## 均衡型 $\left(C_{5}, C_{8}\right)$－Foil デザインと関連デザイン

## 潮 和 彦

グラフ理論において，グラフの分解問題は主要な研究テーマである。 $C_{5}$ を 5 点を通 るサイクル，$C_{8}$ を 8 点を通るサイクルとする。 1 点を共有する辺素な $t$ 個の $C_{5}$ と $t$ 個の $C_{8}$ からなるグラフを $\left(C_{5}, C_{8}\right)-2 t$－foil という。本研究では，完全グラフ $K_{n}$ を均衡的に $\left(C_{5}, C_{8}\right)-2 t$－foil 部分グラフに分解する均衡型 $\left(C_{5}, C_{8}\right)-2 t$－foil デザイン について述べる。さらに，均衡型 $C_{13}-t$－foil デザイン，均衡型（ $C_{10}, C_{16}$ ）－2t－foil デ ザイン，均衡型 $C_{26}-t$－foil デザインについて述べる。

## Balanced（ $C_{5}, C_{8}$ ）－Foil Designs and Related Designs

## Kazuhiko Ushio

In graph theory，the decomposition problem of graphs is a very important topic． Various type of decompositions of many graphs can be seen in the literature of graph theory．This paper gives balanced $\left(C_{5}, C_{8}\right)$－ $2 t$－foil designs，balanced $C_{13}$－t－foil designs，balanced $\left(C_{10}, C_{16}\right)$－ $2 t$－foil designs，and balanced $C_{26}$－$t$－foil designs．

## 1．Balanced $\left(C_{5}, C_{8}\right)$－2t－Foil Designs

Let $K_{n}$ denote the complete graph of $n$ vertices．Let $C_{5}$ and $C_{8}$ be the 5 －cycle and the 8 －cycle，respectively．The $\left(C_{5}, C_{8}\right)$－ $2 t$－foil is a graph of $t$ edge－disjoint $C_{5}$＇s and $t$ edge－disjoint $C_{8}$＇s with a common vertex and the common vertex is called the center of the $\left(C_{5}, C_{8}\right)$－2t－foil．In particular，the $\left(C_{5}, C_{8}\right)$－2－foil is called the $\left(C_{5}, C_{8}\right)$－bowtie． When $K_{n}$ is decomposed into edge－disjoint sum of（ $C_{5}, C_{8}$ ）－2t－foils，we say that $K_{n}$

[^0]has a $\left(C_{5}, C_{8}\right)$－2t－foil decomposition．Moreover，when every vertex of $K_{n}$ appears in the same number of $\left(C_{5}, C_{8}\right)$－ $2 t$－foils，we say that $K_{n}$ has a balanced $\left(C_{5}, C_{8}\right)$－ $2 t$－foil decomposition and this number is called the replication number．This decomposition is known as a balanced $\left(C_{5}, C_{8}\right)$－ $2 t$－foil design．

Theorem 1．$K_{n}$ has a balanced $\left(C_{5}, C_{8}\right)$－2t－foil decomposition if and only if $n \equiv 1$ $(\bmod 26 t)$ ．

