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Towards Modeling Stored-value Electronic Money Systems
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This paper presents mathematical and general models of electronic money
systems. The goal of the paper is to propose a first framework in which vari-
ous kinds of e-money systems can be uniformly represented and their security
properties can be evaluated and compared. We introduce two kinds of e-money
system models; a note-type e-money system model and a balance-type e-money
system model. We show that any balance-type e-money system with efficient
data transmission cannot be simulated by any note-type e-money system. This
implies that balance-type e-money systems are strictly faster in data commu-
nication. Then, we show that a forged monetary value can be detected in some
note-type e-money systems, while it cannot be detected in any balance-type e-
money systems with efficient data communication. This implies that note-type
e-money systems seem to be more secure.

1. Introduction

Electronic money (e-money) is a new kind of money that is stored and spent
only electronically. In particular, stored-value e-money systems have been suc-
cessful and widely used in countries such as Japan, Hong-Kong, and Singapore,
due to their convenience. In these systems, an electronic monetary value is stored
on a device that is controlled by a user, such as a smart card and a mobile phone.
Stored-value e-money systems are often used as an efficient replacement of cash
payments with coins and notes, because users do not have to look for coins and
notes in their wallet and merchants do not have to store many coins and notes
for changes. Also, since most stored-value e-money systems employ contact-less
smart cards as users’ devises, payments can very quickly be done simply by facing
a smart card to a card reader.

Two types of stored-value e-money systems are popular today; One is a note-
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type e-money system in which digital notes are stored within each user’s devise
(e.g., a smart card). Since note-type e-money systems are electronic simulation
of today’s physical cash systems, the value of each digital note is fixed. The first
note-type e-money was proposed by Chaum 1) (called electronic cash or e-cash
therein), and it has extensively been studied since (e.g., see Refs. 2)–6)). An
example of a real-world note-type e-money system is a British e-money system
called mondex 7). The other is a balance-type e-money system in which an ac-
cumulated value representing the balance of money is stored within each user’s
devise. Prepaid e-money systems that have widely been used in Japan, Hong-
Kong, and Singapore are kinds of balance-type e-money system.

Most e-money systems currently used in the real world are of the latter type,
balance-type e-money systems 8). This is because balance-type e-money systems
tend to be much more “lightweight” than note-type ones. Indeed, this paper will
show that what distinguishes note-type and balance-type e-money systems is the
data size communicated between users for money value exchanges. That is, we
will prove that the lower bound of data size for a value transfer in any note-type
e-money system is strictly larger than that in any balance-type e-money system.

Security and privacy properties of stored-value e-money systems have been well
studied 9), and there have been some attempts to analyze different kinds of stored-
value e-money systems from security and privacy viewpoints 10),11). However, the
existing researches have not provided any general framework in which various e-
money systems can be compared in a uniform way, or any analysis of security and
privacy in a unified manner. Motivated by this background, this paper presents
a first mathematical and general model for stored-value e-money systems. All
the existing stored-value e-money systems well fit into our model, and hence we
can compare their security properties within a unified framework.

In this paper, we analyze security properties of e-money systems with off-
line payments 5), where neither a trusted third party or the bank is involved in
any e-money transfer between users. That is, the users’ devises are assumed
to be capable of peer-to-peer communications (e.g., infrared ray communication
between two mobile phones, or a contact-less smart card and a card reader).
In particular, this paper focuses on the detectability of forged monetary values.
This is a rather important security issue of e-money, as it is easy to duplicate
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or alter electronic data. We analyze the detectability of forged values in note-
type and balance-type e-money systems, based on the proposed general e-money
models. As a result, we will show that some note-type e-money systems have
detectability of forged values, while no balance-type e-money systems with an
efficient communication complexity have the detectability.

