1

to Y with m(|Y |+ 1) = |X |+ 1.

2 Let σ(1), . . . , σ(|Y + 1|) be the vertices of Y sorted in the non-

decreasing order of m(i) value, where σ is a permutation on

{1, . . . , |Y |+ 1}.

3 Initialize i← 1, j ← 1, k ← 1.

4 while (j ≤ |X |)

5 if j < m(σ(i))

6 π(xj) = k; j ← j + 1; k ← k + 1.

7 else if j = m(σ(i))

8 π(σ(i)) = k; i← i + 1; k ← k + 1.

9 return π

Fig. 3 Algorithm 1.

3 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

Consider a layout π output by Algorithm 1. For a vertex y ∈ Y , let Gy be the

subgraph of G induced by the vertices in

Vy = {v|π(xs(y)) ≤ π(v) ≤ π(y)} ∪ {v|π(y) ≤ π(v) ≤ π(xl(y))}.

The diameter of a graph is the least integer k such that a shortest path between

any pair of vertices of the graph is at most k.

Lemma 3. The diameter of Gy is at most 4.

Proof. Let u, v be a pair of vertices of Vy.

Consider first the case that both u, v ∈ Vy ∩X . Since π preserves the ordering

≺ of X , u must be xi and v must be xj for some s(y) ≤ i, j ≤ l(y). Thus both u

and v are adjacent to y. Hence the distance between u and v is 2.

Consider next the case that u ∈ Vy ∩ X and v ∈ Vy ∩ Y . Vertex v must be

adjacent to at least one vertex u′ in Vy ∩ X . If not, then it must be that v is

connected to some xj with j < s(y) or j > l(y), which means that m(v) < s(y)

or m(v) > l(y), contradicting the assumption that Algorithm 1 placed v between

xs(y) and y or between x(l(y) and y. If u = u′, then the distance between u and

v is 2. Else, both u and u′ are at distance 2 from the earlier case, and therefore

u and v are at a distance 3.

Consider finally the case that both u, v ∈ Vy ∩Y . From the earlier case u must

be adjacent to some vertex u′, v must be adjacent to some vertex v′. Also u′ and

v′ are both adjacent to y. Hence the distance between u and v is at most 4.

In all the above cases, the shortest path between any pair of vertices does not

exceed 4, and thus we have the lemma.

The following is a well-known lower bound for the bandwidth of a graph1).

Lemma 4. For a graph G, b(G) ≥ max⌈(N ′ − 1)/D′⌉, where the maximum is

taken over all connected subgraphs G′ of G, N ′ is the number of vertices of G′,

and D′ is the diameter of G′.

We are now ready to show the approximation ratio of Algorithm 1.

Lemma 5. For layout π returned by Algorithm 1, bπ(G) ≤ 4× b(G).

Proof. Let (x, y), x ∈ X, y ∈ Y be an edge of G such that |π(x)−π(y)| = bπ(G).

Let V ′
y be the set of vertices v such that v lies between x and y in π. Then

bπ(G) = |V ′
y | − 1. On the other hand, from Lemmas 3 and 4, we get b(G) ≥

⌈(|Vy | − 1)/4⌉. Thus we have:

bπ(G)

b(G)
≤

|V ′
y | − 1

(|Vy | − 1)/4
Since the order of X in ≺ is preserved in π, x must be xs(y) or xl(y), and therefore

V ′
y ⊆ Vy. Thus we get:

bπ(G)

b(G)
≤ 4.

There exist graphs for which this ratio is asymptotically equal to 4. Fig-

ure 4(a) shows an example of such a graph. Let us assume that the map-

pings s and l provided to Algorithm 1 are based on the left to right ordering

of the vertices of the upper partition as shown in Figure 4(a). The layout

π returned by Algorithm 1 will lay out between y and xn+1 all the vertices

xi, x
′
i, yij , y

′
ij(1 ≤ i ≤ n, 1 ≤ j ≤ 2n − 1). Thus bπ(G) = 2n2 + 2n + 1.

