
IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010)

Regular Paper

Improving Error Messages in Type System

Cynthia Kustanto†1 and Yukiyoshi Kameyama†1

We propose a type inference algorithm for a polymorphic type system which
provides improved error messages. While the standard type inference algo-
rithms often produce unnecessarily long or incomplete error messages, our algo-
rithm provides relevant and complete information for type errors. It is relevant
in the sense that all the program points and types in the output of our algo-
rithm contribute to some type error, and is complete in the sense that, for each
type error, our algorithm identifies not only two conflicting types, but also all
types which conflict with each other. The latter property is particularly useful
for debugging programs with lists or case branches. Our algorithm keeps track
of the set of program points that are relevant to each type. To achieve com-
pleteness, we introduce a new type variable which represents a conflict among
two or more incompatible types, and extend the unification algorithm to handle
the special type variable appropriately. Finally, we argue that our algorithm
is more efficient than those in the literature when there are more than two
conflicting types in the given expression.

1. Introduction

Type error messages should be correct and informative to help programmers fix
the error. However, when one designs a type inference algorithm, the main goal
is usually its correctness and efficiency, and error reporting is just a subsidiary
goal. As a result, error messages are often hard to understand, unnecessarily
long, or spotting program fragments which are far away from the actual error
sources 1).

For instance, Algorithm W 2)–4) for the Hindley/Milner let-polymorphic type
system works in the bottom-up manner and performs unification whenever it
infers the type of application terms, and therefore it signifies a type error at a
program point far from the actual conflicting subterms. Moreover, it stops at

†1 Department of Computer Science, Graduate School of Systems and Information Engineer-
ing, University of Tsukuba

the first error, hence it has the so called left-to-right bias. Numerous approaches
have been proposed to improve the quality of type errors.

Haack and Wells presented an algorithm to compute minimal program-slices for
type errors in implicitly typed higher-order languages with let-polymorphism 5).
A program-slice (slice, in short) is a collection of program points which are rele-
vant to a type error. Their algorithm satisfies two desirable properties, minimal-
ity and completeness. The slices obtained by their algorithm are minimal in the
sense that no program points that are irrelevant to a type error are included in
the slices. Their algorithm produces a complete set of slices in the sense that all
type errors in the source expression can be explained in some slice. The problem
with their algorithm is that it may produce unnecessarily long output when there
are more than two conflicting types, which we will argue below.

A type error is often seen as a conflict between the types of two subexpressions,
for example, a conflict between the argument type of a function and the type of its
actual argument. However, there are cases when more than two subexpressions
and types are involved in a conflict, such as the error in the elements of a list as
described below �1:

[1; [1]; true]

This list contains three elements each of which has a different type. Therefore,
it has three type errors if we regard a type error as a conflict between two types.
Clearly it is unnatural to produce three messages for this expression, and we
think the conflict in this example should be reported as a single error message
with all three subexpressions pinpointed as the error locations.

A similar phenomenon occurs in distinct subtrees of a source expression, for
instance:

(λx . x+4) (if true then true else 1)

This example has a type conflict between true and 1 because the if-expression
requires its two arms be of the same type. Moreover, it should be the same
type as the type of x which ought to be integer. Hence it has another type

�1 We use PCF-like syntax here. The precise syntax will be introduced in Section 3.

43 c© 2010 Information Processing Society of Japan

44 Improving Error Messages in Type System

conflict between true and x. As the type inference system does not know the
programmer’s intention, it should output an error message which contains all
three subexpressions (and the corresponding types) as “error locations”.

Finding all error locations may be even more complex if a variable x has more
than one occurrence, as in the following example:

(λx . x+ (x 1)) (if true then true else 1)

As the third occurrence of the variable x is used in application (x 1), its type is
the function type integer → integer. Hence there is yet another conflict of types,
and in total, the expression above contains the conflict among four locations
and three types. Apparently, we would get too many error messages if they are
generated in a pairwise manner.

In this paper we propose a novel type inference algorithm which reports all type
errors in the input program. More precisely, it identifies, for each type error, all
the program points (locations) that contribute to the type error without reporting
irrelevant locations.

We construct our algorithm as a constraint type inference algorithm with the
addition of ψ type variables and the set of labels.

A ψ type variable is associated with a list of types, which represents an equation
that involves an arbitrary number of types, instead of exactly two. When this
equation is not satisfied, then there is a type error among the elements of the list
of types.

A label uniquely determines a program point, and in our algorithm each type
has the set of labels relevant to the type. Thus, when a conflict is found, we can
recover all the relevant program points using the recorded set of labels.

We argue our algorithm improves Haack and Wells’ algorithm in conceptual
simplicity and expected efficiency. Their algorithm first generates error slices
based on pairwise conflicts of types, then tries to find and merge overlapping
slices, and finally, minimizes the output slices. Clearly, their algorithm may
produce too big intermediate data. Suppose the given expression is a list of 10
elements whose types are mutually distinct. Their algorithm first generates 45
slices, since each slice corresponds to a conflict between two types, and then tries
to merge and minimize these 45 slices, and the result will be only 1 slice with 10

conflicting types. On the contrary, our algorithm directly calculates this single
slice when it solves the constraints by unification, and there is no need to merge
or minimize slices. It is then natural to expect that our algorithm is simpler and
runs more efficiently for such cases.

The rest of this paper is organized as follows. Section 2 describes the problems
addressed in this paper and informally explains how the algorithm works, and
Section 3 gives our type inference algorithm to solve the problems. We show some
theoretical properties of the algorithm in Section 4. Section 5 gives an overview
of previous work dedicated to improving type error messages and compares our
approach with others. Section 6 concludes the paper and describes our plans for
future work.

2. Identifying Error Locations

2.1 Detecting Multiple Type Errors
Many type inference systems stop at the first error they find. In the case

where there are multiple errors, it is inconvenient for the programmer to keep re-
executing the system to get explanations for each error. Information regarding
the existence of other errors would be useful when fixing an error. However,
there are drawbacks in detecting multiple errors. Even the manifesto for good
type error reporting did not include multiple-error reporting because such goal
comes with the risk of generating a cascade of bogus error messages 6). In such
cases, the number of error locations that need to be fixed is usually less than the
number of errors reported. This issue is one of our motivations to identify all
the relevant error locations in error messages. The errors reported in the error
messages should be the actual errors that occurred in the program.

To find all the type errors in a program, the type inference algorithm must
not fail at the first conflict found. Type inference basically stops when it fails
to unify a constraint, so we have to delay the unification until we record all the
constraints. To achieve this we use the constraint-based typing described by
Pierce 7). It differs from Algorithm W in the typing rules, where constraints are
not checked immediately but recorded for later consideration.

However, the type inference of a term let x = e1 in e2 strictly requires unifica-
tion to be applied to the output of the inference of e1 before inferring e2. The

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

45 Improving Error Messages in Type System

principal type scheme of e1 is needed for instantiation each time an occurrence
of x is found in e2. Delay of unification will not yield a correct result.