The rest of the paper is organized as follows. In Section 2, we introduce a
general money system model which consists of three kinds of elements: hold-
ers, mediums, and values. Examples of holders are wallets for cash systems
and smart cards for e-money systems. Mediums can be seen as (digital and
physical) coins and notes. Values represent monetary values (e.g., 1 dollar, 2
dollars, etc.) of mediums. Sections 3 and 4 extend the general money model to a
note-type e-money system model and to a balance-type e-money system model,
respectively. In Section 5, we introduce lightweight protocols for e-money trans-
fer between holders. The concept of lightweight protocols differentiates note-type
and balance-type e-money systems in terms of communication data efficiency. In
Section 6, we show detectability (resp. undetectability) of forged values in note-
type e-money systems (resp. balance-type e-money systems). Finally in Section 7
we conclude and state our future work.

A preliminary version of this paper is in Ref. 12).

2. Money System Model

In this section, we present our general money system model and some opera-
tions on the proposed model. A money system is formalized as follows.
Definition 1 A money system is a quintuple (V ,M ,H , vf, hf) such that
• V = {0, 1, 2, . . . , n} is a finite set of non-negative integer values,
• M is a finite set of mediums,
• H is a finite set of holders,
• vf : M → V is called a value function, and
• hf : M → H is called a holder function.
A medium m is an abstract model of anything that represents a monetary value

v. A coin and a note are examples of a medium. A holder is an abstract model
of anything or anyone that stores a medium. A wallet and a smart card are
examples of a holder, and a user himself can also be regarded as a holder.

Fig. 1 The money system model. The arrows from M to H represent the hf function, while
those from M to V do the vf function.

For any m ∈ M , if h = hf(m) ∈ H , then we say that holder h has medium m.
For any m ∈ M , if v = vf(m) ∈ V , then we say that medium m carries value v.
For any h ∈ H , if v =

∑
hf(m)=h vf(m) ∈ V , then we say that holder h has total

value v.
Figure 1 shows the money system model of Definition 1.

Example. Assume that holder Alice has a 1 dollar coin c. Then hf(c) = Alice

and vf(c) = 1.
In the following subsections, we introduce operations by a holder or by a pair

of holders, which will extend the above static model to a dynamic one. Each
operation makes some alteration to the mapping vf from M to V and/or to the
mapping hf from M to H . To distinguish the mappings before and after an
operation, we introduce the notion of time unit t. We denote by vft and hft

the mappings vf and hf at time t, respectively. After an operation has been
conducted, the resulting mappings are denoted by vft+1 and hft+1, respectively.
That is, a single operation increases the time unit by one.

2.1 Money Transfer
A most basic operation in the money system model is to transfer some amount
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of money (value) from a holder to another holder, which is formalized as follows.
Definition 2 A transfer of value v ∈ V from holder h ∈ H to holder h′ ∈ H
(h �= h′) at time t is an operation such that

∑

hft(m)=h

vft(m) ≥ v, (1)

∑

hft+1(m)=h

vft+1(m) =
∑

hft(m)=h

vft(m) − v, (2)

∑

hft+1(m)=h′
vft+1(m) =

∑

hft(m)=h′
vft(m) + v, (3)

and for any holder h′′ �= h, h′,
∑

hft+1(m)=h′′
vft+1(m) =

∑

hft(m)=h′′
vft(m). (4)

Equation (1) implies that a transfer of value v can be conducted only if the total
values that holder h has is at least v. Eq. (2) implies that the total values that
holder h has decreases by v, and Eq. (3) does that the total values that holder
h′ has increases by v. Eq. (4) says that the total values that any other holder h′′

has does not change due to the transfer.
Example. Assume that Alice has a total of 10 dollars and Bob has a total of 5 dol-
lars at time t. Now Alice is giving 4 dollars to Bob. Then

∑
hft(m)=Alice vf

t(m) =
10,

∑
hft(m)=Bob vf

t(m) = 5,
∑

hft+1(m)=Alice vf
t+1(m) = 10 − 4 = 6, and∑

hft+1(m)=Bob vf
t+1(m) = 5 + 4 = 9.

Remark. The money model of Definition 1 lacks the bank, an important entity
of money systems. However, we can regard the bank as a special kind of holder
in our model. A withdrawal of money is then regarded as a value transfer from
the bank to a holder, and a deposit of money is the other way round.