On the other hand, the diameter of this graph is 4, and so from Lemma 4,

.
.

.

.

x1

x1 x′

1 x2 x′

2

xn

xn x′

n
xn+1

x−1

x−1x′

−1

x−n

x−nx′

−nx′

n+1

y

y y11 y′

11 y21 y′

21y22 y′

22y23 y′

23

yn1

yn1

yn,2n−1

yn,2n−1y
′

n1
y′

n,2n−1

⌈(2n2 + 4n + 2)/4⌉⌈(2n2 + 4n + 2)/4⌉

(a)

(b)

Fig. 4 (a)An example for which the approximation ratio of Algorithm 1 is asymptotically
equal to 4. (b) A layout with bandwidth ⌈(2n2 + 4n+ 2)/4⌉. Only the half right of y
is shown as the left half contains the primed counterparts in a symmetric layout. The
regions denoted by black vertices denote the vertices yij , which can be laid out within
the same bandwidth.

4 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

b(G) ≥ ⌈(2n2 + 4n + 2)/4⌉. In fact, for large values of n, there is a layout of

bandwidth ⌈(2n2 + 4n+ 2)/4⌉, as shown in Figure 4(b). Thus the approximation

ratio bπ(G)/b(G) is aymptotically equal to 4.

Algorithm 1 can be implemented to run in O(|X | + |Y |) time. So it follows

from Lemma 5 that:

Theorem 6. Algorithm 1 computes a linear layout of a convex graph G with

bipartition (X,Y) in O(|X |+ |Y |) time such that bπ(G) ≤ 4× b(G).

If only G, and not s and l, is given, we can compute an ordering satisfying the

adjacency property (and thus s and l) in time linear to the number of vertices

and edges of the graph, as shown by Booth and Lueker3). In that case, the time

complexity would be O(|X | + |Y | + |E|), where E is the edge set of G. In the

next subsection, we show a different algorithm that runs slower but improves the

approximation ratio to 2.

2.2.2 Algorithm 2

Let G be a convex bipartite graph with bipartition (X,Y) and an ordering ≺

of X satisfying the adjacency property with X = {x1, x2, . . . , x|X|} and x1 ≺

. . . ≺ x|X|. Let s and l be mappings defined in Section 2.2.1. Let GI be a graph

obtained from G by adding to it an edge (y1, y2) for each pair y1,y2 ∈ Y having

a common neighbor. A graph is said to be an interval graph if for every vertex

of the graph, there exists an interval on the real line, such that two intervals

intersect if and only if their corresponding vertices are adjacent.

Lemma 7. GI is an interval graph.

Proof. We can see that GI is an interval graph by defining interval [i, i] for each

vertex xi ∈ X , and interval [s(y), l(y)] for each vertex y ∈ Y .

Lemma 8. b(GI) ≤ 2b(G)

Proof. Let π be an optimal layout of G. Consider the bandwidth of the same

layout of graph GI . For edge (u, v) ∈ E(G) ∩ E(GI), π(u) − π(v) ≤ b(G). For

edge (u, v) ∈ E(GI)\E(G), there exists a common neighbor of u and v in G, and

therefore π(u)− π(v) ≤ 2b(G). Thus bπ(GI) ≤ 2b(G). Since b(GI) ≤ bπ(GI), we

get b(GI) ≤ 2bπ(G).

Sprague12) showed the following about interval graphs.

Lemma 9. For an interval graph with n vertices, the bandwidth problem can be

solved in O(n log n) time if the interval model is provided.

Given a convex bipartite graph G and mappings s and l, Algorithm 2 simply

constructs the interval model of GI and applies the algorithm for interval graphs.