The slicer proposed by Haack and Wells 5) uses Damas’ type inference system
which is used with Damas’ algorithm T 8). It differs from the Hindley/Milner sys-
tem in the rule for let-expressions. The let-expressions rule of Damas is described
below:

(S �= ∅) and ∀τ1 ∈ S . Γ � e1 : τ1 Γ[x �→ ∧S] � e2 : τ2
Γ � (let x = e1 in e2) : τ2

In the algorithm, if τ1 and C1 are, respectively, the type and the constraint set
produced by the inference of e1, each time an occurrence of x in e2 is encountered,
fresh variants of τ1 and C1 are generated. This let-expressions rule also copies
C1 for every instance of x in e2.

Unification is used to calculate solutions to constraint sets 9). The unification
algorithm always terminates and fails when given a non-unifiable constraint set
as input, and returns a principal unifier otherwise. In order to find all the errors
in a program, we modify the standard unification algorithm so that it always
terminates and returns a set of substitutions and an error set. If the error set
is not empty, then the constraint set given as the input is not unifiable. If the
error set is empty, then the substitution returned by the algorithm is a principal
unifier.

In our algorithm, an error set is a set of lists of types. Each list corresponds
to an error, and it contains two or more types which contribute to the error. We
discuss the approach to record multiple conflicting types in the next subsection.

2.2 Sample Output of Our Algorithm
The type reconstruction algorithm in constraint-based typing 7) calculates a

set of constraints which is a set of equations {Si = T i∈1..n
i }. A constraint is

inconsistent if there is a conflict between the types on the left side and the right
side of the equation. Either or both of the types might be substitution instances
or might also occur in other constraints. Thus, there are relations among the
elements of a constraint set which could have contributed to the error. Similarly,
there might be other inconsistencies that have (partly or completely) the same
error locations. Our algorithm records these relations and related conflicts so

that the error messages can present all the contributing error locations.
In order to explain our proposal, we use several examples from our simple

prototype system.

typecheck "((lambda x . [x;true;false;true]) (if true then 1 else 2))";;
((lambda x . [x;true;false;true]) (if _ then 1 else 2))
Type conflict: bool, int

The error in the above example is that there is a conflict between integer and
boolean. In the function, the variable x is an element of a list in which elements
are of type boolean. However, the function receives an argument of type integer.
More detailed explanations:
• The list requires all its elements to be of the same type, as in (type of x =

type of true = type of false = type of true).
• If-expression requires the argument of then-clause and else-clause to be of

the same type, as in (type of 1 = type of 2).
• The function takes the output of if-expression as an argument, which create

a constraint among the elements of the list and the type of the if-expression.
Therefore, a conflict between type integer and type boolean arises.

Program points that are unrelated to the type error are omitted. To fix the
type error, programmer doesn’t need to modify any of the omitted points.

typecheck "(lambda x . [1;x;true])";;
(___[1;_;true])
Type conflict: int, bool

In the above expression, the variable x does not contribute to the conflict
although it is also an element of the list. Any change to it would not help fixing
the error.

typecheck "[[[1]];[[true]];[[]];[[false]];[[]]]";;
[[[1]];[[true]];_;[[false]];_]
Type conflict: int, bool

In the above example, the empty list also does not contribute to the error, as
its element is not assigned with any type to be able to contribute anything to the
conflict. However, the empty list itself (no matter what the elements are) can
cause conflict as in the example below.

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

46 Improving Error Messages in Type System

typecheck "(lambda x . [1;[];x;true])";;
(___[1;[];_;true])
Type conflict: list of t3, int, bool

This implies that rather than just the relationship among subexpressions, it is
the contribution of a subexpression that becomes the factor as to whether any
types or locations are included in the error messages.

If there is any inconsistency in the inner list, it is considered as a different error.

typecheck "[1;[34;false;95];true]";;
[1;[_;_;_];true]
Type conflict: list of t2, int, bool

[_;[34;false;95];_]
Type conflict: int, bool

In the case of the lambda expression and function application, the function
type τ → τ is involved in the constraints, so there is a need to further examine
the points that contribute to the error. It can be the body of the function,
the output of the function, the parameter of the function, the function itself, the
application, or any combination of the mentioned parts. The next example shows
that only the function contributes to the conflict as the arrow type itself conflicts
with boolean and integer.

typecheck "[true;(lambda x . (x + 1));3]";;
[true;(lambda _ . ___);3]
Type conflict: (int -> int), bool, int

In the next example, the argument is a function, while inside the body of the
function there is inconsistency among the types of the occurrences of x.

typecheck "((lambda x . (x + (if x then 1 else 2)))
(lambda y . (if true then y else (y + 1))))";;

((lambda x . (x + (if x then _ else _))) (lambda _ . ________))
Type conflict: (int -> int), bool, int

The next example illustrates a type error in the case of let-polymorphism.
There are five occurrences of x; however, only two of them collide in the type
error as x is a let-bound variable.

typecheck "(let x = (lambda w . w) in
(if (x true) then (x 1) else ((x 2) + (x x))))";;

(let x = (lambda w . w) in (__ ___ __(_ _ + (x x))))
Type conflict between: (t1.t11 -> t1.t11), int

The last example has two type errors of which error locations are overlapping.
They are shown in different slices as there are two separate conflicts. The integer
1 conflicts with true, while 2 conflicts with false.

typecheck "(if true then (lambda f . ((f 1) 2))
else (lambda g . ((g true) false)))";;

(if _ then (lambda f . ((f 1) _)) else (lambda g . ((g true) _)))
Type conflict between: int, bool

(if _ then (lambda f . ((f _) 2)) else (lambda g . ((g _) false)))
Type conflict between: int, bool

3. Our Algorithm

3.1 Syntax and Notations
To describe our approach concretely, we use the language shown in Fig. 1. The

syntax is similar to PCF with boolean and integer as the representatives of the
base types. List is also included. tp(τ, C) is used for polymorphic types so that
the algorithm can create new instances of the type and the constraint.

The type ψ is actually a type variable. It differs from ordinary type variables
in that ψ forms a constraint with a list of types.

Figure 2 introduces some notations used in the algorithm. Labels l0, l1, . . . , ln
denote locations in a term. For a term e, el0 is a labeled term whose root location
is labeled with l0. An example of a fully labeled term is given as follows:

(λxl1 . (xl3 + 1l4)l2)l0

For a type τ and a set of labels L, τL denotes a labeled type whose root position
is labeled with L. Arrow types and list types have subtypes, each of which may
also have labels, such as (τL1

1 → τL2
2)L0 and (tlist(τL1

1)L0). We often omit to
write the label set L if L is empty. We use labeled types to keep track of the
subterms which are relevant to the derivation of that type. For instance, the type
of the term (λxl1 . (xl3 + 1l4)l2)l0 is (ψ[l0;l1]

1 → int[l0;l2])[l0]. We notice that the
arithmetic expression labeled with l2 contributes to deriving the return type of
the function as indicated by int[l0;l2].