2.2 Money Forgery
Next, we define an operation that relates to an attack to the system. Let

fvf : M → V be a function called a forged value function. We assume that
fvft(m) ≥ vft(m) for any medium m ∈ M and at any time t.
Definition 3 A forgery of value fv > 0 by holder h ∈ H at time t is an operation
such that

fvft+1(m) = vft(m) + fv and (5)
vft+1(m) = vft(m) (6)

with some medium m ∈ M such that hft(m) = hft+1(m) = h.
Equations (5) and (6) imply that although the value measured by the forged
value function fvf of medium m increases by fv from time t to time t + 1, the
actual value by the value function vf does not change from time t to time t + 1.
The above value fv is called a forged value.
Example. Assume that Alice has a smart card s with the balance of 1 dollar
at time t, and now she is illegally adding a forged value of 9 dollars into her
smart card. Then fvft+1(ms) = vft(ms) + fv = 1 + 9 = 10, where ms denotes a
medium associated with the smart card s.

2.3 Forged Money Transfer
Next we define an operation of transferring a forged value from a holder to

another holder.
Definition 4 A transfer of forged value fv ∈ V from holder h ∈ H to holder
h′ ∈ H (h �= h′) at time t is an operation such that

∑

hft(m)=h

fvft(m) ≥
∑

hft(m)=h

vft(m) + fv , (7)

∑

hft+1(m)=h

fvft+1(m) =
∑

hft(m)=h

fvft(m) − fv , (8)

∑

hft+1(m)=h′
fvft+1(m) =

∑

hft(m)=h′
fvft(m) + fv , (9)

and for any holder h′′ �= h, h′,
∑

hft+1(m)=h′′
fvft+1(m) =

∑

hft(m)=h′′
fvft(m). (10)

Equation (7) implies that a transfer of forged value fv can be conducted only if
the total forged values that holder h has is at least fv . Eq. (8) implies that the
total forged values that holder h has decreases by fv , and Eq. (9) does that the
total forged values that holder h′ has increases by fv . Eq. (10) says that the total
forged values that any other holder h′′ has does not change due to the transfer.
Example. Assume that holder Alice has a fake 10 dollar note b, and is giving b to
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Bob. Since fvft(b) = 10, we get
∑

hft(m)=Alice fvf
t(m)−∑

hft(m)=Alice vf
t(m) ≥

fvft(b)− hft(b) = 10,
∑

hft+1(m)=Alice fvf
t+1(m) =

∑
hft(m)=Alice fvf

t(m)− 10,
and

∑
hft+1(m)=Bob fvf

t+1(m) =
∑

hft(m)=Bob fvf
t(m) + 10.

2.4 (Un)detectability of Forged Money
We define the detectability of a forged value, as follows.

Definition 5 A forged value fv ∈ V w.r.t. medium m ∈ M is said to be de-
tectable at time t if fvft(m)−vft(m) = fv is computable (under some conditions),
and is said to be undetectable otherwise.

In this paper, we deal with the following problem that concerns the security of
money systems.
Problem 1 (Detectability of transferred forged value) Assume that for-
ged value fv > 0 is transferred from any holder h ∈ H to any holder h′ ∈ H (h �=
h′) at time t. Is forged value fv detectable at time t + α with α ≥ 1?

In Sections 3 and 4 we will introduce two kinds of e-money systems based on
the money model of Definition 1. Section 5 will discuss the significant difference
between those systems. Then in Section 6 we will discuss Problem 1 for the two
kinds of e-money systems.

3. Note-Type E-Money System Model

In this section, we propose a note-type e-money system model that is an elec-
tronic simulation of today’s note-based cash system. This type of e-money system
has been in practical use 13) and has widely been studied 1)–6).
Definition 6 An note-type e-money system is a money system of Definition 1
with the following restriction: For any medium m ∈ M and at any time t,

vft+1(m) = vft(m). (11)
That is, in a note-type e-money system model, the value that each medium carries
is fixed (i.e., invariant with time), as is the case with the physical cash system.
Definition 7 A transfer of value v ∈ V from holder h to holder h′ (h �= h′) in
a note-type e-money system is an operation such that for some Q ⊆ M,

hft(m) = h for any m ∈ Q,∑

m∈Q

vft(m) = v,

Fig. 2 Before transferring value v from h to h′ on a note-type e-money system at time t.
There exists medium m such that vft(m) = v and hft(m) = h.

