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SPH: Towards Flood Simulations

ROMAN ĎURIKOVIČ,†1 MICHAL CHLÁDEK†2

and TOMOYUKI NISHITA†1

Flood simulation is a complex problem involving large masses of fluid, soil watering, ero-
sion and collision. We will demonstrate the flood simulation of cities were the fluid particles
collide with a complex city model. For the fluid simulation we had used Smoothed Particle
Hydrodynamics (SPH) method, by which we gained less expensive computation than by
using other known methods of water simulation. Because of complex models, a particle
nearest neighbor search and collision handling take an important role in the simulation and
become a computational burden. We simulate a one-way solid fluid interaction (either solid
influences the velocity of the fluid or fluid moves the solid) that requires having fine details
in the colliding areas. We propose a new approach for nearest neighbor search and the fast
approach of collision handling in particle based methods by using the distance from surface.
We implemented SPH fluid simulator which can import a model represented by boundaries.
We visualize the results, reconstruct the surface of the fluid and export it into a COLLADA
file that can rendered in Standard 3D rendering software.

1. Introduction

Physically based animations have been an active research area in the computer graphics.
Computation fluid dynamics (CFD) makes a huge part of such animations. Everyday
phenomena like rain, smoke, mud, steam, ocean waves or pouring water are important
for computer graphics and one of the hardest to simulate. The mathematical model that
handles the fluid motion is given by Navier-Stokes equations, one for conservation of
momentum, and another for conservation of energy. The Navier-Stokes equations for
incompressible fluids are

∂u
∂ t

=−(u ·∇)u+∇(υ∇u)− 1
ρ

∇p+
f
ρ
, (1)
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∇ ·u = 0, (2)

where u= (u,v,w) is velocity vector, ρ is a fluid density, υ is fluid viscosity, f = ( f ,g,h)
is the external force, mostly it is only the gravitation force, i.e.

(
f = h = 0;g = 9.8ms2

)
,

p is the pressure in the fluid and ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂ z

)
is nabla operator. Equation 1 is the

law of momentum and Eq. 2 represents the conservation of mass. Left side of Eq. 1 is
the change of fluid velocity over time and the right side is the sum of the acting forces
on fluids like advection, diffusion, pressure and external forces.

Two fundamental approaches for calculation of fluid movement exist. These are Eule-
rian and Lagrangian methods. They differ in fluid representation as well as in the time
integration. Eulerian methods are based on Marker and Cell method1), here the simula-
tion space is divided into voxels, which form a grid. In each voxel of the grid, properties
of the fluid are stored. In each time step advection of the fluid is computed. The use of
Navier-Stokes equations in computer graphics was greatly popularized Foster2), Stam3)

and Fedkiw4).

In Lagrangian methods, particles are used to represent a fluid. Particles are not con-
nected and store physical values like mass, position, and velocity. Other properties can
be used to further describe the fluid (e.g. viscosity, temperature). In the simplest sim-
ulation there are no forces acting between particles. For more complex simulation of
fluid dynamics like pouring water forces acting between particles are needed. Various
approaches how to model these forces exist. Further on, we will describe only solutions
used to simulate the water flow.

Simulation of water is specific because of water incompressibility. Simulation methods
used to simulate water should be able to manage this. There are used two solutions.
One of them is moving-particle semi-implicit5)(MPS). A poisson equation of pressure is
solved here to achieve fully incompressible fluid flow.

Beside MPS, smoothed particle hydrodynamics (SPH) is widely used to simulate water.
Originally developed for simulation of astrophysical phenomena6) it was introduced into
computer graphics community for depicting fire and gaseous phenomena7) . Later it was
used in simulation of highly deformable bodies8), lava flows9), real-time simulation of
water10), and it was adopted to simulate multiple fluid interaction11)12)13). In contrast with
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MPS, SPH can not handle fully incompressible fluids. Therefore, approaches that reduce
the compressibility to a reasonable amount were proposed based on Tait equation14) or
based on iterative error correction method.

Our contribution. In this paper, we aim at proposing a solution for flood simulation of
cities by using the SPH method. The drawback of SPH is that often the boundaries had
to be represented by particles attached to obstacle objects. This gives a unified approach
to both the collision handling and the fluid simulation. However, with the increasing
size and the complexity of a model, the number of particles used to represent boundaries
increases rapidly and becomes a problem. Therefore, we propose alternative ways how
to solve the collisions and particle interactions.

