
情報処理学会研究報告
IPSJ SIG Technical Report

資源使用量を削減するための耐故障スケジューリング
アルゴリズムの提案

趙 　 来 平†1 櫻 井 　 幸 一†2

分散コンピューティングは大規模な科学計算を可能とする。様々なハードウェアは
安価になったが、それでも資源使用量を減らすことは重要となる。たとえば、クラウ
ドコンピューティングでは、省エネルギーや費用を節約するとが常に重要となる。し
かしながら、これらを実現するスケジューリングアルゴリズムについてはそれほど
多くは研究されていない。本稿では、ジョブの終了期限、信頼度と資源使用量を考え
て、新しい耐障害のためのスケジューリングアルゴリズムを提案する。実験結果から、
ジョブは必ず終了期限の前に終了することがわかった。また、我々のアルゴリズムは、
FTSA と比べて、計算資源の 50 ％と通信量の 70 ％を節約することができた。

On the Design of Fault Tolerant Scheduling
Algorithm to Reduce the Resource Usage

Laiping Zhao †1 and Kouichi Sakurai†2

The distributed system made the large-scale scientific computing possible in a
cost effective way. And the hardware resources in such systems are also getting
much cheaper than years before. However, the problem of executing the job
using minimum resources is still reasonable and important, especially for the
cloud environment, who has to save energy and economic cost. Unfortunately,
only a few existing scheduling algorithms has taken into account the resource
usage issue. In this study, with considering the realistic network topology and
communication model, we firstly propose the Deadline, Reliability, Resources-
aware (DRR) scheduling algorithm.

The theory analysis fully demonstrate that, the output schedule of our algo-
rithm can satisfy the user’s requirement on reliability and deadline. Through
the experiments, with setting the deadline less than the makespan of the MaxRe
algorithm’s output schedule, we find that our algorithm can complete the job
under this deadline. Besides, our algorithm can save almost 50% computation

resources and 70% communication resources than FTSA(bl) and FTSA(tl+bl)
algorithms.

1. Introduction

1.1 Background

A heterogeneous system is composed of many different kinds of hardware and soft-

ware working cooperatively to solve problems. With the new deployed machines and

old, slow machines are replaced with new, fast ones continuously, the cloud envi-

ronment is believed to become more heterogeneous in the future. And the efficient

scheduling algorithm in heterogeneous system is critical in order to achieve both the

users and systems’ objectives. Especially, in order to provide high reliability, active

replication scheme and backup/restart scheme1), which correspond to resource and

time redundancy respectively, are already widely used in the literature.

Compared with the backup/restart scheme, the active replication scheme exploit

several processors simultaneously to execution one task, which is much less sensitive

to the deadline. Therefore, we can make use of the active replication scheme in certain

job executions where the deadline is strictly demanded.

1.2 Motivation

However, the active replication scheme also brings another problem, i.e. the large

resource usage, which has an adverse impact for the system performance. And the

larger resource consumption usually comes with more energy consumption and higher

economic cost.

The EPA(Environmental Protection Agency) report said, servers and data centers

consumed 61 billion kwh (kilowatt hours) in 2006, which was 1.5 percent of total

U.S. electricity consumption that year, amounting to $4.5 billion in electricity costs-

†1 PH.D. candidate, Department of Informatics, Kyushu University

zlp@itslab.csce.kyushu-u.ac.jp.

†2 Professor, Department of Informatics, Kyushu University

sakurai@inf.kyushu-u.ac.jp.

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

equivalent to 5.8 million average U.S. households. Therefore, it is necessary to do

study on energy efficient computing, and reducing resources usage is one possible way.

In addition, Amazon, for example, claims that its S3 service stores three replicas

of each file. That means, to store x gigabytes data, Amazon has to supply 3x giga-

bytes storage space located on three different drives, with x gigabytes corresponding

to each drive. Assuming the economic cost of each drive is y, then 3 drives will cost

3y, including extra 2y cost. It is believed that these extra cost will be passed on to the

customers eventually. Besides in the storage service, the similar situation also happens

on the computing service.

In this study, we address the resource minimization issue in scheduling algorithm.

And similar with the existing works on scheduling4),7)–9),11), we specifically consider

user’s deadline and reliability constraint.

1.3 Previous works

Several algorithms have been proposed to cope with the deadline, reliability-

biobjective scheduling problem. A. Dogan and F. Ozguner7) propose two biobjective

scheduling algorithm: BDLS algorithm and the biobjective genetic algorithm. The

BDLS schedules tasks using the weighted average order, which is computed from the

time-related dynamic level and the reliability-related incremental cost. And the biob-

jective genetic algorithm aggregate the time and reliability into fitness function for task

scheduling. J.J. Dongarra et al.4) design two algorithms that optimize both makespan

and reliability. The first scheduling algorithm is targets to maximize the reliability

subject to makespan inimization for independent unitary tasks. And the second one

is based on the product failure rate unitary instruction execution time to trade off

between reliability maximization and makespan minimization. Taking the makespan

minimizing as the objective, Mourad Hakem and Frank Butelle8) propose the HAS

algorithm, and taking the failure probability minimizing as the objective, they pro-

pose the RSA algorithm. At last, Based on the compromise function between failure

probability and makespan, they propose the BSA algorithm. X. Qin and H. Jiang9)

propose the DASAP and DALAP algorithms, which correspond to earliest finish time

and latest finish time under the deadline constraint respectively. Then, DRCD algo-

rithm is proposed to integrate both the reliability cost and makespan into scheduling.