Fig. 3 After transferring value v from h to h′ on a note-type e-money system at time t + 1.
Now vft+1(m) = v and hft+1(m) = h′. Also hft+1(m′) = hft(m′) for any m′ �= m.

hft+1(m) = h′ for any m ∈ Q,

and for any m′ /∈ Q, hft+1(m′) = hft(m′).
See Fig. 2 and Fig. 3 that illustrate a transfer of value v from h to h′ in a

note-type e-money system model.
The following proposition shows that a money transfer of a note-type e-money

system defined above is a money transfer of a money system model.
Proposition 1 A transfer of value v ∈ V in a note-type e-money system of
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Definition 7 satisfies the conditions of Definition 2.
Proof.

∑
m∈Q vft(m) = v satisfies Condition (1). By Eq. (11),

∑
m∈Q vft+1(m)

= v after a transfer of value v. Moreover, since hft(m) = h, hft+1(m) = h′ for any
m ∈ Q, and hft+1(m′) = hft(m′) for any m′ /∈ Q, we get

∑
hft+1(m)=h vf

t+1(m)=∑
hft(m)=h vf

t(m) − v,
∑

hft+1(m)=h′ vft+1(m) =
∑

hft(m)=h′ vft(m) + v, and for
any holder h′′ �= h, h′,

∑
hft+1(m)=h′′ vft+1(m) =

∑
hft(m)=h′′ vft(m). Hence

Conditions (2), (3), and (4) hold. �
Now we define a forged value transfer in a note-type e-money system as follows:

Definition 8 A transfer of forged value fv ∈ V from holder h to holder h′

(h �= h′) in a note-type e-money system is an operation such that for some
R ⊆ M,

hft(m) = h for any m ∈ R,∑

m∈R

fvft(m) =
∑

m∈R

vft(m) + fv ,

hft+1(m) = h′ for any m ∈ R,∑

m∈R

fvft+1(m) =
∑

m∈R

vft+1(m) + fv ,

and for any m′ /∈ R, hft+1(m′) = hft(m′).
Proposition 2 A transfer of forged value fv ∈ V in a note-type e-money system
of Definition 8 satisfies the conditions of Definition 4.
Proof. Since hft(m) = h for any m ∈ R and

∑
m∈R fvft(m) =

∑
m∈R vft(m) +

fv , Condition (7) is satisfied. Since hft+1(m) = h′ �= h for any m ∈ R, we have
that

{p ∈ M | hft+1(p) = h} = {q ∈ M | hft(q) = h} − R and
{p′ ∈ M | hft+1(p′) = h′} = {q′ ∈ M | hft(q′) = h′} ∪ R.

Therefore Conditions (8) and (9) hold. Condition (10) holds since hft+1(m′) =
hft(m′) for any m′ /∈ R. �

4. Balance-Type E-Money System Model

Here, we propose a balance-type e-money system model in which an accumu-
lated value that represents the balance of money is stored in each holder. That
is, a fixed single medium is associated with each holder, and the value that is

Fig. 4 Before transferring value v from h to h′ on a balance-type e-money system at time t.
Here we have vft(mh) ≥ v.

carried by the medium varies with time. A number of balance-type e-money
systems have been proposed and are in practical use8).
Definition 9 A balance-type e-money system is a money system of Definition 1
with the following restriction: At any time t, hft is a bijection and for any m ∈ M

hft(m) = hft+1(m).
Namely, in the balance-type e-money system model, there is a one-to-one rela-

tion between a holder and a medium, and the relation is invariant over time.
For any holder h ∈ H , let mh denote a unique medium that h has, namely

hft(mh) = h.
A transfer of value in a balance-type e-money system is defined as follows:

Definition 10 A transfer of value v ∈ V from holder h ∈ H to holder h′ ∈ H
(h �= h′) in a balance-type e-money system is an operation such that

vft(mh) ≥ v,

vft+1(mh) = vft(mh) − v,

vft+1(mh′) = vft(mh′) + v,

and for any m′ ∈ M such that m′ �= mh and m′ �= mh′ , vft+1(m′) = vft(m′).
See Fig. 4 and Fig. 5 that illustrate a transfer of value v from holder h to

another holder h′ in the balance-type e-money system model.
The following proposition shows that a money transfer of the balance-type

e-money system defined above is a money transfer of a money system model.
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Fig. 5 After transferring value v from h to h′ on a balance-type e-money system at time
t + 1. Now vft+1(mh) = vft(mh) − v and vft+1(mh′ ) = vft(mh′ ) + v.

Proposition 3 A transfer of value v ∈ V in a balance-type e-money system of
Definition 10 satisfies the conditions of Definition 2.
Proof. Since hft is a bijection and hft(mh) = h for any holder h ∈ H , we have∑

hft(m)=h vf
t(m) = vft(mh) for any time t. Hence the proposition holds. �

A transfer of forged value in a balance-type e-money system is defined as fol-
lows:
Definition 11 A transfer of forged value fv ∈ V from holder h ∈ H to holder
h′ ∈ H (h �= h′) in a balance-type e-money system is an operation such that

fvft(mh) ≥ vft(mh) + v,

fvft+1(mh) = fvft(mh) − v,

fvft+1(mh′) = fvft(mh′) + v,

and for any m′ ∈ M − {mh,mh′}, fvft+1(m′) = fvft(m′).
Proposition 4 A transfer of forged value fv ∈ V in a balance-type e-money
system of Definition 11 satisfies the conditions of Definition 4.
Proof. Since hft(mh) = h and {m ∈ M | hft(m) = h} = {mh} for any holder
h and time t, Conditions (7), (8), and (9) hold. Condition (10) holds since
vft+1(m′) = vft(m′) and fvft+1(m′) = fvft(m′) for any m′ ∈ M − {mh,mh′}.

�

5. Lightweight Money Transfer Protocol

In this section, we introduce lightweight protocols for transferring a value in the
e-money systems of the previous sections. A lightweight protocol is a protocol
that transmits minimum amount of data for a value transfer between holders.
Definition 12 Any protocol for a transfer of a value from holder h to holder h′

is said to be lightweight if it satisfies the following properties:
(a) The protocol is “off-line”. That is, the communication is only between h and

h′ and neither the bank or a trusted third party is involved in the protocol.
(b) The data transmitted from one holder to the other is at most �log2 n	+ O(1)

bits.
Lightweight protocols are basic, yet useful to construct practical e-money sys-
tems, as a value transfer between holders can quickly be accomplished. Also,
since the data communication is off-line and only between holders, anonymous
payments are possible with lightweight protocols.

It is not difficult to see that there exist lightweight protocols for a balance-
type e-money system, which satisfy the properties of Definition 12. For instance,
consider the following protocol in which a value v is transferred from holder h to
holder h′ in a balance-type e-money system.
( 1 ) Holder h sends integer v to holder h′.
( 2 ) Holder h subtracts v from the value in medium mh.
( 3 ) Holder h′ adds v to the value in medium mh′ .
( 4 ) Holder h′ tells holder h that h′ has received v.

It is rather clear that the communication of the above protocol is only between
h and h′. Also, as the value of v is at most n, we can transfer value v using
�log2 n	 bits.

Note that we can encrypt the value v by common-key or public-key encryption
algorithms without increasing its data size, hence lightweight protocol can protect
its communication contents from eavesdroppers.

It is also possible to extend the above protocol so that the two holders conduct
mutual authentication: We can index each holder hi using an id i for each holder.
Each id can be implemented with �log2 |H |	 bits. Assuming that H is fixed and
the length of credentials (e.g., passwords) is linear in �log2 |H |	 or is constant, h
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and h′ can mutually authenticate each other while only constant-sized data are
communicated between them. We remark that in most of real-world applications
the length of credentials is constant.