Ψ denotes a set of multiple-type constraints, which are equations between the
type variable ψ and a list of types. An example of Ψ is:

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

47 Improving Error Messages in Type System

Term e ::= i | true | false constants

| x variable

| (λx . e) lambda abstraction

| (e1 e2) application

| (if e1 then e2 else e3) conditional

| (e1 + e2) addition

| (let x = e1 in e2) let-expression

| [e1;e2;...;en] list

i ::= 0 | 1 | -1 | ... integer constants

Type τ ::= tb base type

| τ → τ arrow type

| α type variable

| ψ multiple-type variable

| tp(τ, C) Damas’ type scheme

| tlist(τ) list type

tb ::= int | bool

Fig. 1 Syntax of the language.

Label l

Set of Labels L

Labeled term el

Labeled type τL

Constraint c ::= (τL1
1 = τL2

2)

Set of constraints C

Context Γ ::= List of (x : τ)

Substitution s ::= (τ1 �→ τL2)

Set of substitutions S

Multiple-type constraints cm ::= (ψ = List of τL)

Set of multiple-type constraints Ψ ::= List of cm

Set of errors err ::= List of List of τL

Fig. 2 Definitions and notations.

[ψ1 = [boolL1];

ψ2 = [(intL1 → intL2)L3];

ψ3 = [intL1 ; boolL2]]

typecheck(Γ, e) =

let (C, τ1) = recon(Γ, e) in

let (S, err) = unify(C) in

if err = [] then let τ2 = S ◦ (τ1) in Success(τ2)

else Error(err)

Fig. 3 The main function of our algorithm.

An error is represented by a list of labeled types, and err is a list of errors.
The labeled types in an error represent a type conflict among two or more types.
For instance:

[[τL1.1
1.1 ; τL1.2

1.2 ; ...; τ
L1.n1
1.n1

]; 1st error

[τL2.1
2.1 ; τL2.2

2.2 ; ...; τ
L2.n2
2.n2

]; 2nd error

...

[τLm.1
m.1 ; τLm.2

m.2 ; ...; τ
Lm.nm
m.nm]] mth error

Each error in err contains all the conflicting types of which labels represent all
the locations contributing to the corresponding error.

3.2 Main Function
Figure 3 describes the main function of our algorithm. The inputs of the

function typecheck are a context Γ and a term e. It returns either Success(τ) for
a principal type τ of e, or Error(err) for errors.

First, the function recon, which is a constraint-based typing algorithm, receives
a context Γ and a term e and returns a constraint set C and a type τ . Constraint
set C will be passed as the input for the unification process. Function unify
checks the consistency of constraint set C and returns a substitution set S and
an error set err as the output.

If the error set err is an empty set, then the type inference succeeds. We can
get the principal type of the input term by applying substitution S to τ1. If the
error set is not empty, then there are type error(s). The error set err contains
a list of errors, each of which contains a list of conflicting types. The types are
attached with the record of labels of the expression contributing to the errors,
which can be used to pinpoint the possibly erroneous locations.

To get the error locations, we only have to get the labels of the types recorded
in the error set. For example, given an erroneous expression as follows:

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

48 Improving Error Messages in Type System

(λx . (let w = (x+ 1) in (if w then [1; true] else [4])))
Each subexpression is annotated with a unique label. Let the above expression

be labeled as follows:
(λxl2 . (letwl4 = (xl6 +1l7)l5 in (if wl9 then [1l11 ; truel12]l10 else [4l14]l13)l8)l3)l1

The result of the algorithm for this labeled expression is an Error state with
the following error set:

[[int[l3;l4;l5;l9]; bool[l8]];

[int[l10;l11;l13;l14]; bool[l10;l12]]]

According to the error set, there are two type errors in the given expression.
The first error is a type conflict between integer and boolean. We retrieve the
labels recorded in all the types in the list, [l3; l4; l5; l8; l9], to get the error locations
as shown below:

(___(let w = (_ + _) in (if w then _ else _)))

The same goes for the second error. The second error is a type conflict between
integer and boolean, with [l10; l11; l12; l13; l14] as the error labels. We use the labels
to seek the error locations which are illustrated below:

(___(_______(___[1;true]_[4])))

The following subsections describe the functions recon and unify in more de-
tails.

3.3 Labeled Type Inference
Function recon generates a set of constraints. It receives a term e and a context

Γ to compute the type of the term, τ , and a set of constraints C.
recon follows the standard algorithm, but keeps track of labels which are re-

sponsible for the derivation of each type. For its definition in Fig. 4, we assume
that the given term is fully labeled, and the labels are mutually distinct. The
label of each subexpression is recorded in its inferred type. The labels are passed
along the inference and also when constraints are built. These labels are used
for keeping track of the subexpressions contributed to the derivation of types, so
they are very crucial for finding the location of an error.

In the let-expression rule, the tp type is introduced to handle polymorphism.
It carries a type τL and a constraint set C. Every time an occurrence of x is
found in the input term, the variable rule generates a fresh variant of τL and
C, which are described in the algorithm as τL1 and C1. We will use an example

recon: Context × Term → Set of constraints × Type

recon(Γ, il0) = ([], int[l0])

recon(Γ, truel0) = ([], bool[l0])

recon(Γ, falsel0) = ([], bool[l0])

recon(Γ, xl0) = if (x : ψ0) ∈ Γ then ([], ψ
[l0]
0)

else if (x : tp(τL1 , C)) ∈ Γ then

let (C1, τ1) be fresh variants of (C, τ) in

(C1, τ
L1∪[l0]
1)

recon(Γ, (λxl1 .e)l0) = let (C2, τ
L2
2) = recon(Γ ∪ [x : ψ0], el2) in

(C2, (ψ
[l0;l1]
0 → τ

(L2∪[l0])
2)[l0])

recon(Γ, (e1 e2)l0) = let (C1, τ
L1
1) = recon(Γ, el11) in

let (C2, τ
L2
2) = recon(Γ, el22) in

(C1 ∪ C2 ∪ [τL1
1 = (τ

L2∪[l0]
2 → α

[l0]
0)[l0]], α

[l0]
0)

recon(Γ, (if e1 then e2 else e3)l0) = let (C1, τL1
1) = recon(Γ, el11) in

let (C2, τ
L2
2) = recon(Γ, el22) in

let (C3, τ
L3
3) = recon(Γ, el33) in

let C0 = [τL1
1 = bool[l0]; ψ

[l0]
0 = τL2

2 ; ψ
[l0]
0 = τL3

3] in

(C1 ∪ C2 ∪ C3 ∪ C0, ψ
[l0]
0)

recon(Γ, (e1 + e2)l0) = let (C1, τ
L1
1) = recon(Γ, el11) in

let (C2, τ
L2
2) = recon(Γ, el22) in

let C0 = [τL1
1 = int[l0]; τL2

2 = int[l0]] in

(C1 ∪ C2 ∪ C0, int[l0])

recon(Γ, (let xl1 = e2 in e3)l0) = let (C2, τL2
2) = recon(Γ, el22) in

let Γ2 = Γ ∪ [x : tp(τ
L2∪[l0;l1]
2 , C2)]

let (C3, τ
L3
3) = recon(Γ2, el33) in

(C2 ∪ C3, τ
L3∪[l0]
3)

recon(Γ, [e1;e2;...;en]l0) = for i = 1 to n: let (Ci, τ
Li
i) = recon(Γ, e

li
i) in

let C′ = [τL1
1 = ψ

[l0]
0 ;...;τLn

n = ψ
[l0]
0] in

let C0 = C1 ∪ ... ∪ Cn ∪ C′ in

(C0, tlist(ψ0)[l0])