In summary, these biobjective scheduling algorithms take the processors’ reliability

analysis and execution time into scheduling. Compared with the active replication

scheme, they do not offer greater reliability. In case one processor encounter a failure

during his working, it may lead to the corruption of the whole job.

In the papers1) and3), FTSA and CAFT are proposed with directly applying the

active replication scheme. The difference between them is that CAFT considers the

more realistic bi-directional one-port model and communication overhead while FTSA

not. To tolerant ε possible failures, they both schedule the task to ε + 1 processors.

This wastes much resources in scheduling process, and causes more energy consump-

tion and economic cost. L. Zhao et al.10) introduce the resource minimization problem

for the first time. The proposed MaxRe scheduling algorithm selects some processors

with maximum reliability for task execution. This reduces the resource cost to achieve

a higher reliability. But the experiments show that, compared with FTSA algorithm,

the MaxRe’s output schedule does not performs well on makespan. It cannot be used

when a deadline is specifically constrained. S. Swaminathan and G. Manimaran11)

make use of the redundancy level for task scheduling, which is similar with dynamic

number replicas in paper10). However, there are no reliability and execution time

analysis in this paper, and also the detail explanation on reward and penalty are not

given.

In the papers2),12),14), the primary/backup scheme is used to improve the reliabil-

ity of scheduling. Since only one failure is tolerated in these works, it is not reliable

enough for restoring data.

1.4 Challenge issues

We study the problem of using minimum resources to achieve the reliability and

deadline requirements. To satisfy the user’s deadline requirement, the first challenge

is how to decide the subdeadline for each task in the job based on the overall dead-

line. The second challenge is how to find the processors that can complete all tasks

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

under the subdeadline constraint. Moreover, another challenge on user’s reliability

requirement is how to decide the number of replicas for each task. Obviously, the less

replicas lead to less resources usage. Therefore, the last challenge is ensuring that the

minimum resource usage should not violate the reliability requirement.

1.5 Our contribution with comparison to related works

In this study, we propose a reliability, deadline, resource usage-aware scheduling

algorithm for the heterogeneous system. The contributions include:

• We consider the bi-directional one-port model and the three-tier network topology

in our algorithms. This makes our algorithm more realistic than the FTSA and

MaxRe algorithms.

• We compare the two priority methods on sorting the tasks of a job. And we found

that the priority method with only tl (dynamic top level) value has a better per-

formance on makespan than the one with both tl+bl (static bottom level) value.

Thus we use the tl value for task sorting in our algorithm.

• We design the algorithm on computing each task’s subdeadline based on the overall

deadline. Compared with the four rules in deadline assignment method proposed

by Yu Jia et al.13), our method only states two rules. This reduces the complexity

on deadline assignment.

• We propose the DRR scheduling algorithm. The analysis proves that the exe-

cution time and reliability achieved by DRR algorithm can guarantee the user’s

deadline and reliability requirements, respectively.

• The experiments results show that, when setting the deadline with less than the

MaxRe schedule’s makespan, DRR algorithm can find a schedule within the dead-

line constraint, but use 50% and 70% less computation and communication re-

sources than FTSA(tl) and FTSA(tl+bl) algorithm, respectively.

2. System models

2.1 Processor model

In the system, denote by P the processors set, and m = |P |. Processors may have

different kinds of hardware and software, and show various performances on capacity

or other criterions. Processors are supposed to be fault-free while they are in the idle

time. And each processor can execute 1 task at one time, another task can start to ex-

ecute only after last task is completed or terminated. Crash failures are considered in

this study, and the arrival of failures follows the Poisson distribution. The probability

that k failures occur in a unit time t is represented as:

f(k, λ) =
λke−λ

k!

Where k is the number of occurrences of failures in unit time t, λ is the expected

number of occurrences of failures in unit time t.

2.2 Job model

A job is represented as a weighted directed acyclic graph (DAG): G = (V, E), where

V is the set of nodes corresponding to the tasks, and E is the set of edges corresponding

to the precedence relations between the tasks. n = |V | is the number tasks. s = |E| is
the number of edges. The node without any predecessor is called an entry node, and

the node without any successor node called an exit node. Any task cannot start being

executed before it received the output from its all its predecessors and the result of

any task can be sent to its successor tasks after the task has been finished.

2.3 Network communication model

Different with the literature10), this study discusses the communication link’s reli-

ability model, and takes the classic three-tier model as the network topology archi-

tecture. As mentioned by M. Al-Fares et al.5), the network topology of a common

data center consists of three tiers: core tier, aggregation tier and edge tier (Fig. 1).

Switches at the edge tier (e.g. H1, H2) have some number of ports connected with

processors (e.g. E1,E2), as well as some number of uplinks to the aggregation tier

that aggregate and transfer packets between edge switches. Switches at the aggrega-

tion tier (e.g. A1) are connected with edge switches, while also have some uplinks

to the core layer (e.g. C1, C2). The switches at higher level can be assumed with a

higher capacity for the aggregate traffic.

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

図 1 The three-tier network topology model

Without losing the central idea, we simply assume that the oversubscription5) of the

network is 1:1. It indicates that all hosts can communicate with arbitrary other hosts

at the full bandwidth of their network interface. Therefore, the communication time

between tasks only depends on the transmission load.