On the other hand, the following lemma shows that a value transfer in any
note-type e-money system cannot be implemented by a lightweight protocol.
Lemma 1 A value transfer in any note-type e-money system requires to transmit
data of size Ω(n

1
3 log n) from holder h to holder h′.

Proof. Consider k distinct values 1 ≤ n1 < n2 < · · · < nk ≤ n. Let x be the
maximum number of mediums that the holder h has for every value ni, where
1 ≤ i ≤ k. Then there exist (x + 1)k combinations of mediums that the holder h

may have. Therefore at least �log2(x + 1)k	 = �k log2(x + 1)	 bits of information
is required to be transmitted from holder h to holder h′.

Let n be the maximum value that can be transferred between holders. If
nk = n

1
3 , then

xk(2n
1
3 − k + 1)
2

=
x(2kn

1
3 − k2 + k)

2
≤ n.

Now consider the case (x(2kn
1
3 − k2 + k))/2 = n. Choosing k = n

1
3 , we get

x = O(n
1
3 ). Hence �k log2(x + 1)	 = O(n

1
3 log n) bits of information is required

to be transmitted from h to h′ in this case.
We finally remark that the preconditions of a value transfer in a note-type

e-money system of Definition 7 are all satisfied in the above scenario. �
Lemma 1 also means that a lightweight value transfer protocol is what distin-

guishes note-type e-money systems from balance-type e-money systems, that is,
any balance-type e-money systems with a lightweight protocol cannot be simu-
lated by any note-type e-money systems.

6. (Un)detectability of Forged Values

In this section we show whether a forged value is detectable or undetectable
in e-money systems, after a forged value transfer of Definition 8 or Definition 11
has conducted.

Recall Problem 1 that defines the problem of detecting a forged value fv that
has been transferred from holder h to holder h′. In the sequel, we consider the
following specific situation:

- At time t, holder h′ has value zero, that is,
∑

hft(m)=h′
vft(m) =

∑

hft(m)=h′
fvft(m) = 0.

- A value v > fv is transferred from holder h to holder h′ at time t.
The first assumption is to simplify the analysis. The second assumption is to
make the problem more interesting, difficult, and realistic – a mixture of (legal)
value and forged value is transferred from holder h to holder h′, and the task is
to compute how much out of the mixed value has been forged.
Theorem 1 There exists a note-type e-money system in which the forged value
fv is detectable.
Proof. We here deal with the case where a single medium carrying value v is
transfered from holder h to holder h′. The cases where more than one medium
are transferred can be shown similarly.

Now consider the following note-type e-money system: Each medium mj is
assigned a unique index j, with 1 ≤ j ≤ |M |. Each holder has an array A of size
|M | such that A[j] stores the value of medium mj , that is, A[j] = vf(mj). By
definition of a note-type e-money system, the value of each element A[j] is fixed
for any time t. Assume that the value of a medium mj has been forged and it is
transferred from h to h′ at time t. Let fv = fvft(mj)−vft(mj) = v−vft(mj) > 0.
Then fv is detectable since A[j] = vft+α(mj) = vft(mj) for α ≥ 1. Using a
public-key digital signature algorithm (e.g., see Ref. 14)), we can check whether
the index j of a medium mj has been illegally altered or not.

Let us now consider a duplicated medium dm from some medium m such that
vft(m) = v. Note fv = fvft(dm) − vft(dm) = v − 0 = v. This cannot be solved
simply by using the array A. However, it has been shown in the literature (e.g.,
see Ref. 4)) that it is possible to construct a note-type e-money system in which
every duplicated medium dm can be detected by the bank after dm is sent from h

to h′. We remark that the bank is only contacted by holder h′ after a transaction
between the holders. Hence any value transfer between holders remains off-line.
Therefore the theorem holds. �

As shown above, the forged value is detectable in some note-type e-money
system. On the contrary, the following theorem shows that the forged value is
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undetectable in any balance-type e-money system which uses a lightweight value
transfer protocol.
Theorem 2 In any balance-type e-money system, the forged value fv is unde-
tectable with a lightweight value transfer protocol of Definition 12.
Proof. Note that, by Lemma 1, we cannot apply Theorem 1 to any balanced-type
e-money system using a lightweight protocol.