The paper is organized as follows: In the next section we describe SPH method that we
used in particle simulation with the proposal for searching the nearest neighbor particles
in Section 3. In Section 4, we show collision handling based on intersections as well as
our proposed method. In Section 5, we briefly describe our visualization method. In the
end, we present our results.

2. SPH

Smoothed particle hydrodynamics is a Lagrangian fluid simulation method originally
developed for simulating astrophysical phenomena. Later, it was adopted in other fields
like highly deformable solids8) or computational fluid dynamics10).

SPH is an Lagrangian i.e. interpolation method. It approximates values and derivatives
of a continuous fluid by interpolated discrete samples represented by particles. Each
particle carries properties like mass, position, or velocity. These values can be computed
at any point r in simulation space by interpolating the properties of neighboring particles.
This is done by so called kernel functions10) or smoothing kernel A:

A(r) = ∑
b

mb
Ab

ρb
W (r− rb,h), (3)

where we sum over all particles, mb is mass of particle with index b, ρb is its density, and
Ab is known property A of particle b at position rb. W is a kernel function with support
radius h. The kernel function must be even i.e. W (r,h) = W (−r,h) and normalized

∫
W (r− r′,h)dr′ = 1. For example, to compute density ρ of particle i at position ri, we

substitute ρ(ri) for A(r) in Eq. 3:

ρ(ri)ρi = ∑
b

mb
ρb

ρb
W (ri − rb,h) = ∑

b
mbW (ri − rb,h). (4)

We can see that it corresponds with the physical definition of density because it repre-
sents mass around a particle. Unlike in Eulerian approaches with particles in a grid, the
derivatives in SPH can be computed at an arbitrary point in the fluid. The advantage of
Eq. 3 is that the derivation affects only the kernel functions. The gradient of A is

∇A(r) = ∑
b

mb
Ab

ρb
∇W (r− rb,h) (5)

and the Laplacian of A is

∇2A(r) = ∑
b

mb
Ab

ρb
∇2W (r− rb,h). (6)

2.1 SPH and Navier-Stokes Equations

Because we are working with isothermal fluids, the Navier-Stokes equations can be
used in a simplified form. Fluid is expressed by a velocity field v, a density field ρ and
a pressure field p. Thus by expressing the evolution of the fluid in the time, we get one
equation for conservation of mass

∂ρ
∂ t

+∇ · (ρv) = 0, (7)

and another one for conservation of momentum

ρ(
∂v
∂ t

+v ·∇v) =−∇p+ρg+µ∇2v. (8)

This equation can be further simplified. Because we use a particle method, where the
particle mass and the particles number is constant, conservation of mass is guaranteed.
Thus Eq. 9 can be omitted. The expression ∂v

∂ t + v · ∇v in Eq. 10 is the convective
derivative, which is a derivative taken with respect to Lagrangian coordinate system.
Lagrangian coordinate system is a coordinate system, which moves together with the
fluid flow. Because particles move with the flow we can use time derivative of the
velocity instead of convective derivative as follows
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∂v
∂ t

+v ·∇v =
Dv
Dt

, (9)

where t states for time. After the simplifications of Navier-Stokes equations and notating
the particle acceleration as ai we get:

ai ≡
∂vi

∂ t
=

−∇pi +µ∇2vi + fi

ρi
. (10)

Next, we calculate forces resulting from pressure (−∇pi) and viscosity (µ∇2vi) by sub-
stituting p(ri) for A(r) in Eq. 3

f pressure
i ≡−∇p(ri) =−∑

b
mb

pb

ρb
∇W (ri − rb,h). (11)

and nalogically, by substituting µ∇2v(ri) for A(r) in Eq. 3

f viscosity
i ≡ µ∇2v(ri) = µ ∑

b
mb

vb

ρb
∇2W (ri − rb,h). (12)

Instead of ideal fluid law (p = kρ) we calculate the pressure by
p = k(ρ −ρ0), (13)

where k is the fluid stiffness and ρ0 is the rest density. Thus, the fluid tends to hold
density near the rest density.

The problem with Eqs. 13 and 14 is that the forces resulting from them, are not nec-
essarily symmetric. When we compute this forces for two particles which don’t have
the same pressure or velocity, the forces differ, and the third Newton’s law is violated.
Many approaches exist to make this equations symmetric. We use the approach from10):

f pressure
i =−∑

b
mb

pb + pi

2ρb
∇W (ri − rb,h) (14)

and

f viscosity
i = µ ∑

b
mb

vb − vi

ρb
∇2W (ri − rb,h). (15)

In addition we need gravitation and surface tension forces. Surface tension10) can be
derived from the estimated fluid surface normal n as follows:

cs(r) = ∑
j

m j
1
ρ j

W (r− r j,h), n = ∇cs, (16)

fsur f ace =−σ∇2cs
n
|n|

, (17)

where σ is the surface tension coefficient. Leap-frog numerical integration is used for
advancing position and velocity every time step.