In order to make our algorithm more realistic, we also apply the bi-directional one-

port model for the communication contention1):

• At a given time-step, any processor can send a message to, and receive a message

from, at most one other processor. Network interfaces are assumed full-duplex in

this bi-directional model.

• Communication and (independent) computation may fully overlap. As in the

traditional model, a processor can execute at most one task at each time-step.

• Communications that involve disjoint pairs of sending/receiving processors can

occur in parallel.

3. The scheduling objectives

Given the processor, job and communication link models, we seek a resource schedul-

ing algorithm that can complete the job within the deadline and reliability require-

ments, but makes use of minimum resources. The scheduling objectives are discussed

as follows.

3.1 Execution time

Execution time (also named as makespan) is directly related with the deadline con-

straint. Based on the one-port model, we compute the Earliest Start Time(EST) and

the Latest Start Time(LST) for each task under the active replication scheme. Firstly,

the arrive time arrive(r, p), that the time of one parent task replica r’s results arriving

at processor p from its scheduled processor p(r), is computed as the sum of commu-

nication cost cp(r),p and the maximum value between replica r’s finish time (FT) and

linep(r),p’s ready time:

arrive(r, p) = max{FT (r), ready(linep(r),p)}+ cp(r),p

If p(r) = p, we have cp(r),p = 0. Then the earliest start time (EST) of the task x on

processor p is computed as:

EST (x, p) =

max

{
max

y∈parent(x)

{
min

r∈replica(y)
{arrive(r, p)}

}
, ready(p)

}
(1)

The latest start time (LST) of a task x on processor p is computed as:

LST (x, p) =

max

{
max

y∈parent(x)

{
max

r∈replica(y)
{arrive(r, p)}

}
, ready(p)

}
(2)

3.2 Reliability

The reliability consists of communication reliability and processing reliability. Com-

munication reliability is the probability that the message generated by the parent tasks

can be successfully transferred to the processors where its child tasks are located. And

processing reliability is the probability that the job is executed successfully on the pro-

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

cessor.

The key point for computing the communication reliability is deciding the commu-

nication path. Considering the network topology shown in Fig. 1, there are 2 possible

ways for transferring messages from parents tasks to children tasks.

3.2.1 E1-H1-A1-H2-E2 line

In this case, if the two communication related processors locate in the same domain

(e.g. they are connected to the same hub, or the same aggregation tier switch), there

is only one unique communication path between processors. And the communication

reliability is computed from combined probability of all the resources on this path,

such as, the communication reliability between E1 and E2 (Fig. 1) are computed as:

Rcomm(E1, E2) = RE1−H1−A1 ·RA1−H2−E2 (3)

Where RE1−H1−A1 = RlinkE1,H1 · RH1 · RlinkH1,A1 · RA1, and RA1−H2−E2 =

RlinkA1,H2 ·RH2 ·RlinkH2,E2 .

Assume the failure occurring of all these communication resources follow a poi-

son distribution: R(k, λ) = λke−λ

k!
, then the probability of no failures occurring is

R = e−λt.

3.2.2 E1-H1-A1-C1(C2)-A2-H3-E3 line

In this case, the two communication processors are located in different domains. If

processor E1 sends a message to another processor E3, it has to pass through the

core tier switches, and there are two available routing paths for transmission. The

communication reliability is computed from the combined probability of all paths.

Rcomm(E1, E3) = RE1−H1−A1 ·RA2−H3−E3 ·RC1 or C2 (4)

Where RA2−H3−E3 = RA2 ·RlinkA2,H3 ·RH3·RlinkH3,E3 , RC1 = RlinkA1,C1 ·RC1 ·RlinkC1,A2 ,

and RC1 or C2 = 1− (1−RC1)(1−RC2).

3.3 Resource usage

The resource usage also consists of computation resource usage and the communi-

cation resource usage. The computation Resource Usage(RU) is computed based on

all processors’ execution time:

RUcomp =
∑
x∈V

∑
p∈P

{ET (x, p) · αxp} (5)

Where ET (x, p) indicates the execution time of task x on processor p, and αxp is a

binary choice, which equals to 1 if the task x is submitted on processor p, otherwise

αxp = 0.

The communication resource usage is computed from all communication links and

switches’ communication time:

RUcomm =
∑
e∈E

∑
l∈net

{c(e, l) · αel} (6)

Where c(e, l) indicates the communication time of edge e on link (or switch) l, and

αel = 1 if the edge e is communicated on network link (or switch) l, otherwise αel = 0.

4. The DRR scheduling algorithm

4.1 Deadline assignment

To support the deadline constraint, the exit node must be completed before dead-

line. Yu Jia et al.13) gives one method on computing the subdeadline for each task,

where the overall deadline is divided over task partitions in proportion to their mini-

mum processing time. In practice, as long as the exit task can be finished before the

deadline, the deadline requirement is satisfied. Therefore, in this study, different with

their deadline assignment policies, we only concern about two points:

• The subdeadline can assure the overall deadline.

• The subdeadline for each task is not less than the finish time of each task.

Suppose that the overall deadline requirement is T , the scheduling algorithm should

guarantee that the output schedule will complete the job under the deadline constraint.