The interval model of GI can be constructed from s and l in time linear to the

number of vertices in G, and therefore we have from Lemmas 8 and 9 the following

theorem:

Theorem 10. Algorithm 2 computes a linear layout π of a convex graph G with

n vertices in O(n logn) time such that bπ(G) ≤ 2× b(G).

For a path of length 3, whose bandwidth is 1, Algorithm 2 may return a layout

of bandwidth 2. Therefore the above-mentioned bound is tight.

3. Bandwidth of 2-directional Orthogonal Ray Graphs

Since the set of convex bipartite graphs is a proper subset of the set of two-

directional orthogonal ray graphs, the bandwidth problem is NP-complete for

2-directional orthogonal ray graphs, by Theorem 2. In this section, we show a

3-approximation algorithm for 2-directional orthogonal ray graphs.

Let G be a bipartite graph with bipartition (X,Y), and let (≺X ,≺Y) be a pair

of orderings of X and Y , respectively. Two edges (x, y) and (x′, y′) of G are said

to cross in (≺X ,≺Y) if x′≺Xx and y≺Y y
′. If for every pair (x, y) and (x′, y′) that

cross, (x′, y) is also an edge of G, then (≺X ,≺Y) is said to be a weak ordering of

G. If for every pair (x, y) and (x′, y′) of crossing edges, both (x, y′) and (x′, y)

are edges of G, then (≺X ,≺Y) is said to be a strong ordering of G.

Spinrad, Brandstädt, and Stewart11) gave the following characterization of bi-

partite permutation graphs.

Lemma 11. A graph G is a bipartite permutation graph if and only if G has a

strong ordering.

In an earlier work10), we showed the following characterization of 2-directional

orthogonal ray graphs.

Lemma 12. A graph G is a 2-directional orthogonal ray graph if and only if G

has a weak ordering.

Given a 2-directional orthogonal ray graph G with bipartition (X,Y), edge set

E, and a weak ordering (≺X ,≺Y) of G, we can construct a graph GBP having

5 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

vertex set VBP = X∪Y and edge set EBP = E∪E′, where E′ is the set consisting

of an edge (x, y′) for every pair of edges (x, y) and (x′, y′) that cross in (≺X ,≺Y).

Lemma 13. GBP is a bipartite permutation graph.

Proof. We will show that GBP is a bipartite permutation graph by showing that

(≺X ,≺Y) is a strong ordering of GBP .

Let e1 = (x1, y1) and e2 = (x2, y2) be two edges of GBP that cross in (≺X ,≺Y).

We distinguish three cases: Case 1. both e1, e2 ∈ E, Case 2. one each of e1, e2
is in E′ \ E and E, and Case 3. both e1, e2 ∈ E′ \ E.

Case 1: Since (≺X ,≺Y) is a weak ordering of G, (x2, y1) ∈ E. By definition of

E′, (x1, y2) ∈ E′. Hence both (x2, y1), (x1, y2) ∈ EBP .

Case 2: Without loss of generality, assume e1 ∈ E′ \ E and e2 ∈ E. By

definition of E′, e1 ∈ E′ \E implies that there exist y′1 ≺Y y1 and x′
1 ≺X x1

such that (x1, y
′
1), (x′

1, y1) ∈ E and they cross. Since (x1, y
′
1) and (x2, y2)

also cross, (x1, y2) must be in E′ and therefore in EBP . To see that (x2, y1) ∈

EBP , we further distinguish three cases depending on the order of x′
1 and x2

in ≺X .

Case 2.1. x′
1 = x2: (x2, y1) = (x′

1, y1) and hence (x2, y1) ∈ E ⊆ EBP .

Case 2.2. x2 ≺X x′
1: since (x′

1, y1) and (x2, y2) cross, (x2, y1) ∈ E ⊆ EBP .

Case 2.3. x′
1 ≺X x2: since (x1, y

′
1) and (x2, y2) cross, (x2, y

′
1) ∈ E; More-

over, (x2, y
′
1) and (x′

1, y1) cross, implying that (x2, y1) ∈ E′ ⊆ EBP .