Fig. 4 Type inference algorithm.

where all labels of the types are omitted. If type τ is α1 → α1, then its fresh
variant would be α1.1 → α1.1, α1.2 → α1.2, α1.3 → α1.3, and so on, where α1.j

are new type variables. A fresh variant of the constraint C ′ is actually a copy

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

49 Improving Error Messages in Type System

of C with fresh variants of its types. For example, if C is [α1 = int], then its
variant will be [α1.1 = int], [α1.2 = int], and so on.
ψ-types are introduced for the cases of if-expression, list, and abstraction. ψ-

types are used for handling variable instances and elements of list because all
the instances of the same variable and all elements of a list have to be of the
same type, and there can be more than two instances and elements, respectively.
Therefore, we need to make constraints connecting all the related types and
locations. ψ is also used in if-expression because the type of then-clause, the
type of else-clause, and the type of the whole if-expression have to be the same.

We use the previous example to illustrate this algorithm. If we apply recon to
the following expression:

(λxl2 . (letwl4 = (xl6 +1l7)l5 in (if wl9 then [1l11 ; truel12]l10 else [4l14]l13)l8)l3)l1

then recon generates outputs ψ[l1;l2]
1 → ψ

[l1;l3;l8]
2 as τ , and the constraint set C

as follows:

[ψ
[l6]
1 = int[l5]; int[l7] = int[l5]; ψ

[l5]
1.1 = int[l5];

int[l7] = int[l5]; ψ
[l10]
3 = int[l11]; ψ

[l10]
3 = bool[l12];

ψ
[l13]
4 = int[l14]; int[l3;l4;l5;l9] = bool[l12]; tlist(ψ3)[l10] = ψ

[l8]
2 ;

tlist(ψ4)[l13] = ψ
[l8]
2]

3.4 Unification
If the labels are ignored and the conditions involving ψ-types are removed, our

unification algorithm is just a standard unification algorithm modified to suit
the syntax of our language. Our unification function terminates when all the
constraints have been processed. Type error occurs when the unification of a
constraint fails, and the conflicting types will be stored in the set of errors err
for displaying error messages later.

The main function of the unification process is the function unify as described in
Fig. 5. unify receives a constraint set C as the input and produces a substitution
set and an error set as the output. If C is unifiable, the error set should be an
empty list.

Two functions are executed inside unify. Function u puts away all the con-
straints involved with ψ-types in the list Ψ while unifying the other constraints.
The list of multiple-type constraints Ψ is checked by the function solvePsi, which
produces the final substitution set and error set.

unify: Set of constraints → Set of substitutions × Set of errors

unify(C) = let (Stemp,Ψ, errtemp) = u(C,[],[],[],[]) in
solvePsi(Stemp,Ψ, errtemp)

Fig. 5 Unification algorithm.

3.5 Solving Equations Between a Pair of Types
Function u is defined in Fig. 6. u is a recursive function receiving 5 parameters,

the first of which is a constraint set C which is being solved. The second parame-
ter is a constraint set Cψ for quarantining constraints in the form of (ψL1

1 = ψL2
2).

This parameter will be explained later. The third input is the substitution set S,
which holds the record of all the generated substitutions. The fourth parameter
is the list of multiple-type constraint Ψ, while the fifth one is the error set err
which holds the record of failed unification. The three latter parameters will be
returned as the output of the function. In the function, addS is used for applying
a substitution to the elements of the parameters. We use OCaml syntax in the
figures, for example, h :: r is a list with head h and rest r.

Besides the treatment of labels, the difference of u and the standard unification
algorithm is the special treatment for ψ-types. In the function u, all constraints
in the form of (ψL1

1 = ψL2
2) are quarantined in a different list Cψ as the second

parameter of the function u. For each constraint in the form of equation between
a ψ-type and a type variable (ψL1 = αL2), a substitution (α �→ ψL1∪L2) is applied
to all the parameters and then recorded in S. When a constraint in the form of
equation between a ψ-type and any other type (ψL1 = τL2) is encountered, the
τL2 is added to Ψ as one of the types assigned to ψL1 .

When all the constraints in C has been checked by u, we check the contents of
the parameter Cψ (see the first two clauses in Fig. 6). If Cψ is empty, then the
function terminates and returns the substitution set, the Ψ set, and the error set.
If Cψ is not empty, then the function upsi is called to solve Cψ.

The function upsi defined in Fig. 7 handles the constraints in the form (ψL1
1 =

ψL2
2) by building substitutions and arranging the list of types in Ψ. upsi receives 5

parameters which are exactly the same as the parameters received by u. It returns
the constraint set, the substitution set, Ψ, and the error set as the output.

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

50 Improving Error Messages in Type System

u: Set of constraints × Set of constraints × Set of substitutions
× Set of multiple-type constraints × Set of errors

→ Set of substitutions × Set of multiple-type constraints × Set of errors

u([],[], S,Ψ, err) = (S,Ψ, err)

u([], Cψ , S,Ψ, err) = let (C′, S′,Ψ′, err′) = upsi([], Cψ , S,Ψ, err) in

u(C′,[], S′,Ψ′, err′)
u((tbL1

1 = tbL2
2) :: rest, Cψ , S, Ψ, err) =

if tb1 �= tb2 then u(rest, Cψ , S, Ψ, err ∪ [tbL1
1 ; tbL2

2])

else u(rest, Cψ , S, Ψ, err)

u((tbL1 = tlist(τ2)L2) :: rest, Cψ , S, Ψ, err) = u(rest, Cψ , S, Ψ, err ∪ [tbL1 ; tlist(τ2)L2])

u((αL1 = τL2) :: rest, Cψ , S, Ψ, err) = let (ocheck, olabel) = occurcheck(α, τL2) in

if ocheck then u(rest, Cψ , S, Ψ, err ∪ [αL1∪olabel; τL2])

else u(addS((α �→ τL1∪L2), rest, Cψ , S, Ψ, err))

u((ψL1 = αL2) :: rest, Cψ , S, Ψ, err) =

u(addS((α �→ ψL1∪L2), rest, Cψ , S, Ψ, err))

u((ψL1
1 = ψL2

2) :: rest, Cψ , S, Ψ, err) =

if (ψL3
1 = ψL4

2) ∈ Cψ || (ψL4
2 = ψL3

1) ∈ Cψ
then let C′

ψ = Cψ − [(ψL3
1 = ψL4

2); (ψL4
2 = ψL3

1)]in

u(rest, C′
ψ ∪ [ψL1∪L3

1 = ψL2∪L4
2], S, Ψ′, err)

else u(rest, Cψ ∪ [ψL1
1 = ψL2

2], S, Ψ′, err)
u((ψL1 = τL2) :: rest, Cψ , S, Ψ, err) = let (Ψ′, C′) = addPsi(ψ, τL1∪L2 , Ψ) in