Alg. 1 gives the details of the deadline assignment algorithm. In line 1-3, we initialize

all tasks’ subdeadlines with T . Then learning from the broad first search (BFS) algo-

rithm, we make use of the queue struct, and recursively compute the subdeadline set

from each exit node(line 5-22). The big difference with BFS algorithm is the multiple

exit nodes in our job graph. First, push the exit node into the queue (line 6). Then

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

pop out the first task node z from the q. If task z is exit node, set its subdeadline

with T (line 9-11). Then in line 12-20, we push z’s parent y into q, and compute the

y’s subdeadline using t = subdeadline[z]− c(ey,z, l)−ET (z, p), where c(ey,z, l) is the

expected communication time from task y to task z, and ET (z, p) is the expected

execution time of node z. At last, set the subdeadline[y] with min(t, subdeadline[y]).

Algorithm 1: Subdeadline(ET (x, p), c(e, l))(BFS-based deadline assignment algo-

rithm)

Require:

Deadline T , G = (V, E), ET (x, p), c(e, l).

Ensure:

subdeadline[i], where ∀i ∈ V .

1: for ∀i ∈ V do

2: subdeadline[i] = T ;

3: end for

4: Queue q;

5: for each exit node x do

6: q.push(x);

7: while !q.empty() do

8: z = q.front(), q.pop();

9: if z is exit node then

10: subdeadline[z] = T ;

11: end if

12: if z is not entry node then

13: for ∀y ∈ parent(z) do

14: if y /∈ q then

15: q.push(y);

16: end if

17: t = subdeadline[z]− c(ey,z, l))− ET (z, p);

18: subdeadline[y] = min(t, subdealine[y]);

図 2 Case study: subdeadline assignment

19: end for

20: end if

21: end while

22: end for

Case study:

As shown in Fig.2, a sample workflow consists of 10 tasks, where t0 is an entry

node, and t7, t9 are exit nodes. According to the Alg. 1, the tasks’ deadlines can be

recursively computed from exit task t7 and t9. From node t7, find his parent nodes

are t1, t3, and t5. Using the formula in line 17, we can get their subdeadlines. Then,

the subdeadline of node t0 can be gotten from t1, t3, and t5, respectively. Choose the

minimum one as his subdeadline. From exit node t9, repeating this above procedure,

compute the subdeadlines of t9’s parent nodes: t6, t8. From node t6, we can get the

subdeadline of t2, and from t8, we can get the subdeadline of t1, t3, and t4. Based on

the subdeadlines of t2, t1, t3, and t4, we will get the subdeadline of t0. In this whole

process, whenever need to set the subdeadline, we always choose the smallest value as

his subdeadline.

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

4.2 Reliability assignment

Suppose the overall reliability requirement is R. Denote the task and its related

previous communication link as a group, for example, in Fig. 2, {t0} is the t0 group.

{t1, et0,t1} is the t1 group. And {t7, et1,t7 , et3,t7 , et5,t7} is the t7 group. Gener-

ally speaking, group reliability is determined by the communication links’ reliability

and the computation reliability, except that the entry node group is only determined

by computation reliability. Because for the exit tasks, we cannot arbitrary distinguish

their importance without any preliminaries, and for the entry tasks and internal tasks,

we believe that they are all equally important for their descendant tasks, the reliability

for each group should not be less than: n
√

R.

4.3 Task priority

To order the execution of the tasks so that task precedence constraints are satisfied,

the task priority is generally determined by the bottom level (bl, formula 7) and top

level (tl, formula 8), which are also named as upward and downward ranking.

bl (x) = ET (x, p) + max
y∈child(x)

(cx,y + bl (y)) (7)

tl(x) = max
z∈parent(x)

(tl(z) + ET (z, p) + cz,x) (8)

Where cx,y is the expected communication time between parent task x and child task

y. ET (x, p) is the task x’s expected execution time.

In summary, the HEFT15), MaxRe10) algorithms make use of bl to order tasks, while

the FTSA3), CAFT1), CPOP15) algorithms make use of tl+ bl value for task ordering.

To tell the difference between the bl -based and the (tl + bl)-based task ordering, we

study their effects on execution time through experiments. The detail experimental

parameters are listed in section 5. Different with the original FTSA algorithm, we

design a bl -revised version of FTSA algorithm, which makes use of bl value for task

ordering. We compare the time performance between original FTSA(tl+bl) algorithm

and the FTSA(bl) algorithm. As shown in Fig. 3, we find that, with the increasing

number of tasks, the FTSA(bl)’s output schedule consumes less execution time than

20 30 40 50 60 70 80 90 100

1500

2000

2500

3000

3500

The number of tasks (espi = 0)

T
he

 m
ak

es
pa

n
of

 th
e

ou
tp

ut
 s

ch
ed

ul
e

FTSA (tl+bl)
FTSA (bl)

図 3 The comparison between FTSA(bl) and FTSA(tl+bl)

7 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

FTSA(tl+bl). Moreover, through multiple experiments (e.g. 100 times) with different

parameters, the FTSA(bl) averagely performs better than FTSA(tl+bl). Therefore,

we will apply the bl value into our algorithm’s task priority computation.

4.4 DRR scheduling algorithm

Algorithm 2: The DRR scheduling algorithm.