3. Neighborhood Query

The influence of each particle is only local, within a support h, it is essential to find the
set of neighbor particles. Since this highly affects further calculations of fluid dynam-
ics it becomes usually the bottleneck of the overall animation. In the standard uniform
grid approach, we construct 3D grid of cells with size h. Each particle n with position
x = (x;y;z) is inserted into one spatial cell with coordinates (k; l;m). In order to deter-
mine the neighborhood of n, only particles that are in the same spatial cell or in one of
the neighboring spatial cells within distance h need to be queried. For each particle n,
all particles in the 27 neighboring cells are tested for interaction. Due to the sorting,
particles that are in the same spatial cell are also close in memory. This improves the
memory coherence (cache-hit rate) of the query. However, it depends on the indexing
scheme if particles in neighboring cells are also close in memory.

Here we extend the usual Spatial Hashing technique for faster SPH simulation and pro-
pose a novel approach Cell Indexing based on indexing non-empty cells in a virtual
subdivision grid, see Onderik15) for more details. Keys are usually 64-bit numbers, 16
bits for each (n, i, j,k) component. For each particle we define it’s key(n, i, j,k) as

key(n, i, j,k) = n+2I i+2I+J j+2I+J+Kk, (18)

where 2I > N, 2J > ⌊Bx/h⌋, 2K > ⌊By/h⌋, and n is index of particle, N is the number
of particles, Bx, By and Bz are dimensions of bounding box, (i, j,k) = cell(x,y,z) are
cell coordinates and I,J,K and are arbitrary constants, usually 16 or 32 depending on
the size of the cell size h. Notice, that function key(n, i, j,k) encodes its parameters to
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a unique key. Thus, given a key q we can compute unique (n, i, j,k). Particle index is
n = qmod2I , and cell coordinates are i = (q/2I)mod2J , · · ·

To make the overall neighbor search algorithm linear, we must sort keys in linear time.
Since we have encoded indices of particles into their keys, we can use radix sort and
have correct indices after sorting.

4. Collision Handling

One of widely used methods for collision handling is sticking the surface with particles
or representing the solid objects with particles. We have decided to not handle the colli-
sions in this way because the number of particles increases rapidly with the size of the
model. By simulating a flood of a city, this would be a great computational burden. We
use two ways of collision handling. One method is based on intersections and the other
one on distances.

4.1 Intersection Method

In general, collision handling can be divided into two steps namely collision detection
and collision response. In collision detection step, we consider that a collision occurred
in time between t and t +△t. Define a segment by position of collided particle i at time
t and t +△t. There has to be an intersection of this segment with the mesh. Thus, the
collision detection is just finding an intersection of a segment with a mesh. In response
step, we move the particle back to the intersection point and reflect the velocity along
the surface normal. The velocity of the particle is updated to

vi = vi − (1+ cR
d

∆t|vi|
)(vi ·n)n, (19)

where 0 ≤ cR ≤ 1 is a constant controlling preservation of kinetic energy, vi is the ve-
locity, and d is the penetration depth. Value cR = 0.45 seems to work well. The main
drawback of this method is a relatively slow calculation compared to the approach based
on distances.

4.2 Distance Method

If the distance of a particle from the surface is smaller than d then we presume that a

collision with the surface can occur. We used d = h, where h is support radius of the
kernel functions16), in our simulation. The collision will occur only when the particlen i
is moving toward the surface. So we have to test if vi ·n(ri) < 0. If this test is positive
we handle the collision by reflecting the velocity of the particle along the surface normal
with greater angle of reflection than the angle of incidence, see Fig. 1. The response is
applied before the collision actually happens, exactly at the time when the distance is
smaller than d.

d

p

n
v

v
R

φ
i
φ

r

Fig. 1 Collision handling in the distance method. Velocity v of particle p is reflected along the surface
normal, where φi ̸= φr , because it is moving towards surface.