u(C′ ∪ rest, Cψ , S, Ψ′, err)
u(((τL1

1 → τL2
2)L5 = (τL3

3 → τL4
4)L6) :: rest, Cψ , S, Ψ, err) =

u([τL1
1 = τL3

3 ; τL2
2 = τL4

4] ∪ rest, Cψ , S, Ψ, err)

u(((τL1
1 → τL2

2)L4 = tlist(τ3)L3) :: rest, Cψ , S, Ψ, err) =

u(rest, Cψ , S, Ψ, err ∪ [(τL1
1 → τL2

2)L4 ; tlist(τ3)L3])

u(((τL1
1 → τL2

2)L4 = tbL3) :: rest, Cψ , S, Ψ, err) =

u(rest, Cψ , S, Ψ, err ∪ [(τL1
1 → τL2

2)L4 ; tbL3])

u((tlist(τ1)L1 = tlist(τ2)L2) :: rest, Cψ , S, Ψ, err) = u((τ1 = τ2) :: rest, Cψ , S, Ψ, err)

(* for any other pair of types, exchange left-hand side and right-hand side *)

u((τL1
1 = τL2

2) :: rest, Cψ , S, Ψ, err) = u((τL2
2 = τL1

1) :: rest, Cψ , S, Ψ, err)

Fig. 6 Unification function for checking consistency of equations between a pair of types.

If the ψ1 and ψ2 in the constraint (ψL1
1 = ψL2

2) are the same, then we only
need to record the labels in L1 ∪L2 in all occurrences of ψ1 in the parameters. If
ψ1 is inside Ψ and has non-empty list of types, then the labels are also recorded
in those types. If the ψ1 and ψ2 in the constraint (ψL1

1 = ψL2
2) are different and

both already exist in Ψ, then we have to merge the list of types of ψ1 and the list

upsi: Set of constraints × Set of constraints × Set of substitutions
× Set of multiple-type constraints × Set of errors → Set of constraints
× Set of substitutions × Set of multiple-type constraints × Set of errors

upsi(C,[],S,Ψ, err) = (C, S,Ψ, err)

(* If the ψ-type in the left hand side is the same as the right hand side *)

upsi(C, (ψL1
1 = ψL2

1) :: rest, S, Ψ, err) =

let L′ = L1 ∪ L2 in

let (C′, rest′, S′, Ψ′, err′) = addS((ψ1 �→ ψL
′

1), C, rest, S, Ψ, err) in

if (ψ1, [τ
L1
1 ; ...; τLn

n]) ∈ Ψ′

then upsi(C′, rest′, S′, (ψ1, [τ
L1∪L′
1 ; ...; τLn∪L′

n]) :: restΨ′, err′)
else upsi(C′, rest′, S′, Ψ′∪ [(ψ1, [])], err′)

(* If the ψ-type in the left hand side is different from the right hand side *)

upsi(C, (ψL1
1 = ψL2

2) :: rest, S, Ψ, err) =

if (ψ1, [τ
La1
a1 ; ...; τLan

an]) ∈ Ψ and (ψ2, [τ
Lb1
b1

; ...; τ
Lbn
bn

]) ∈ Ψa

then let Ψ′ = (for i = 1 to n: addPsi(ψ1, τ
Lbi∪L′
bi

,Ψ)) in

let Ψ′′ = delete ψ2 from Ψ′ in

upsi(addS((ψ2 �→ ψL
′

1), C, rest, S, Ψ′′, err))
else if (ψ1, [τ

La1
a1 ; ...; τLan

an]) ∈ Ψ

upsi(addS((ψ2 �→ ψL
′

1), C, rest, S, Ψ, err))

else upsi(addS((ψ1 �→ ψL
′

2), C, rest, S, Ψ, err))

Fig. 7 Unification function for handling equations between a pair of ψ types.

of types of ψ2, and then substitute one of the ψ-type to the other one. L1 ∪ L2

must be recorded as well.
3.6 Adding Types to Multiple-type Constraints
Figure 8 describes the function addPsi for adding a type to the set of multiple-

type constraints Ψ. The function is applied in the function u and also in the
function upsi when merging lists of types. addPsi has three parameters; a type
ψ, a type τ , and the list Ψ. The function returns the Ψ list which has been
updated by adding τ to the list of types assigned to ψ.

To make it easier to check the consistency of multiple-type constraints after-
wards, there can only be one occurrence of the same type in a Ψ element. There-
fore, when adding a new type to Ψ as an element, we must check whether the
same type already exists or not. For example, when adding a new type intL1 to
(ψ1, [intL2]), we only have to pass the labels so that it becomes (ψ1, [intL2∪L1]).

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

51 Improving Error Messages in Type System

addPsi: Multiple-type variable × Labeled Type × Set of multiple-type constraints
→ Set of multiple-type constraints × Constraints

addPsi(ψ, τ,Ψ) =

let (Ψ′, ltype) = if (ψ, [τL1
1 ; ...; τLn

n]) ∈ Ψ

then (Ψ − (ψ, [τL1
1 ; ...; τLn

n]), [τL1
1 ; ...; τLn

n]) else (Ψ, [])

in match τ with

tbL1
1 : if tbL2

2 ∈ ltype then (Ψ′ ∪ (ψ, ltype− [tbL2
2] ∪ [tbL1∪L2

2]), [])

else (Ψ′ ∪ (ψ, ltype ∪ [tbL1]), [])

| (τL1
1 → τL2

2)L12 : if (ψ3 → ψ4)L34 ∈ ltype

then (Ψ′ ∪ (ψ, ltype− [(ψ3 → ψ4)L34] ∪ [(ψ3 → ψ4)L34∪L12]),

[τL1
1 = ψ3; τL2

2 = ψ4])

else let ψ3, ψ4 = new variables in

(Ψ′ ∪ (ψ, ltype ∪ (ψ3 → ψ4)L12), [τL1
1 = ψ3; τL2

2 = ψ4])

| tlist(τ1)L1 : if tlist(ψ2)L2 ∈ ltype

then(Ψ′ ∪ (ψ, ltype− [tlist(ψ2)L2] ∪ [tlist(ψ2)L2∪L1]), [τL1
1 = ψ2])

else let ψ2 = new variable in (Ψ′ ∪ (ψ, ltype ∪ [tlist(ψ2)L1]), [τL1
1 = ψ2])

Fig. 8 Function for adding a type to the set of multiple-type constraints.

If we add boolL1 to this Ψ, it becomes (ψ1, [intL2 ; boolL1]). With this, we can
see that a multiple-type constraint is consistent when its list is singleton.

However, we need to do more for the arrow type and the list type. The arrow
type and the list type contain subtypes so we have to make new ψ-types and new
constraints for every type included. For example, when a type (τL1

1 → τL2
2)L12 is

added to an element of Ψ, we need to build new constraints (ψnew1 = τL1
1) and

(ψnew2 = τL2
2). The type listed in the Ψ would be the (ψnew1 → ψnew2)L12 , so

that when there are other arrow types forming constraints with the corresponding
ψ, the constraints between the nested types are created and their relationships
are recorded.