Require:

Deadline T , reliability R, G = (V, E), P

Ensure:

schedule

1: for each node x ∈ V do

2: for each pj ∈ P do

3: ET (x, pj)← compute the execution time using (x.load, pj .speed);

4: end for

5: ET (x, p)← ET (x, pj) , ∀pj ∈ P ;

6: end for//Compute the expected communication time;

7: for each edge e ∈ E do

8: c(e, l)← compute the communication time using (e.load, net.speed);

9: end for

10: Subdeadline(ET (x, p), c(e, l)); (Assign the deadline to each task);

11: if subdeadline(x) < ET (x, p), ∀x ∈ entry nodes then

12: reject the job; return;

13: end if

14: r ← root (R); (Compute the reliability requirement for each task);

15: TP ← rank(ET (x, p), c(e, l)); (Compute the task priority);

16: sort (V, TP); (Sort all tasks according to the task priority values);

17: Θ = ∅, U = V ;

18: while U ̸= ∅ do

19: x = head(U); //Select the processors for current task x;

20: for each processor pi ∈ P do

21: CR(x, pi) = CPR(x, pi) · CLR(x, pi);

22: end for

23: sort(P, CR(x, pi));

24: fail← 1.0, counter ← 0, j ← 0;

25: while (1− fail) < r && counter < m do

26: EFT (x, pj) = EST (x, pj) + PT (x, pj);

27: if EFT (x, pj) < subdeadline[x] then

28: counter = counter + 1;

29: fail = fail × (1− CR (x, pj));

30: end if

31: j + +;

32: end while

33: ε← counter, counter ← 0;

34: if ε = 0 then

35: reject the job; return;

36: end if

37: Schedule task x to the corresponding ε processors;

38: Put x into Θ;

39: U ← U\{x};
40: end while

In order to schedule task x to processors with satisfying the reliability requirement,

we schedule the x group reliability based on Current processor reliability (CPR) and

Current link reliability(CLR), which are computed from Current processor execution

time(CPET) and Current communication time(CCT), respectively.

CPET is the running time that processor p has costed with the addition to task x’s

execution time:

CPET (x, p) = ET (x, p) +
∑

y∈on(p)

ET (y, p)

Where on(p) is the task set that scheduled on processor p.

8 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

CPR(x, p) = e−λ·CPET (9)

For communication reliability, considering the network topology, the route path is

determined by the location of both parent tasks and child tasks. Suppose l is one com-

munication link (or switch) in the route path, the CCTl(x, p) indicates the running

time that l has worked with addition to task x’s communication time.

CCTl(x, p) = c(ey,x, l) +
∑

e∈on(l)

c(e, l)

Where on(l) indicates the edges set in the job graph that communicated on link(or

switch) l.

CLRl(x, p) = e−λ·CCT

Applying the CLRl(x, p) into formula 3 or 4, we can get the communication relia-

bility Rcomm(r, p). And the current link reliability CLR(x, p) for submitting task x to

processor p is gotten by formula 10, which means the reliability value that for every

x’s parent task, at least one replica’s output is successfully transmitted to processor

p.

CLR(x, p) =∏
y∈parent(x)

(1−
∏

r∈replica(y)

(1−Rcomm(p(r), p))) (10)

The details of DRR scheduling algorithm is shown in Alg. 2: In line 1-6, we compute

the execution time of each task on each processor and each task’s expected execution

time(ET (x, p)). In line 7-9, we compute the expected communication time (c(e, l))

of each edge in the task graph. Based on ET (x, p) and c(e, l), we can get all tasks’

subdeadlines using Alg. 1 (line 10). If the entry node’s subdeadline is violated by its

ET (x, p), then reject the job. In line 14, compute each task’s subreliability require-

ment with R. In line 15-16, compute all tasks’ priority using formula 7, and sort the

tasks into order. From line 17 to 40, we will schedule the tasks to the processors.

In line 19, select the head task from the sorted task list. In line 20-22, we compute

the reliability achieved by simulating scheduling task x to every processor, and the

processors are sorted into decreasing order according to the x group reliability value:

CR(x, pi) = CPR(x, pi) · CLR(x, pi). In line 24-32, we select the first ε processors,

which can provide sufficient reliability for reliability requirement r (line 24, 29), and

also can complete the task under the subdeadline constraint (line 27). The number

of replicas for current task x is ε (line 33). If ε = 0, which means no processors can

complete the current task within the constraints, reject the job. Or else schedule the

task x to these ε processors, and repeat the whole process until all tasks are scheduled.

4.5 Analysis

Lemma 1 In the case of ∃x ∈ V, FT (x) > subdeadline(x), the whole job cannot be

successfully completed within the deadline constraint T .

proof: Suppose for the task x, we have FT (x) > subdeadline(x). It is suffices to shown

that if x ∈ exit nodes, then subdeadline(x) = T , and FT (x) > T , which means the

job cannot be completed successfully.

If the x /∈ exit nodes, according to the definition of EST (formula 1), we have

EST (z) ≥ FT (x) + c(ex,z, l), ∀z, s.t. z ∈ child(x). Applying it into FT (z) =

EST (z, p) + ET (z, p), we have FT (z) ≥ FT (x) + c(ex,z, l) + ET (z, p).