Proof．（Necessity）Suppose that $K_{n}$ has a balanced（ $C_{5}, C_{8}$ ）－2t－foil decomposi－ tion．Let $b$ be the number of $\left(C_{5}, C_{8}\right)-2 t$－foils and $r$ be the replication number．Then $b=n(n-1) / 26 t$ and $r=(11 t+1)(n-1) / 26 t$ ．Among $r\left(C_{5}, C_{8}\right)$－ $2 t$－foils having a vertex $v$ of $K_{n}$ ，let $r_{1}$ and $r_{2}$ be the numbers of $\left(C_{5}, C_{8}\right)$－ $2 t$－foils in which $v$ is the cen－ ter and $v$ is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 26 t$ and $r_{2}=11(n-1) / 26$ ．Therefore，$n \equiv 1(\bmod 26 t)$ is necessary．
（Sufficiency）Put $n=26 s t+1$ and $T=s t$ ．Then $n=26 T+1$ ．Construct a（ $C_{5}, C_{8}$ ）－ $2 T$－foil as follows：
$\{(26 T+1,1,10 T+2,22 T+2,10 T),(26 T+1, T+1,19 T+2,24 T+2,3 T+2,23 T+$ $2,5 T+2,2 T+1)\} \cup$
$\{(26 T+1,2,10 T+4,22 T+3,10 T-1),(26 T+1, T+2,19 T+4,24 T+3,3 T+4,23 T+$ $3,5 T+4,2 T+2)\} \cup$
$\{(26 T+1,3,10 T+6,22 T+4,10 T-2),(26 T+1, T+3,19 T+6,24 T+4,3 T+6,23 T+$ $4,5 T+6,2 T+3)\} \cup$
$\ldots \cup$
$\{(26 T+1, T, 12 T, 23 T+1,9 T+1),(26 T+1,2 T, 21 T, 25 T+1,5 T, 24 T+1,7 T, 3 T)\}$.
Decompose the $\left(C_{5}, C_{8}\right)$－2T－foil into $s\left(C_{5}, C_{8}\right)$－ $2 t$－foils．Then these starters comprise a balanced $\left(C_{5}, C_{8}\right)$－2t－foil decomposition of $K_{n}$ ．

Corollary 1．$K_{n}$ has a balanced $\left(C_{5}, C_{8}\right)$－bowtie decomposition if and only if $n \equiv 1$ $(\bmod 26)$ ．

## 情報処理学会研究報告

## IPSJ SIG Technical Report

Example 1．1．Balanced $\left(C_{5}, C_{8}\right)$－2－foil decomposition of $K_{27}$ ． $\{(27,1,12,24,10),(27,2,21,26,5,25,7,3)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－2－foil decomposition of $K_{27}$ ．

## Example 1．2．Balanced（ $C_{5}, C_{8}$ ）－4－foil decomposition of $K_{53}$ ．

$\{(53,1,22,46,20),(53,3,40,50,8,48,12,5)\} \cup$
$\{(53,2,24,47,19),(53,4,42,51,10,49,14,6)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－4－foil decomposition of $K_{53}$

## Example 1．3．Balanced（ $C_{5}, C_{8}$ ）－6－foil decomposition of $K_{79}$ ．

$\{(79,1,32,68,30),(79,4,59,74,11,71,17,7)\} \cup$
$\{(79,2,34,69,29),(79,5,61,75,13,72,19,8)\} \cup$
$\{(79,3,36,70,28),(79,6,63,76,15,73,21,9)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－6－foil decomposition of $K_{79}$ ．

## Example 1．4．Balanced（ $C_{5}, C_{8}$ ）－8－foil decomposition of $K_{105}$

$\{(105,1,42,90,40),(105,5,78,98,14,94,22,9)\} \cup$
$\{(105,2,44,91,39),(105,6,80,99,16,95,24,10)\} \cup$
$\{(105,3,46,92,38),(105,7,82,100,18,96,26,11)\} \cup$
$\{(105,4,48,93,37),(105,8,84,101,20,97,28,12)\}$ ．
This starter comprises a balanced（ $C_{5}, C_{8}$ ）－8－foil decomposition of $K_{105}$ ．

Example 1．5．Balanced（ $C_{5}, C_{8}$ ）－10－foil decomposition of $K_{131}$ ．
$\{(131,1,52,112,50),(131,6,97,122,17,117,27,11)\} \cup$
$\{(131,2,54,113,49),(131,7,99,123,19,118,29,12)\} \cup$
$\{(131,3,56,114,48),(131,8,101,124,21,119,31,13)\} \cup$
$\{(131,4,58,115,47),(131,9,103,125,23,120,33,14)\} \cup$
$\{(131,5,60,116,46),(131,10,105,126,25,121,35,15)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－10－foil decomposition of $K_{131}$ ．