In all the above subcases of Case 2, we have shown that (x2, y1) ∈ EBP , and

hence both (x2, y1), (x1, y2) ∈ EBP .

Case 3: By definition of E′, e1 ∈ E′ \ E implies that there exist y′1 ≺Y y1 and

x′
1 ≺X x1 such that (x1, y

′
1), (x′

1, y1) ∈ E and they cross. Again by definition

of E′, e2 ∈ E′ \E implies that there exist y′2 ≺Y y2 and x′
2 ≺X x2 such that

(x2, y
′
2),(x′

2, y2) ∈ E and they cross. Since (x1, y
′
1) and (x′

2, y2) also cross,

(x1, y2) must be in E′ and therefore in EBP . To see that (x2, y1) ∈ EBP , we

further distinguish three cases depending on the order of x′
1 and x2 in ≺X .

Case 3.1. x′
1 = x2: since (x2, y1) = (x′

1, y1), we have (x2, y1) ∈ E ⊆ EBP .

Case 3.2. x2 ≺X x′
1: since (x′

1, y1) ∈ E and (x2, y2) ∈ E′\E cross, we have

(x2, y1) ∈ EBP from Case 2.

Case 3.3. x′
1 ≺X x2: we further distinguish three cases, depending on the

order of y′2 and y1 in ≺Y .

Case 3.3.1. y′2 = y1: since (x2, y1) = (x2, y
′
2), we have (x2, y1) ∈ E ⊆

EBP

Case 3.3.2. y′2 ≺Y y1: since (x2, y
′
2) ∈ E and (x′

1, y1) ∈ E cross,

(x2, y1) ∈ E′ ⊆ EBP .

Case 3.3.3. y1 ≺Y y′2: since (x1, y1) ∈ E′ \ E and (x2, y
′
2) ∈ E cross,

we have (x2, y1) ∈ EBP from Case 2.

In all the above subcases of Case 3, we have shown that (x1, y1) ∈ EBP , and

hence both (x2, y1), (x1, y2) ∈ EBP .

Thus we have shown that for every e1 = (x1, y1) and e2 = (x2, y2) of GBP that

cross in (≺X ,≺Y), both (x2, y1) and (x1, y2) are also edges of GBP ; and therefore

from Lemma 11, GBP is a bipartite permutation graph.

Lemma 14. b(GBP) ≤ 3× b(G).

Proof. Let π be an optimal layout of G. Consider the same layout of GBP . For

an edge (x, y) of G ∩GBP , |π(x)− π(y)| ≤ b(G). For an edge (x, y) of GBP \G,

there exist vertices x′ ∈ X and y′ ∈ Y such that (y, x′), (x′, y), (y′, x) are edges

of G, and therefore |π(x) − π(y)| ≤ 3 × b(G) . Thus we have bπ(GBP) ≤ 3b(G).

Since b(GBP) ≤ bπ(GBP), we get b(GBP) ≤ 3× b(G).

We shall assume that along with a 2-directional orthogonal ray graph G, a

weak ordering (≺X ,≺Y) is also provided as input. If not, then such an ordering

as be computed in O(n2) time, where n is the number of vertices of G10). We can

construct GBP from G in O(n2) time. This can be done by first remembering

for each x ∈ X , its smallest neighbor yx in ≺Y and for each y ∈ Y , its smallest

neighbor xy in ≺X , and then adding to G an edge (x, y) for each pair x, y for

which yx ≺ y and xy ≺ x. Uehara13) showed that an optimal layout of a n-vertex

bipartite permutation graph having bandwidth k can be computed in O(n2 log k)

time. Then it follows from Lemma 14 that:

Theorem 15. There is an O(n2 log n)-time algorithm which computes a linear

layout π of an n-vertex 2-directional orthogonal ray graph G such that bπ(G) ≤

3× b(G).