3.7 Solving Multiple-type Constraints
The final consistency check of the multiple-type constraint set Ψ is done by

the algorithm solvePsi described in Fig. 9. solvePsi takes the Ψ set and the
temporary set of substitutions and set of errors as the input, and checks the
consistency of the Ψ set.

Because elements of the list of types in Ψ have unique values, we only have to

solvePsi: Set of multiple-type constraints × Set of substitutions × Set of errors
→ Set of substitutions × Set of errors

solvePsi(S, [], err) = (S, err)

solvePsi(S, (ψ0, []):: restpsi, err) =

let (eC, eCψ , S′, restpsi′, err′) = addS((ψ0 �→ α0), [], [], S, restpsi, err) in

solvePsi(restpsi′, S′, err′)
solvePsi(S, (ψ0, τL1

1 ::[]):: restpsi, err) =

let (ocheck, olabel) = occurcheck(ψ0, τ
L1
1) in

if ocheck then solvePsi(restpsi, S, err ∪ [ψolabel0 ; τL1
1])

else let (eC, eCψ , S′, restpsi′, err′) = addS((ψ0 �→ τL1
1), [], [], S, restpsi, err) in

solvePsi(restpsi′, S′, err′)
solvePsi(S, (ψ0, [τL1

1 ; ...; τLn
n]) :: restpsi, err) =

let olabel = [] in

for i = 1 to n :

let (ochecki, olabeli) = occurcheck(ψ0, τ
Li
i) in

if ochecki then add olabeli to olabel

in

if olabel �= [] then

solvePsi(restpsi, S, err ∪ [ψolabel0 ; τL1
1 ; ...; τLn

n])

else solvePsi(restpsi, S, err ∪ [τL1
1 ; ...; τLn

n])

Fig. 9 Unification function for checking consistency of the constraints assigned to ψ types.

check the number of elements in the list of types assigned to each ψ. If there
is only one type in it, for example (ψ1, [intL1]) :: rest, then the constraint is
consistent and the substitution (ψ1 �→ intL1) is applied. Otherwise, there is an
error and the corresponding list of types is added to the error set. In the case of
error involving arrow types and/or list types, occurs check is applied as well.

After all the elements of Ψ have been checked, the function returns the final
set of substitutions S and the set of errors err.

3.8 Other Necessary Functions
Figure 10 describes the function for occurs check. The function occurcheck

takes a type τ1 and a labeled type τL2
2 as the input. τ1 can be either a type

variable or a ψ-type. If any occurrence of τ1 is found inside τL2
2 , then the function

returns true and the labels of τ1 that occured in τ2. If τ1 is not found in τL2
2 ,

then the function returns false and an empty set.

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

52 Improving Error Messages in Type System

occurcheck: Type × Labeled type → bool × Set of labels

occurcheck(τ1, (τL2
2 → τL3

3)L1) = let (o1, lo1) = occurcheck(τ1, τL2
2) in

let (o2, lo2) = occurcheck(τ1, τL3
3) in

(o1||o2, lo1 ∪ lo2)
occurcheck(τ1, tbL2

2) = (false, [])

occurcheck(τ1, αL2
2) = if τ1 = α2 then (true, L2) else (false, [])

occurcheck(τ1, ψL2
2) = if τ1 = ψ2 then (true, L2) else (false, [])

occurcheck(τ1, tlist(τ2)L2) = let (o, lo) = occurcheck(τ1, τ2) in

if o then (true, lo ∪ L2) else (false, [])

Fig. 10 Occurs check.

In our unification process, labels are passed every time a substitution is applied.
For example, if a substitution (α1 �→ intL2) is applied to a type αL3

1 , then the
substitution instance will be intL3∪L2 .

The application of the function addS in the figures represents the substitution
process. The first parameter of addS is the substitution (τ1 �→ τL2

2), while the
five other parameters are the lists to which the substitution is applied. After
(τ1 �→ τL2

2) is applied to the five lists, it will be added to the fourth parameter,
substitution set S. The function addS returns the five lists as the output.

3.9 Example of the Unification Process
To explain the unification process, we will use an example. We consider the

following expression:
(λx . (let w = (x+ 1) in (if w then [1; true] else [4])))

From the function recon we obtain a constraint set C as follows:

[ψ
[l6]
1 = int[l5]; int[l7] = int[l5]; ψ

[l5]
1.1 = int[l5];

int[l7] = int[l5]; ψ
[l10]
3 = int[l11]; ψ

[l10]
3 = bool[l12];

ψ
[l13]
4 = int[l14]; int[l3;l4;l5;l9] = bool[l12]; tlist(ψ3)[l10] = ψ

[l8]
2 ;

tlist(ψ4)[l13] = ψ
[l8]
2]

The above constraint set is given as the input for the function unify. In unify,
u(C,[],[],[],[]) is called first, and we get a temporary substitution set Stemp, Ψ,
and a temporary error set errtemp. The content of each set is as follows:

S : [ψ5 �→ ψ4; ψ3 �→ ψ4]

Ψ : [(ψ1 = [int[l5;l6]]); (ψ1.3 = [int[l5;l6]]); (ψ2 = [tlist(ψ4)[l8;l10;l13]]);

(ψ4 = [int[l10;l11;l13;l14]; bool[l10;l12]])]

err : [[int[l3;l4;l5;l9]; bool[l8]]]

These three sets are then passed to the function solvePsi. The output of
solvePsi(S,Ψ, err) is as follows:

S : [ψ5 �→ ψ4; ψ3 �→ ψ4; ψ1 �→ int[l5;l6];

ψ1.3 �→ int[l5;l6]; ψ2 �→ tlist(ψ4)[l8;l10;l13]]

err : [[int[l3;l4;l5;l9]; bool[l8]]; [int[l10;l11;l13;l14]; bool[l10;l12]]]

The error set is not empty; therefore, C is not unifiable and there are two type
errors.

4. Properties of the Algorithm

In this section, we show several properties of the algorithm in Section 3.
The first theorem states the correctness of our algorithm as a (normal) type

inference algorithm.
Theorem 4.1 (Correctness). Given a context Γ and a term e, if e is typable

under Γ, the algorithm returns Success(τ) for a principal type τ of e; otherwise,
it returns Error(err) for some err.

This theorem can be proved straightforwardly; if we ignore all the labels, and
treat ψ-types as normal type variables, our algorithm coincides with the algo-
rithm W, with the rule of let-expressions being modified based on Damas’ algo-
rithm T .

The next theorem states that, if the input term is not typable under the given
context, our algorithm returns all the type errors in the term. To precisely state
the theorem, we need the notion of replacement.