Example 1．6．Balanced $\left(C_{5}, C_{8}\right)$－12－foil decomposition of $K_{157}$ ．
$\{(157,1,62,134,60),(157,7,116,146,20,140,32,13)\} \cup$ $\{(157,2,64,135,59),(157,8,118,147,22,141,34,14)\} \cup$
$\{(157,3,66,136,58),(157,9,120,148,24,142,36,15)\} \cup$
$\{(157,4,68,137,57),(157,10,122,149,26,143,38,16)\} \cup$
$\{(157,5,70,138,56),(157,11,124,150,28,144,40,17)\} \cup$
$\{(157,6,72,139,55),(157,12,126,151,30,145,42,18)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－12－foil decomposition of $K_{157}$ ．

## 2．Balanced $C_{13}$－t－Foil Designs

Let $C_{13}$ be the cycle on 13 vertices．The $C_{13}$－t－foil is a graph of $t$ edge－disjoint $C_{13}$＇s with a common vertex and the common vertex is called the center of the $C_{13}-t$－foil．In particular，the $C_{13}$－2－foil and the $C_{13}$－3－foil are called the $C_{13}$－bowtie and the $C_{13}$－trefoil， respectively．When $K_{n}$ is decomposed into edge－disjoint sum of $C_{13}-t$－foils，it is called that $K_{n}$ has a $C_{13}$－t－foil decomposition．Moreover，when every vertex of $K_{n}$ appears in the same number of $C_{13}-t$－foils，it is called that $K_{n}$ has a balanced $C_{13}$－t－foil decompo－ sition and this number is called the replication number．This decomposition is known as a balanced $C_{13}-t$－foil design．

Theorem 2．$K_{n}$ has a balanced $C_{13}-t$－foil decomposition if and only if $n \equiv 1(\bmod$ $26 t$ ）．

Proof．（Necessity）Suppose that $K_{n}$ has a balanced $C_{13}-t$－foil decomposition．Let $b$ be the number of $C_{13}-t$－foils and $r$ be the replication number．Then $b=n(n-1) / 26 t$ and $r=(12 t+1)(n-1) / 26 t$ ．Among $r C_{13}-t$－foils having a vertex $v$ of $K_{n}$ ，let $r_{1}$ and $r_{2}$ be the numbers of $C_{13}-t$－foils in which $v$ is the center and $v$ is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 26 t$ and $r_{2}=12(n-1) / 26$ ．Therefore，$n \equiv 1(\bmod$ $26 t)$ is necessary．
（Sufficiency）Put $n=26 s t+1, T=s t$ ．Then $n=26 T+1$ ．Construct a $C_{13}-T$－foil as follows：

情報処理学会研究報告
IPSJ SIG Technical Report
$\{(26 T+1, T, 12 T, 23 T+1,14 T, 15 T+1, T+1,19 T+2,24 T+2,3 T+2,23 T+2,5 T+$ $2,2 T+1)$ ，
$(26 T+1, T-1,12 T-2,23 T, 14 T-2,15 T, T+2,19 T+4,24 T+3,3 T+4,23 T+3,5 T+$ $4,2 T+2)$ ，
$(26 T+1, T-2,12 T-4,23 T-1,14 T-4,15 T-1, T+3,19 T+6,24 T+4,3 T+6,23 T+$ $4,5 T+6,2 T+3)$ ，
．．．，
$(26 T+1,1,10 T+2,22 T+2,12 T+2,14 T+2,2 T, 21 T, 25 T+1,5 T, 24 T+1,7 T, 3 T)\}$ ．
Decompose this $C_{13}-T$－foil into $s C_{13}-t$－foils．Then these starters comprise a balanced $C_{13}$－t－foil decomposition of $K_{n}$ ．

Corollary 2．1．$K_{n}$ has a balanced $C_{13}$－bowtie decomposition if and only if $n \equiv 1(\bmod$ 52）．

Corollary 2．2．$K_{n}$ has a balanced $C_{13}$－trefoil decomposition if and only if $n \equiv 1(\bmod$ 78）．