With FT (x) > subdeadline(x) and subdeadline(x) = min
z∈child(x)

{subdeadline(z) −

c(ex,z, l)− ET (z, p)}, denoting zmin as the task that leads to the subdeadline(x), we

have

FT (zmin) > subdeadline(x) + c(ex,zmin,l) + ET (zmin, p)

⇔ FT (zmin) > subdeadline(zmin)
(11)

Therefore, there exists at least one x’s child task zmin, which cannot be completed

before its subdeadline(zmin). By induction on the graph, at least one exit task will

violate the deadline constraint T , therefore the lemma is established.

Lemma 2 ∀x ∈ entry nodes, ET (x, p) < subdeadline(x) is just the necessary condi-

tion of job’s successful completing within deadline T .

proof: Lemma 1 directly tells that ∀x ∈ entry nodes, ET (x, p) < subdeadline(x) is

9 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

図 4 The subdeadline(y3) is violated for the reason of the later ready time

the necessary condition. The central idea on the not sufficient condition proof is that

any task has to wait for executing until the processor is ready for it.

Assume for task x, there exists y1, y2, y3 ∈ child(x). And after task x is com-

pleted, assume there are only 2 available processors, i.e. p1,p2 on which task

y1 and y2 are scheduled respectively. Whichever processor is scheduled for task

y3, it has to wait the finish of y1 (if y3 is scheduled on p1). This leads to

ready(p1) > arrive(x, p1), then EST (y3) = ready(p1). As shown in Fig. 4, if

subdeadline(y3) − [arrive(x, p1) + ET (y3, p1)] < ET (y1, p1), the subdeadline(y3) is

violated. Similarly as the proof in theorem 1, at least one successor task will not be

completed within the deadline. And the overall deadline is not guaranteed. Therefore,

the lemma 2 holds. According to the Lemma 2, we add the feasibility judgement into

Alg. 2 in line 30-31.

Theorem 1 In the case of the job being accepted in Alg. 2, its output schedule can

ensure the overall deadline T .

proof: According to the Lemma 1 and Lemma 2, Alg. 2 rejects the job in the situation

of ∃x ∈ V, FT (x) > subdeadline(x) and situation of Fig. 4. Once the job is accepted

and scheduled to some processors, the job will be executed as the schedule, which

means the output schedule can ensure the overall deadline T .

Theorem 2 Assume that for every task, the deserved number of replicas does not

exceed n, and denote the reliability provided by Alg. 2 as ℜ, then ℜ ≥ R.

proof: From the description of Alg. 2, the subreliability requirement r follows that:

r ≤ 1−
∏

pk∈sche(x)

(1− CR(x, pi))

⇔ R = rn ≤
∏

x∈V

F (x)
(12)

Where F (x) = 1 −
∏

pi∈sche(x)

(1− CR(x, pi)), and sche(x) denotes the processors,

communication links, and switches on which x group is scheduled. The CR (x, pi)

implies the group probability that no failures occur on the x group, from the very

beginning until the finish of task x on processor pi. Thus F (x) implies the probability

that, for task x, at least one scheduled processor and its related communication path

do not encounter failures from the very beginning to the x’s finish on pi.

For arbitrary two groups x and y corresponding to F (x) and F (y), respectively,

assume the group y is scheduled later than the x. The relation between their success

and the value F (x) · F (y) follows three situations:

(1) If sche(x) ∩ sche(x) = Ø , the probability of both groups’ success (Ψ) is equal

to F (x) · F (y).

(2) If sche(x) = sche(y), the probability of both groups’ success would be equal to

F (y). Thus F (y) > F (x) · F (y).

(3) If sche(x) ∩ sche(y) ̸= Ø and sche(x) ̸= sche(y). Since the double count-

ing of the resources in sche(x) ∩ sche(y), their success probability is between

F (x) ·F (y) and F (y). And with the higher repeatability of sche(x) and sche(y),

their success probability is more closer to F (y).

Generalized to the case of n tasks,
∏

x∈V

F (x) ≤ ℜ. Thus we have ℜ ≥ R, with equality

holding if and only if when all groups in set V are scheduled on total different pro-

cessors, links and switches. Throughout the proof, we make use of group reliability

10 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

instead of processor reliability, which is a big difference with the one in10). It is proved

that the theorem is also established with group reliability.

Theorem 3 The time complexity of Alg. 2 is O(MN log M + N log N).

proof: From line 2 to line 5, it takes O(MN) to compute the execution time of each

task on each processor. line 7-8 costs O(s). In line 9, the Subdeadline() function costs

O(n + s). In line 13, it costs O(n + s) for computing the task priority. Line 14 costs

O(N log N) to sort the tasks into priority decreasing order. From line 22 to line 29,

it costs O(ε) to decide the number of replicas. And from line 15 to line 32, it takes

O(N(M + M log M + ε)) to schedule the task to processors.

Thus, the time complexity of DRR algorithm is O(MN + n + s + N log N + N(M +

M log M + ε)), which is O(MN log M + N log N).

5. Experiments

We study the performance of DRR algorithm by comparing the execution time and

resource usage with 3 algorithms, namely FTSA(bl), FTSA(tl+bl) and MaxRe.

5.1 The simulation system

In our simulation, we use randomly generated application graphs to construct the

DAGs, whose parameters are consistent with those used in literature15).

• The number of tasks, n = {20, 40, 60, 80, 100}.
• Communication to computation ratio (CCR). CCR = {0.1, 0.5, 1.0, 5.0, 10.0}.
• Shape parameter of the graph, (α). α = {0.5, 1}. The height of a DAG is ran-

domly generated from a uniform distribution with a mean value equal to
√

n/α,

and the width for each level is randomly selected from a uniform distribution with

mean value equal to α×
√

n.