For a labeled term e, its label l, and a term constructor g, we define the
replacement repl(e; l; g) as the term e in which the constructor at the l-position
is replaced by g. Its precise definition can be given as follows:

repl((f(a1, . . . , an))l; l; g) = g(a1, . . . , an)l

repl((f(a1, . . . , an))l0 ; l; g) = (f(repl(a1; l; g), . . . , repl(an; l; g)))l0 if l0 �= l

where f(a1, . . . , an) denotes a generic form of expressions with an n-ary con-
structor f and arguments a1, · · · , an. We implicitly assume that the arity of

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

53 Improving Error Messages in Type System

f and that of g are the same. f ranges over the set of constants and func-
tions symbols such as +, if-then-else, let-in, list, and application. For instance,
repl(((1+2)l1 +3)l0 ; l0; g) = (g((1+2)l1 , 3))l0 , and repl(((1+2)l1 +3)l0 ; l1; g) =
((g(1, 2))l1 +3)l0 . The definition of replacement is naturally extended to the sets
of labels: repl(e; l1, · · · , lm; g1, · · · , gm).

We can now state the next theorem.
Theorem 4.2 (Completeness with respect to error locations). If our algo-

rithm returns Error(err) given a context Γ and a term e, err contains all error
locations.
Namely, let L be the error locations in err, m be the number of locations in L,
x1, · · · , xm be fresh variables, and φ1, · · · , φm be fresh type variables. Then the
term repl(e;L;x1, · · · , xm) is typable under the context Γ∪{(x1 : φ1), · · · , (xm :
φm)}.

In the theorem, we use fresh variables xi as term constructors which have
arbitrary arities. These term constructors have the types φi.

We illustrate it using the example below:

(if (1l2 + 2l3)l1 then 3l4 else 5l5)l0

Given the expression above and an arbitrary context Γ, our algorithm returns
Error(err) with err being [[int[l1]; bool[l0]]], which means that there is a type
error between integer and boolean. According to the recorded labels, the con-
tributing constructors for this error are those with the label l0 (the if-expression)
and l1 (the arithmetic function +). Therefore we have two ways to fix the type
error as follows:
• If we replace the function symbol at l0 (i.e., if-then-else) by g and add (g : φ1)

to Γ, we get the term (g (1 + 2) 3 5), which is typable.
• If we replace the function symbol at l1 (i.e., +) by f and add (f : φ2) to Γ,

we get the term (if (f 1 2) then 3 else 5), which is typable.
In both cases, we get typable expressions provided f and g are fresh variables

and φ1 and φ2 are fresh types. It is clear that subterms other than the if-
expression and the + expression are irrelevant to the type error. Thus, the
algorithm finds the complete set of error locations.

The theorem can be proven without big problems: suppose a type constraint

τL = σL
′

is generated at the label l before the replacement repl(e; l;x). Then
by the replacement, the generated constraint would become τL = φ for a fresh
φ. Since φ does not appear elsewhere in the constraints, the replacement, in
effect, removes away this constraint. It is then a bookkeeping task to check that
the remaining constraints are solvable, thus the term after the replacement is
typable.

Our algorithm is also expected to return a minimal error when the given term
contains type errors. All of the subterms whose labels are recorded in err are
relevant to the error.

To illustrate this, we use the expression below as an example.

(λxl1 . [(1l4 + 1l5)l3 ; (xl71l8)l6 ; truel9]l2)l0

Typechecking the above expression will produce an err whose content is
[int[l2;l3]; bool[l2;l9]]. Provided that f, g, h are fresh variables and φ1, φ2, φ3 are
fresh type variables, we show that all the constructors whose labels are recorded
in err contribute to the error, namely:
• The list (labeled l2) is relevant to the error. If we replace the list by f and

add (f : φ1) to Γ, then we get (λx . (f (1 + 1) (x 1) true)), which is typable.
Thus, the replaced list contributes to the type error.

• The arithmetic function + (labeled l3) is relevant to the error. If we replace
+ by g and add (g : φ2) to Γ, we get (λx . [(g 1 1);(x 1);true]), which is
typable. Thus, the replaced + contributes to the type error.

• The constant true (labeled l9) is relevant to the error. If we replace true by
h and add (h : φ3) to Γ, we get (λx . [(1 + 1);(x 1);h]), which is typable.
Thus, the replaced true contributes to the type error.

Although it seems possible to formally state the minimality property, we do not
do so in this paper, because there is no generally agreeable notion of minimality
for type errors if there are multiple errors. We leave the elaboration on the
minimality property for future work.

5. Related Work

There are numerous different approaches that have been proposed to improve
the quality of type error messages. Heeren gives a summary of the suggested

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

54 Improving Error Messages in Type System

approaches 10) and presents a classification based on the following categories; or-
der of unification, explanation systems, reparation systems, program slicing, and
interactive systems. There are many variations in the form of error messages
and the quality comparison of each system remains subjective. Yang and others
propose a manifesto for good type error reporting 6). According to the mani-
festo, good error reports should meet these criteria: correct, precise, succinct,
amechanical, source-based, unbiased, and comprehensive.

Modifying the order of unification is the most straightforward approach to
change the behavior of error reporting systems. The top-down Algorithm M
detects type inconsistency earlier than Algorithm W, and there are hybrid algo-
rithms which try to combine the properties of both algorithms which result in
different behaviors for different kinds of type errors. However, for any fixed unifi-
cation order, there are always cases where the error location reported is far from
the actual location. This has motivated works aimed at proving better error re-
porting by explaining how types are inferred. Some approaches provide detailed
explanations on how a type is inferred, while some extract only the information
that are crucial for explaining the conflict.

An example of the approaches which give error report without providing much
textual explanation is the two algorithms UAE and IEI 11). UAE (unification
of assumption environments) is based on Algorithm W. To eliminate the effect
of unification order, it treats subexpressions equally by typing each of them
independently. The consistency of the assumption environments returned by
the typing of the subexpressions is checked at the root of subexpressions by
unification. Because it is based on algorithm W, algorithm UAE also only reports
application expressions as error location. To tackle this issue, IEI (incremental
error inference) was developed in order to find more precise error location. The
technique is to switch to Algorithm M when the unification algorithm fails at
application expression.

Other alternatives also have been suggested, for example, reparation sys-
tems 12),13) which use heuristics to find the most relevant error location, and
interactive systems which use the programmers’ intention and assumption to
give better support. The effectiveness of every approach is subjected to the tar-
get’s preferences. Investigation of the common error cases and requirements is

needed to choose a suitable approach for certain environment.
The category most suitable for our algorithm is program slicing, where type

error is reported as a set of program slices that contributes to the conflict. Dinesh
and Tip observed that the tracking of positional information is very crucial for
assisting the programmer to determine program locations that need to be changed
in order to fix type errors 14). Their rewriting technique is language independent
but it is more applicable to explicitly typed languages. Haack and Wells present
an algorithm to compute minimal type error slices for implicitly typed higher-
order languages with let-polymorphism 5). The extension of the algorithm for
SML language 15) has a web implementation demonstrating their approach.