## Example 2．1．Balanced $C_{13}$－decomposition of $K_{27}$ ．

$\{(27,1,12,24,14,16,2,21,26,5,25,7,3)\}$ ．
This stater comprises a balanced $C_{13}$－decomposition of $K_{27}$ ．

## Example 2．2．Balanced $C_{13}$－2－foil decomposition of $K_{53}$ ．

$\{(53,2,24,47,28,31,3,40,50,8,48,12,5)$ ，
$(53,1,22,46,26,30,4,42,51,10,49,14,6)\}$ ．
This stater comprises a balanced $C_{13}-2$－foil decomposition of $K_{53}$ ．

## Example 2．3．Balanced $C_{13}$－3－foil decomposition of $K_{79}$ ．

$\{(79,3,36,70,42,46,4,59,74,11,71,17,7)$ ，
$(79,2,34,69,40,45,5,61,75,13,72,19,8)$ ，
$(79,1,32,68,38,44,6,63,76,15,73,21,9)\}$ ．
This stater comprises a balanced $C_{13}-3$－foil decomposition of $K_{79}$ ．

## Example 2．4．Balanced $C_{13}$－4－foil decomposition of $K_{105}$ ．

$\{(105,4,48,93,56,61,5,78,98,14,94,22,9)$ ，
（105，3，46，92，54，60，6，80，99，16，95，24，10），
$(105,2,44,91,52,59,7,82,100,18,96,26,11)$ ，
$(105,1,42,90,50,58,8,84,101,20,97,28,12)\}$ ．
This stater comprises a balanced $C_{13}-4$－foil decomposition of $K_{105}$ ．

Example 2．5．Balanced $C_{13}$－5－foil decomposition of $K_{131}$ ．
$\{(131,5,60,116,70,76,6,97,122,17,117,27,11)$ ，
（ $131,4,58,115,68,75,7,99,123,19,118,29,12)$ ，
$(131,3,56,114,66,74,8,101,124,21,119,31,13)$ ，
$(131,2,54,113,64,73,9,103,125,23,120,33,14)$ ，
$(131,1,52,112,62,72,10,105,126,25,121,35,15)\}$ ．
This stater comprises a balanced $C_{13}-5$－foil decomposition of $K_{131}$ ．

Example 2．6．Balanced $C_{13}$－6－foil decomposition of $K_{157}$ ．
$\{(157,6,72,139,84,91,7,116,146,20,140,32,13)$ ，
（157，5，70，138，82，90，8，118，147，22，141，34，14），
$(157,4,68,137,80,89,9,120,148,24,142,36,15)$ ，
$(157,3,66,136,78,88,10,122,149,26,143,38,16)$ ，
$(157,2,64,135,76,87,11,124,150,28,144,40,17)$ ，
$(157,1,62,134,74,86,12,126,151,30,145,42,18)\}$ ．
This stater comprises a balanced $C_{13}-6$－foil decomposition of $K_{157}$ ．

## 3．Balanced $\left(C_{10}, C_{16}\right)$－2t－Foil Designs

Let $C_{10}$ and $C_{16}$ be the 10 －cycle and the 16 －cycle，respectively．The（ $C_{10}, C_{16}$ ）－2t－foil is a graph of $t$ edge－disjoint $C_{10}$＇s and $t$ edge－disjoint $C_{16}$＇s with a common vertex and the common vertex is called the center of the（ $\left.C_{10}, C_{16}\right)$－ $2 t$－foil．In particular，the（ $C_{10}, C_{16}$ ）－ 2－foil is called the（ $C_{10}, C_{16}$ ）－bowtie．When $K_{n}$ is decomposed into edge－disjoint sum

## 情報処理学会研究報告

IPSJ SIG Technical Report
of（ $C_{10}, C_{16}$ ）－2t－foils，we say that $K_{n}$ has a（ $C_{10}, C_{16}$ ）－2t－foil decomposition．Moreover， when every vertex of $K_{n}$ appears in the same number of（ $C_{10}, C_{16}$ ）－2t－foils，we say that $K_{n}$ has a balanced（ $C_{10}, C_{16}$ ）－2t－foil decomposition and this number is called the repli－ cation number．This decomposition is known as a balanced（ $\left.C_{10}, C_{16}\right)$－2t－foil design．