• Out degree of a node. out degree = {1, 2, 3, 4, 5}.
• The average workload of the given graph, i.e., w, is set randomly from the range

[1000, 2000], and the average workload of each task is set from a uniform distri-

bution with the range [0, 2 × w]. Different with initializing computation cost of

each task on each processor with random numbers in15), the computation cost is

determined by both task load and processing speed.

• The processor’s speed is randomly selected from [5, 20].

• The λ value of each processor, communication link, or switch is set with random

values from the range {2, 4, 6, 8, 10} × 10−6.

• The network bandwidth is set with 1, and oversubscription is set with 1:1.

5.2 Execution time

FTSA (Fault tolerant scheduling algorithm) algorithm3) is introduced as a fault

tolerant extension of the classic HEFT algorithm15). In FTSA, at each step of the

scheduling process, the free task x with the highest priority is simulated by mapping

on all processors. The first ε + 1 (ε is the number of failures that FTSA can tolerate,

i.e. espi in the figure) processors that allow the minimum finish time are scheduled.

Fig. 5 shows the makespan of four algorithms’ output schedule. All the experiment

results are the average value from 100 times of executions. We evaluated the average

makespan of FTSA(bl), FTSA(tl+bl), MaxRe and DRR algorithms, with CCR = 0.1

and ε = 2. Tolerating 2 failures by FTSA algorithms is transformed into the proba-

bility value of at most ε failures occur.

As shown in Fig. 5(a), the line of dashes denotes the deadline requirement of the

DRR algorithm, and its value slightly shorter than MaxRe’s makespan. It is shown

that the MaxRe’s schedule has the longest makespan. This is because the MaxRe al-

gorithm is designed with one objective of minimizing the resource usage, and without

taking into account the execution time. The makespan of DRR’s schedule is slightly

shorter than the deadline constraint. This proves that DRR algorithm can satisfy the

deadline requirement whenever feasible. The FTSA(bl) and FTSA(tl+bl) algorithms

shows the shortest makespan, which is because both two algorithms only take the exe-

cution time as the objective. And the makespan of FTSA(bl)’s schedule is shorter than

FTSA(tl+bl). With the increasing number of tasks, the makespan is also continuously

increasing.

In Fig. 5(b), set the task number with 20, and set the number of failures toler-

ated by FTSA with 2. With different CCR values, we observe the four algorithms’

11 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

20 30 40 50 60 70 80 90 100
1000

2000

3000

4000

5000

6000

7000

The number of tasks, espi=2, CCR=0.1

T
he

 m
ak

es
pa

n
of

 th
e

ou
tp

ut
 s

ch
ed

ul
e MaxRe

DRR

Deadline (DRR)

FTSA(bl)

FTSA(tl+bl)

(a)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

CCR (task No.=20, espi=2)

T
he

 m
ak

es
pa

n
of

 th
e

ou
tp

ut
 s

ch
ed

ul
e

MaxRe

Deadline(DRR)

DRR

FTSA(tl+bl)

FTSA(bl)

(b)

図 5 The makespan comparision: (a)Different number of tasks; (b)Different CCR values;

12 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12
x 10

6

CCR (task No.=20, espi=2)

R
es

ou
rc

e
us

ag
e

Computation resource(FTSA(tl+bl),FTSA(bl),MaxRe,DRR)

DRR

MaxRe

FTSA(bl)

FTSA(tl+bl)

Communication resource usage
Computation resource usage

図 7 The resource usage with different CCR values

makespan. The MaxRe also shows the longest makespan in all algorithms. And the

DRR algorithm can find the schedule with shorter makespan than deadline constraint.

For FTSA(bl) and FTSA(tl+bl), the FTSA(bl) also has a shorter average makespan

than FTSA(tl+bl), however, with the communication cost becoming gradually larger,

the difference is not that big.

5.3 Resource usage

With CCR = 0.1 and ε = 2, we evaluate the resource usage of the four algorithms

in the second experiment. As shown in Fig. 6, the computation resource usage (for-

mula 5) and communication resource usage (formula 6) are shown respectively. The

deadline constraint for DRR algorithm is the same with the first experiment. With

the increasing number of tasks, both the computation resource usage and the com-

munication resource usage are continuously increasing. For computation resources in

Fig. 6(a), the FTSA(bl) and the FTSA(tl+bl) algorithms consume almost the same

amount of resource, while the MaxRe and DRR algorithms use much less resource than

FTSA. With different number of tasks, the DRR algorithm saves about 54.4%, 44.6%,

45.8%, 47.7%, and 45.4% computation resources, respectively. And compare the com-

putation resource usage of MaxRe and DRR, for the deadline constraint reason, the

DRR algorithm always select the processors within the subdeadline constraint, thus it

consumes slightly less resource than MaxRe. For the communication resources in Fig.

6(b), with different number of tasks, the DRR algorithm saves about 73.2%, 66.1%,

62.7%, 62.1% and 54.8% communication resources, respectively. Compare the com-

munication resources consumed by DRR and MaxRe, because the deadline constraint

make the task not always scheduled on the processors with higher reliability but under

the subdeadline constraint, the DRR use slightly more communication resource than

MaxRe algorithm. And in summary, for the deadline constraint reason, the DRR uses

more resources than the MaxRe algorithm.