Model used in the simulation does not change in time and is represented by a mesh, thus
we can use this fact to accelerate the computation of the distance function. The distance
of a particle from the surface corresponds to the distance of the particle to the closest
face of the mesh. We can pre-compute a regular grid of pointers to nearest faces and
at places, where the distance is above a certain threshold the pointer is NULL. When
computing the distance of a particle from surface we find the closest pointer in the grid.
If the pointer is NULL, we do not have to handle the collision. If pointer is not NULL,
we compute the distance of the particle to the pointed face.

If gravitation or pressure force is pushing a particle towards the surface, in some cases,
reflecting of the velocity is not enough to get the particle farther from the surface than d.
Such particle will gradually come closer to the surface and eventually go through it. To
avoid this problem, we use a force that pushes particles away from the surface, if they
come closer to the surface than distance d. We apply the force by increasing velocity in
the direction of surface normal

v = v+ c(2d −dist)n, (20)
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where v is the velocity of a particle, c is a user defined constant and dist is the distance
of a particle from the surface.

5. Visualisation

Fluid surface reconstruction is done using marching cube algorithm, where density is
used as isofunction and obtained mesh is then fitted to the model. The marching cube
algorithm works in such a way that it produces a small gap between the fluid surface and
the obstacle mesh, next we wish to correct this gap. When a vertex of the fluid mesh is
closer to the obstacle surface than user specified distance ds, we fit the mesh vertex to
the surface. It can be done as

x̄ = x−D(x)n(x), (21)

where x̄ is a fitted vertex, x is the vertex before fitting, D(x) is the distance of the vertex
x from the surface, and n(x) is the normal in the closest point of the model surface from
the vertex x. We use ds = h, where h is the support radius of the the kernel functions used
in SPH. The acceleration method of distance finding from the collision handling is used
here to accelerate the surface fitting. The results are than exported into a COLLADA
file that can be imported into 3ds Max and rendered.

6. Results

To measure the efficiency of our algorithm we have performed following testing sce-
nario. Given 15000 randomly sampled particles we get 15000× 15000 = 225000000
all possible pairs of particles. Depending on the sampling domain size, only a fraction
of them belong to close particle pairs. We define the pair ratio as the fraction between
close pairs and all pairs. Setting h= 1 we started with a sampling domain 2×2×2 (pair
ratio = 0.9999) and end with domain 15×15×15 (pair ratio = 0.0069). Graph on left
in Figure 2 shows measured total time [ms] on axis Y needed to report all close particle
pairs using three different algorithms namely SortGrid (Cell Sorting), HashGrid (Spatial
Hashing) and BruteForceN2 (All-Pair-Test) for different test case with warring pair ratio
shown on axis X . Figure 2 on right demonstrates the speed up ratio between Cell Sorting
and Spatial Hashing for decreasing pair ratio, for low pair ratio Cell Sorting is almost
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Fig. 2 Algorithm efficiency. Left) Relation between pair ratio and the respective total time required to find
close particle pairs using Cell Sorting (red), Spatial Hashing (green) and All-Pair-Test (blue). Axis Y
notes the time in ms and axis X the decreasing pair ration. Right) The speed up ratio between Cell
Sorting and Spatial Hashing for decreasing pair ratio. Axis Y notes the speedup ration and axis X pair
ration.

twice as fast as Spatial Hashing. We implemented described our flood simulator on a PC
with Intel P9400 2.4 GHz processor with 4.0GB RAM, but we did not fully exploited
the multicore potential. We tested the presented methods with two scenarios sumariesed
in Table 1. Collision handling based on distances produces similar visual results as the
method based on intersections, but with a higher speed. The tested scene animation of
a fluid in box is shown in Fig. 3 and the city urban model with flowing water is shown
in Fig. 4. OpenSceneGraph was used for importing of the 3D models used in collision

Table 1 Comparison of frames per second calculated using the collision handling based on distances and
the collision handling based on intersections.

scene number of distance intersections time of
particles the precomputation

cuboid 5510 17-20 fps 5-6.5 fps 5s
city 8892 10-13 fps 2-3.5 fps 2m 18s

handling the best results were achieved using 3DS and OBJ file formats. GNU trian-
gulated surfaces library was used in surface reconstruction and COLLADA DOM was
used for exporting the water surface and geometry of the model into a COLLADA file.

7. Conclusions

In this paper, we presented a method of water simulation, which can be used in large
simulations such as flood simulations. We use the SPH particle method with proposed
nearest neighbor search algorithm using the sorted indexes with the hashing table. We
implemented collision handling based on the distance from the surface.
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Fig. 3 Fluid surface rendered in 3ds Max.
Fig. 4 Flood simulation of a city rendered in 3ds

Max.
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