Theorem 3．$K_{n}$ has a balanced $\left(C_{10}, C_{16}\right)$－2t－foil decomposition if and only if $n \equiv 1$ $(\bmod 52 t)$ ．

Proof．（Necessity）Suppose that $K_{n}$ has a balanced（ $C_{10}, C_{16}$ ）－2t－foil decomposi－ tion．Let $b$ be the number of $\left(C_{10}, C_{16}\right)$－ $2 t$－foils and $r$ be the replication number．Then $b=n(n-1) / 52 t$ and $r=(24 t+1)(n-1) / 52 t$ ．Among $r\left(C_{10}, C_{16}\right)-2 t$－foils having a vertex $v$ of $K_{n}$ ，let $r_{1}$ and $r_{2}$ be the numbers of（ $C_{10}, C_{16}$ ）－2t－foils in which $v$ is the center and $v$ is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 52 t$ and $r_{2}=24(n-1) / 52$ ．Therefore，$n \equiv 1(\bmod 52 t)$ is necessary．
（Sufficiency）Put $n=52 s t+1$ and $T=s t$ ．Then $n=52 T+1$ ．Construct a（ $C_{10}, C_{16}$ ）－ $2 T$－foil as follows：
$\{(52 T+1,1,20 T+2,44 T+2,20 T, 40 T-1,20 T-1,44 T+3,20 T+4,2),(52 T+1,2 T+$ $1,38 T+2,48 T+2,6 T+2,46 T+2,10 T+2,4 T+1,8 T+3,4 T+2,10 T+4,46 T+3,6 T+$ $4,48 T+3,38 T+4,2 T+2)\} \cup$
$\{(52 T+1,3,20 T+6,44 T+4,20 T-2,40 T-5,20 T-3,44 T+5,20 T+8,4),(52 T+$ $1,2 T+3,38 T+6,48 T+4,6 T+6,46 T+4,10 T+6,4 T+3,8 T+7,4 T+4,10 T+8,46 T+$ $5,6 T+8,48 T+5,38 T+8,2 T+4)\} \cup$
$\{(52 T+1,5,20 T+10,44 T+6,20 T-4,40 T-9,20 T-5,44 T+7,20 T+12,6),(52 T+$ $1,2 T+5,38 T+10,48 T+6,6 T+10,46 T+6,10 T+10,4 T+5,8 T+11,4 T+6,10 T+$ $12,46 T+7,6 T+12,48 T+7,38 T+12,2 T+6)\} \cup$
．．．$\cup$
$\{(52 T+1,2 T-1,24 T-2,46 T, 18 T+2,36 T+3,18 T+1,46 T+1,24 T, 2 T),(52 T+$
$1,4 T-1,42 T-2,50 T, 10 T-2,48 T, 14 T-2,6 T-1,12 T-1,6 T, 14 T, 48 T+1,10 T, 50 T+$
$1,42 T, 4 T)\}$ ．
Decompose the $\left(C_{10}, C_{16}\right)$－ $2 T$－foil into $s\left(C_{10}, C_{16}\right)$－ $2 t$－foils．Then these starters com－
prise a balanced（ $C_{10}, C_{16}$ ）－2t－foil decomposition of $K_{n}$ ．

Corollary 3．$K_{n}$ has a balanced $\left(C_{10}, C_{16}\right)$－bowtie decomposition if and only if $n \equiv 1$ $(\bmod 52)$ ．

## Example 3．1．Balanced（ $C_{10}, C_{16}$ ）－2－foil decomposition of $K_{53}$ ．

$\{(53,1,22,46,20,39,19,47,24,2),(53,3,40,50,8,48,12,5,11,6,14,49,10,51,42,4)\}$ ．
This starter comprises a balanced（ $C_{10}, C_{16}$ ）－2－foil decomposition of $K_{53}$ ．