In Fig. 7, the resource usage is evaluated based on different CCR values. Compared

with the big amount on communication resources, the difference on computation re-

sources is not so big, and does not clearly shown in Fig. 7. However, their actual

difference is similar with Fig. 6(a). With the increasing of CCR value, it is obvious

that the DRR and MaxRe algorithms can save more communication resources than

FTSA algorithm. And for the deadline constraint reason, the DRR consumes more

resources than MaxRe resources.

6. Conclusion

In this study, we firstly state the problem of resource minimizing scheduling with

constraint on deadline and reliability. We consider the one-port model and three-tier

network topology in the communication, which makes our solution more realistic than

13 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

(a) (b)

図 6 The resource usage: (a) describes the computation resource usage; (b) describes the communication resource usage;

14 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

情報処理学会研究報告
IPSJ SIG Technical Report

previous works. We also study the performance of two different task priority methods,

the experiment shows that bottom level based task priority has a better performance

on makespan than bottom level+top level based one.

We design the DRR scheduling algorithm to solve the proposed problem. The anal-

ysis demonstrate that DRR can meet user’s deadline and reliability constraint. And

the experiment results show that the DRR algorithm can save almost 50% compu-

tation resources and 70% communication resources than FTSA(tl) and FTSA(tl+bl)

algorithms.

Acknowledgment

The first and second authors of this research are supported by the governmental

scholarship from China Scholarship Council.

参 考 文 献

1) A. Benoit, M. Hakem, Y. Robeert, Contention awareness and fault-tolerance

scheduling for precedence constrained tasks in heterogeneous systems. Parallel

Computing, vol. 35(2), pp.83-108, 2009.

2) Q. Zheng, B. Veeravalli, On the Design of Fault-Tolerant Scheduling Strategies

Using Primary-Backup Approach for Computational Grids with Low Replication

Costs. IEEE TRANSACTIONS ON COMPUTERS, vol. 58(3), pp.380-393, 2009.

3) A. Benoit, M. Hakem, Y. Robeert, Fault Tolerant Scheduling of Precedence Task

Graphs on Heterogeneous Platforms. In Proceedings of the 10th Workshop on

Advances in Parallel and Distributed Computational Models, APDCM08, Miami,

USA, 2008.

4) J.J. Dongarra, E. Jeannot, E. Saule, et al., Bi-objective Scheduling Algorithms

for Optimizing Makespan and Reliability on Heterogeneous Systems. In proceed-

ings of the 19th annual ACM symposium on Parallel algorithms and architectures,

ACM Press, San Diego, pp. 280-288, 2007.

5) M. Al-Fares, A. Loukissas, A. Vahdat, A Scalable, Commodity Data Center Net-

work Architecture. In Proceedings of the ACM SIGCOMM conference on Data

communication (SIGCOMM2008), pp. 63-74, Washington, 2008.

6) I. Foster, Yong Zhao, Ioan Raicu, et al., Cloud Computing and Grid Comput-

ing 360-Degree Compared. In 2008 Grid Computing Environments Workshop, pp.

1-10, 2008.

7) A. Dogan, F. Ozguner, Biobjective scheduling algorithms for execution time-

reliability trade-off in heterogeneous computing systems. The Computer Journal,

vol. 48(3)pp. 300-314, 2005.

8) M. Hakem, F. Butelle, Reliability and Scheduling on Systems Subject to Failures.

International Conference on Parallel Processing, ICPP2007, Xi’an, 2007.

9) X. Qin, H. Jiang, A dynamic and reliability-driven scheduling algorithm for par-

allel real-time jobs executing on heterogeneous clusters. Journal of Parallel and

Distributed Computing, vol. 65(8)pp. 885-900, 2005.

10) L. Zhao, Y. Ren, Y. Xiang et al. Fault tolerant scheduling with dynamic number

of replicas in heterogeneous system. 12th IEEE International Conference on High

Performance Computing and Communications, HPCC2010, Melbourne, 2010.

11) S. Swaminathan, G. Manimaran, A Reliability-aware Value-based Scheduler for

Dynamic Multiprocessor Real-time Systems. In Proceedings International Paral-

lel and Distributed Processing Symposium(IPDPS2002). pp. 98-104, Florida, US,

2002.

12) G. Manimaran and C.S.R. Murthy,A Fault-Tolerant Dynamic Scheduling Algo-

rithm for Multiprocessor Real-Time Systems and Its Analysis. IEEE Transactions

on Parallel and Distributed Systems, vol. 9(11)pp. 1137-1152, 1998.

13) Y. Jia, R. Buyya, C.K. Tham, Cost-based scheduling of scientific workflow ap-

plications on utility grids. First International Conference on e-Science and Grid

Computing. pp. 139-147, Melbourne, 2005.

14) Q. Zheng, B. Veeravalli, Chen-Khong Tham. On the design of communication-

aware fault-tolerant scheduling algorithms for precedence constrained tasks in grid

computing systems with dedicated communication devices. Journal of Parallel and

Distributed Computing, vol. 69(3), pp.282-294, 2009.

15) H. Topcuoglu, S. Hariri, M.Y. Wu. Performance effective and low complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel and

Distributed Systems, vol. 13(3), pp.260-274, 2002.

15 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-132 No.3
2010/11/19