6 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

IPSJ SIG Technical Report

4. Bandwidth of Biconvex Trees

The 2-claw is a graph obtained from the complete bipartite graph K13 by

replacing each edge by a path of length 2. The following lemma can be quickly

verified.

Lemma 16. The 2-claw is not a biconvex tree.

Biconvex trees can be characterized as follows:

Lemma 17. A tree T is biconvex if and only if T is a caterpillar.

Proof. The sufficiency is easy. To prove the necessity, suppose T is a biconvex

graph. Let P be a longest path in T . If the length of P is less than five, T is

trivially a caterpillar, and so we assume that it is greater than five. Suppose

there exists a vertex not in P having degree greater than 1. This implies that T

contains the 2-claw as a subtree, contradicting the assumption that T is biconvex

graph. Therefore T is a caterpillar.

Assmann, Peck, Sys lo, and Zak showed the following:

Lemma 18. The bandwidth of generalized caterpillars of hair length at most two

can be computed in linear time.

From Lemma 17 and Lemma 18, we have:

Theorem 19. The bandwidth of biconvex trees can be computed in linear time.

We conclude this paper with a note that the complexity of bandwidth problem

for biconvex graphs is open.

References

1) Assmann, S.F., Peck, G.W., Sys lo, M.M. and Zak, J.: The Bandwidth of Cater-
pillars with Hairs of Length 1 and 2, SIAM Journal on Algebraic and Discrete

Methods, Vol.2, No.4, pp.387–393 (1981).
2) Blache, G., Karpinski, M. and Wirtgen, J.: On Approximation Intractability of

the Bandwidth Problem, Technical report, University of Bonn (1997).
3) Booth, K.S. and Lueker, G.S.: Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and

System Sciences, Vol.13, No.3, pp.335 – 379 (1976).
4) Brandstädt, A., Le, V.B. and Spinrad, J.P.: Graph classes: a survey, Society for

Industrial and Applied Mathematics (1999).

5) Heggernes, P., Kratsch, D. and Meister, D.: Bandwidth of bipartite permutation
graphs in polynomial time, J. of Discrete Algorithms, Vol. 7, No. 4, pp. 533–544
(2009).

6) Kloks, T., Kratsch, D. and Muüller, H.: Bandwidth of chain graphs, Inf. Process.
Lett., Vol.68, No.6, pp.313–315 (1998).

7) Kloks, T., Kratsch, D. and Muüller, H.: Approximating the Bandwidth for Aster-
oidal Triple-Free Graphs, Journal of Algorithms, Vol.32, pp.41–57 (1999).

8) Monien, B.: The bandwidth minimization problem for caterpillars with hair length
3 is NP-complete, SIAM J. Algebraic Discrete Methods, Vol.7, No.4, pp.505–512
(1986).

9) Papadimitriou, C.: The NP-Completeness of the bandwidth minimization problem,
Computing, Vol.16, pp.263–270 (1976).

10) Shrestha, A. M.S., Tayu, S. and Ueno, S.: On Orthogonal Ray Graphs, Discrete

Applied Mathematics, Vol.158, pp.1650–1659 (2010).
11) Spinrad, J., Brandstädt, A. and Stewart, L.: Bipartite permutation graphs, Dis-

crete Appl. Math., Vol.18, No.3, pp.279–292 (1987).
12) Sprague, A.P.: An O(n log n) algorithm for bandwidth of interval graphs, SIAM

J. Discrete Math, Vol.7(2), pp.213–220 (1994).
13) Uehara, R.: Bandwidth of bipartite permutation graphs, 19th Annual International

Symposium on Algorithms and Computation, Lecture Notes in Computer Science,
Vol.5369, pp.824–835 (2008).

14) Unger, W.: The Complexity of the Approximation of the Bandwidth Problem,
FOCS ’98: Proceedings of the 39th Annual Symposium on Foundations of Computer

Science, pp.82–91 (1998).

7 c© 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.6
2010/11/19