Example 3．2．Balanced（ $C_{10}, C_{16}$ ）－4－foil decomposition of $K_{105}$ ．
$\{(105,1,42,90,40,79,39,91,44,2)$ ，
$(105,3,46,92,38,75,37,93,48,4)\}$
$\cup$
$\{(105,5,78,98,14,94,22,9,19,10,24,95,16,99,80,6)$ ，
$(105,7,82,100,18,96,26,11,23,12,28,97,20,101,84,8)\}$ ．
This starter comprises a balanced（ $C_{10}, C_{16}$ ）－4－foil decomposition of $K_{105}$ ．

## Example 3．3．Balanced（ $C_{10}, C_{16}$ ）－6－foil decomposition of $K_{157}$ ．

$\{(157,1,62,134,60,119,59,135,64,2)$ ，
$(157,3,66,136,58,115,57,137,68,4)$ ，
（157，5，70，138，56，111，55，139，72，6）\}
$\{(157,7,116,146,20,140,32,13,27,14,34,141,22,147,118,8)$ ，
$(157,9,120,148,24,142,36,15,31,16,38,143,26,149,122,10)$ ，
（ $157,11,124,150,28,144,40,17,35,18,42,145,30,151,126,12)\}$ ．
This starter comprises a balanced $\left(C_{10}, C_{16}\right)$－6－foil decomposition of $K_{157}$ ．

Example 3．4．Balanced（ $C_{10}, C_{16}$ ）－8－foil decomposition of $K_{209}$ ．
$\{(209,1,82,178,80,159,79,179,84,2)$ ，
$(209,3,86,180,78,155,77,181,88,4)$ ，
（209，5，90，182，76，151，75，183，92，6），

## 情報処理学会研究報告

IPSJ SIG Technical Report
（209，7，94，184，74，147，73，185，96，8）\}
$\cup$
$\{(209,9,154,194,26,186,42,17,35,18,44,187,28,195,156,10)$ ，
（209，11，158，196，30，188，46，19，39，20，48，189，32，197，160，12），
（209，13，162，198，34，190，50，21，43，22，52，191，36，199，164，14），
（209，15，166，200，38，192，54，23，47，24，56，193，40，201，168，16）\}.
This starter comprises a balanced（ $C_{10}, C_{16}$ ）－8－foil decomposition of $K_{209}$ ．

Example 3．5．Balanced（ $C_{10}, C_{16}$ ）－10－foil decomposition of $K_{261}$ ．
$\{(261,1,102,222,100,199,99,223,104,2)$ ，
$(261,3,106,224,98,195,97,225,108,4)$ ，
（261，5，110，226，96，191，95，227，112，6），
（261，7，114，228，94，187，93，229，116，8），
$(261,9,118,230,92,183,91,231,120,10)\}$
$\cup$
$\{(261,11,192,242,32,232,52,21,43,22,54,233,34,243,194,12)$ ，
（ $261,13,196,244,36,234,56,23,47,24,58,235,38,245,198,14)$ ，
（261，15，200，246，40，236，60，25，51，26，62，237，42，247，202，16），
（261，17，204，248，44，238，64，27，55，28，66，239，46，249，206，18），
（261，19，208，250，48，240，68，29，59，30，70，241，50，251，210，20）\}.
This starter comprises a balanced $\left(C_{10}, C_{16}\right)$－10－foil decomposition of $K_{261}$ ．

## 4．Balanced $C_{26}-t$－Foil Designs

Let $C_{26}$ be the cycle on 26 vertices．The $C_{26}$－t－foil is a graph of $t$ edge－disjoint $C_{26}$＇s with a common vertex and the common vertex is called the center of the $C_{26}$－t－foil．In particular，the $C_{26}-2$－foil and the $C_{26}$－3－foil are called the $C_{26}$－bowtie and the $C_{26}$－trefoil， respectively．When $K_{n}$ is decomposed into edge－disjoint sum of $C_{26}-t$－foils，it is called that $K_{n}$ has a $C_{26}$－t－foil decomposition．Moreover，when every vertex of $K_{n}$ appears in the same number of $C_{26}-t$－foils，it is called that $K_{n}$ has a balanced $C_{26}-t$－foil decompo－ sition and this number is called the replication number．This decomposition is known
as a balanced $C_{26}-t$－foil design．