Let r = v− fv and d be the function s.t. d(v, r) = v−r = fv . Then the problem
of detecting the forged value fv is identical to computing the value d(v, r).

We prove the theorem by showing that the one-way deterministic communica-
tion complexity 15) from h to h′ so that the value d(v, r) is computable is 2�log2 n	
bits. Let us denote the communication complexity by C. Recall that the maxi-
mum possible value for v is n. Since the value v is already transfered from h to
h′, and h′ did not know the value v beforehand, the communication complexity
C is at least �log2 n	. Hence the question is how large is the extra data that need
to be additionally transmitted from h to h′ in order that d(v, r) is computable.

We regard computing d(v, r) as determining the cell (v, r) of an n × (n + 1)
matrix D such that D[i, j] = i− j for 1 ≤ i ≤ n and 0 ≤ j ≤ n. As was shown in
Ref. 15), the one-way communication complexity is �log2(drow(D))	 bits, where
drow(D) denotes the number of distinct rows in D. Since D[i+1, j] = D[i, j]+1
for every 1 ≤ i ≤ n − 1, we have drow(D) = n. Therefore, C ≥ �log2 n	 +
�log2(drow(D))	 = �log2 n	 + �log2 n	 = 2�log2 n	. On the other hand, it can
easily be seen that C ≤ 2�log2 n	. Hence C = 2�log2 n	.

By Definition 12, the data transmitted from h to h′ in any lightweight protocol
must be at most �log2 n	+O(1) bits. Hence we conclude that the forged value fv
is undetectable in any balance-type e-money systems that employ a lightweight
protocol. �

7. Conclusions and Future Work

This paper presented a general model of money systems and its extended ver-
sions to two kinds of e-money systems, note-type and balance-type e-money sys-
tems. Using the notion of a lightweight protocol, we showed that balance-type
e-money systems are more efficient than note-type e-money systems in terms of
the data size transmitted between holders. On the other hand, we showed that

note-type e-money systems are more secure than balance-type e-money systems
from the view point of detectability of forged values.

The results of this work suggest the followings:
( 1 ) In a balance-type e-money system, the upperbound n for a monetary value

transfer has to be kept small. This is because once a large forged monetary
value is mixed with a legal value, it cannot be detected due to Theorem 2.
Also, it is suggested that a balance-type e-money system in the real world
should be limited to closed-loop payments, that is, once an electronic mon-
etary value is used for purchase, it cannot be directly reused and has to be
changed to cash. This suggestion also comes from undetectability of forged
values shown in Theorem 2.

( 2 ) A note-type e-money system may become a “next-generation” secure e-
money system. However, a drawback of this type of e-money system is that
a merchant (a holder that receives money) needs to store enough “changes”
for arbitrary monetary value transfer, like today’s physical cash systems.
This obviously spoils a benefit of electronic payments.

According to the above discussions, our future work is to model the following
type of e-money system: A divisible e-cash system 16),17) allows an electronic
coin to be divided into two coins having the same total amount of values as the
original coin. This allows us exact and efficient payments without using changes.
Divisible e-cash systems can be seen as an intermediate between note-type e-
money systems and balance-type e-money systems. A divisible e-cash system
can be described using our money model of Definition 1, as follows. Any medium
m having a value v ≥ 2 at time t can be divided into two mediums m1 and
m2 having values v1 ≥ 1 and v2 ≥ 1, respectively, with v1 + v2 = v. That is,
vft(m) = v and and vft+1(m1) + vft+1(m2) = v1 + v2 = v. The detectability of
forged values in divisible e-cash systems needs to be examined using our model.

Yamasaki, et al. 18) proposed a general model of door access control that is
based on finite state machines. In their model, a door-key is regarded as a
medium that represents the right of a user to open a door, and various types
of door-keys such as physical keys, card keys, passwords, and biometrics well fit
into the model. The inherent difference between door-access control and e-money
systems is whether each medium takes a Boolean value or a non-negative integer
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value. This implies that it should be possible to extend the model of Ref. 18) to
e-money systems, and this may lead us to further insight of e-money systems.
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