Compared to Haack and Wells’ approach, our algorithm computes all the error
locations simultaneously, without artificially breaking them into several slices for
every pair of conflicting types. For example, given the list [1; 2; 3; 4; 5; 6; true],
our algorithm produces one slice [1; 2; 3; 4; 5; 6; true] for the type error, while (the
first phase of) Haack and Wells’ algorithm produces six slices, the first of which
identifies n and true as the error regions for each n = 1, 2, . . . , 6. As a matter
of fact, their algorithm needs a post-processing phase to find overlapping errors,
and merge all overlapping errors if any. In the previous example, true is common
to the six slices obtained in the first phase, hence these six slices are overlapping.
Their algorithm then merges the six slices into one, and will produce an error
similar to ours.

We argue that, although the outputs of the two algorithms are virtually the
same, our algorithm is expected to run more efficiently since their algorithm
needs an extra phase for finding and merging overlapping errors. If the given
expression has a type conflict among N subexpressions whose types are mutually
distinct �1, then there are N(N − 1)/2 pairwise slices, hence the cost of merging
is at best O(N2). Although our unification algorithm may take slightly longer
time than the time needed by the standard unification algorithm (because of the
treatment of ψ-type variables), the extra cost is expected to be O(N) or less.
Hence, if N is large such as 100, then our algorithm is advantageous in efficiency.

The multiple-type constraint introduced in our unification algorithm is similar

�1 A typical example for this is a list of length N whose elements have mutually distinct types.

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

55 Improving Error Messages in Type System

to the multi-equations used for unification algorithm described by Pottier and
Remy 16). Although the idea of using equations between multiple types for con-
straint is applied in both unification algorithms, the nature and the workings of
the algorithms are very different. Our algorithm is specially developed to identify
error location for improving error report.

6. Conclusion and Future Work

We present an algorithm to identify all the type errors that occur in a program.
The output is shown in the form of error slices, each of which has the information
regarding the program points that contribute to each type error. Therefore, we
can fix a type error without referring to other parts of the program that are not
identified in the corresponding slice. A type error can involve any number of
conflicting types and any number of program points.

We also have implemented the algorithm in Section 3 in a simple prototype. All
the error messages shown in Section 2.2 were essentially obtained as the outputs
of our prototype implementation. For future improvement, we can extract useful
information from the output to form error messages. Although identifying pro-
gram points that contribute to the type errors is important, error explanation is
also crucial. For example, attaching the conflicting types to the erroneous points
can make it easier for programmers to understand the type errors. Deciding the
right level of detail to form a concise but sufficient type error explanation is also
necessary for improving the quality of error messages.

Although error-reports are mostly text-based, graphical user interface also has
a role in improving the quality of the message, for example, in showing the level
of contribution of every slice. Some techniques such as highlighting can help
pinpointing locations based on their contributions. For example, it can indicate
which parts are the end points, slices that produce the conflicting types, and
which parts are the slices that participate in the relationships among the con-
flicting types. Another issue is how to deal with terms that have no special syntax
to be marked, such as a function application. Generally a function application
only has space between expressions, so it is important to consider ways to con-
vey the information when a function application contributes to an error while its
subexpressions do not. Our algorithm also can be improved and used for various

application, for example, incremental typechecking.
In the future, we want to apply our approach in a computer-assisted learning

system for computation and logic 17). With students as the target audience,
it is necessary to form error messages that match the level of their expertise.
Moreover, for such e-learning system that is generic and not bound to any specific
formal system, we need to examine ways to make maximum use of the techniques
we have researched. By using the improved error messages, our goal is to make it
easier and more convenient for students to understand formal systems and learn
from their mistakes.

Acknowledgments The authors would like to thank anonymous reviewers
and the participants of IPSJ SIG-PRO meeting on March, 2010 for constructive
comments. The second author is supported in part by Graint-in-Aid for Scientific
Research, No. 20650003 and No. 21300005.

References

1) Wand, M.: Finding the source of type errors, POPL ’86: Proc. 13th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, New York, NY,
USA, pp.38–43, ACM (1986).

2) Hindley, R.: The Principal Type-Scheme of an Object in Combinatory Logic,
Transactions of the American Mathematical Society, Vol.146, pp.29–60 (1969).

3) Milner, R.: A theory of type polymorphism in programming, J. Comput. Syst.
Sci., Vol.17, pp.348–375 (1978).

4) Damas, L. and Milner, R.: Principal type-schemes for functional programs, POPL
’82: Proc. 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp.207–212, ACM (1982).

5) Haack, C. and Wells, J.B.: Type error slicing in implicitly typed higher-order
languages, Sci. Comput. Program., Vol.50, No.1-3, pp.189–224 (2004).

6) Yang, J., Michaelson, G., Trinder, P. and Wells, J.B.: Improved Type Error Re-
porting, Proc. 12th International Workshop on Implementation of Functional Lan-
guages, pp.71–86 (2000).

7) Pierce, B.C.: Types and programming languages, MIT Press, Cambridge, MA, USA
(2002).

8) Damas, L.: Type Assignment in Programming Languages, PhD Thesis, University
of Edinburgh (1985).

9) Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle, J.
ACM, Vol.12, No.1, pp.23–41 (1965).

10) Heeren, B.J.: Top Quality Type Error Messages, PhD Thesis, Universiteit Utrecht,

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

56 Improving Error Messages in Type System

The Netherlands (2005).
11) Yang, J.: Explaining Type Errors by Finding the Source of a Type Conflict, Trends

in Functional Programming, Michaelson, G., Trindler, P. and Loidl, H.-W. (Eds.),
pp.58–66, Intellect Books (2000).

12) Lerner, B., Grossman, D. and Chambers, C.: Seminal: searching for ML type-error
messages, ML ’06: Proc. 2006 workshop on ML, New York, NY, USA, pp.63–73,
ACM (2006).

13) Lerner, B.S., Flower, M., Grossman, D. and Chambers, C.: Searching for type-error
messages, SIGPLAN Not., Vol.42, No.6, pp.425–434 (2007).

14) Tip, F. and Dinesh, T.B.: A slicing-based approach for locating type errors, ACM
Trans. Softw. Eng. Methodol., Vol.10, No.1, pp.5–55 (2001).

15) Rahli, V., Wells, J.B. and Kamareddine, F.: Challenges of a type error slicer for
the SML language, Technical Report HW-MACS-TR-0071, Heriot-Watt University
(2009).

16) Pottier, F. and Remy, D.: The essence of ML type inference, Advanced Topics
in Types and Programming Languages, Pierce, B.C. (Ed.), chapter 10, pp.389–489,
MIT Press (2005).

17) Kameyama, Y. and Sato, M.: E-learning of Foundation of Computer Science, Proc.
AEARU Workshop on Network Education, pp.169–181 (2006).

(Received February 15, 2010)
(Accepted May 1, 2010)

Cynthia Kustanto is a Graduate Student of the Master’s Pro-
gram at the Department of Computer Science, Graduate School
of Systems and Information Engineering, University of Tsukuba.
She is interested in programming languages and human-computer
interaction.

Yukiyoshi Kameyama is a Professor of Computer Science
at the Graduate School of Systems and Information Engineering,
University of Tsukuba. He is interested in programming logic and
software verification. He is a member of ACM, JSSST, and IEICE.

IPSJ Transactions on Programming Vol. 3 No. 4 43–56 (Sep. 2010) c© 2010 Information Processing Society of Japan