Theorem 4．$K_{n}$ has a balanced $C_{26}-t$－foil decomposition if and only if $n \equiv 1(\bmod$ $52 t$ ）．

Proof．（Necessity）Suppose that $K_{n}$ has a balanced $C_{26}-t$－foil decomposition．Let $b$ be the number of $C_{26}-t$－foils and $r$ be the replication number．Then $b=n(n-1) / 52 t$ and $r=(25 t+1)(n-1) / 52 t$ ．Among $r C_{26}-t$－foils having a vertex $v$ of $K_{n}$ ，let $r_{1}$ and $r_{2}$ be the numbers of $C_{26}-t$－foils in which $v$ is the center and $v$ is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 52 t$ and $r_{2}=25(n-1) / 52$ ．Therefore，$n \equiv 1(\bmod$ $52 t)$ is necessary．
（Sufficiency）Put $n=52 s t+1, T=s t$ ．Then $n=52 T+1$ ．Construct a $C_{26}-T$－foil as follows：
$\{(52 T+1,2 T, 24 T, 46 T+1,28 T, 30 T+1,2 T+1,38 T+2,48 T+2,6 T+2,46 T+2,10 T+$ $2,4 T+1,8 T+3,4 T+2,10 T+4,46 T+3,6 T+4,48 T+3,38 T+4,2 T+2,30 T, 28 T-$ $2,46 T, 24 T-2,2 T-1)$ ，
$(52 T+1,2 T-2,24 T-4,46 T-1,28 T-4,30 T-4,2 T+3,38 T+6,48 T+4,6 T+6,46 T+$ $4,10 T+6,4 T+3,8 T+7,4 T+4,10 T+8,46 T+5,6 T+8,48 T+5,38 T+8,2 T+4,30 T-$ $2,28 T-6,46 T-2,24 T-6,2 T-3)$ ，
$(52 T+1,2 T-4,24 T-8,46 T-3,28 T-8,30 T-3,2 T+5,38 T+10,48 T+6,6 T+$ $10,46 T+6,10 T+10,4 T+5,8 T+11,4 T+6,10 T+12,46 T+7,6 T+12,48 T+7,38 T+$ $12,2 T+6,30 T-4,28 T-10,46 T-4,24 T-10,2 T-5)$,
．．．，
$(52 T+1,2,20 T+4,44 T+3,24 T+4,28 T+3,4 T-1,42 T-2,50 T, 10 T-2,48 T, 14 T-$ $2,6 T-1,12 T-1,6 T, 14 T, 48 T+1,10 T, 50 T+1,42 T, 4 T, 28 T+2,24 T+2,44 T+2,20 T+$ 2，1）\}.
Decompose this $C_{26}-T$－foil into s $C_{26}-t$－foils．Then these starters comprise a balanced $C_{26}-t$－foil decomposition of $K_{n}$ ．

Corollary 4．1．$K_{n}$ has a balanced $C_{26}$－bowtie decomposition if and only if $n \equiv 1(\bmod$

## 情報処理学会研究報告

IPSJ SIG Technical Report

104）．

Corollary 4．2．$K_{n}$ has a balanced $C_{26}$－trefoil decomposition if and only if $n \equiv 1(\bmod$ 156）．

## Example 4．1．Balanced $C_{26}$－decomposition of $K_{53}$ ．

$\{(53,2,24,47,28,31,3,40,50,8,48,12,5,11,6,14,49,10,51,42,4,30,26,46,22,1)\}$ ．
This stater comprises a balanced $C_{26}$－decomposition of $K_{53}$ ．

## Example 4．2．Balanced $C_{26}$－2－foil decomposition of $K_{105}$ ．

$\{(105,4,48,93,56,61,5,78,98,14,94,22,9,19,10,24,95,16,99,80,6,60,54,92,46,3)$ ， $(105,2,44,91,52,59,7,82,100,18,96,26,11,23,12,28,97,20,101,84,8,58,50,90,42,1)\}$ ．
This stater comprises a balanced $C_{26}$－2－foil decomposition of $K_{105}$ ．

## Example 4．3．Balanced $C_{26}$－3－foil decomposition of $K_{157}$ ．

$\{(157,6,72,139,84,91,7,116,146,20,140,32,13,27,14,34,141,22,147,118,8,90,82,138$ ， $70,5)$ ，
$(157,4,68,137,80,89,9,120,148,24,142,36,15,31,16,38,143,26,149,122,10,88,78,136$ ， $66,3)$ ，
$(157,2,64,135,76,87,11,124,150,28,144,40,17,35,18,42,145,30,151,126,12,86,74,134$ ， $62,1)\}$ ．
This stater comprises a balanced $C_{26}$－3－foil decomposition of $K_{157}$ ．

## Example 4．4．Balanced $C_{26}$－4－foil decomposition of $K_{209}$－

$\{(209,8,96,185,112,121,9,154,194,26,186,42,17,35,18,44,187,28,195,156,10,120,110$ ， 184，94，7），
（209，6，92，183，108，119，11，158，196，30，188，46，19，39，20，48，189，32，197，160，12，118，106， 182，90，5），
（209，4，88，181，104，117，13，162，198，34，190，50，21，43，22，52，191，36，199，164，14，116，102， $180,86,3)$ ，
$(209,2,84,179,100,115,15,166,200,38,192,54,23,47,24,56,193,40,201,168,16,114,98$ ，
$178,82,1)\}$ ．
This stater comprises a balanced $C_{26}-4$－foil decomposition of $K_{209}$ ．

## Example 4．5．Balanced $C_{26}$－5－foil decomposition of $K_{261}$ ．

$\{(261,10,120,231,140,151,11,192,242,32,232,52,21,43,22,54,233,34,243,194,12,150$ ， $138,230,118,9)$ ，
$(261,8,116,229,136,149,13,196,244,36,234,56,23,47,24,58,235,38,245,198,14,148$ ， $134,228,114,7)$ ，
$(261,6,112,227,132,147,15,200,246,40,236,60,25,51,26,62,237,42,247,202,16,146$ ， $130,226,110,5)$ ，
$(261,4,108,225,128,145,17,204,248,44,238,64,27,55,28,66,239,46,249,206,18,144$ ， $126,224,106,3)$ ，
$(261,2,104,223,124,143,19,208,250,48,240,68,29,59,30,70,241,50,251,210,20,142$ ， $122,222,102,1)\}$ ．
This stater comprises a balanced $C_{26}$－5－foil decomposition of $K_{261}$ ．

## 参 考 文 献

1）Ushio，K．and Fujimoto，H．：Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Fundamentals，Vol．E84－A，No．3，pp． 839－844（2001）．
2）Ushio，K．and Fujimoto，H．：Balanced foil decomposition of complete graphs，IE－ ICE Trans．Fundamentals，Vol．E84－A，No．12，pp．3132－3137（2001）．
3）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A，No．9，pp．2360－2365（2003）．
4）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of symmetric com－ plete multi－digraphs，IEICE Trans．Fundamentals，Vol．E87－A，No．10，pp．2769－2773 （2004）．
5）Ushio，K．and Fujimoto，H．：Balanced quatrefoil decomposition of complete multi－ graphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22（2005）．
6）Ushio，K．and Fujimoto，H．：Balanced $C_{4}$－bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E88－A，No．5，pp．1148－1154（2005）．
7）Ushio，K．and Fujimoto，H．：Balanced $C_{4}$－trefoil decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp．1173－1180（2006）．


[^0]:    $\dagger 1$ 近畿大学理工学部情報学科
    Department of Informatics，Faculty of Science and Technology，Kinki University

