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If the given problem instance is partially solved, we want to minimize our
effort to solve the problem using that information. In this paper we intro-
duce the measure of entropy, H(S), for uncertainty in partially solved input
data S(X) = (X1, . . . , Xk), where X is the entire data set, and each Xi

is already solved. We propose a generic algorithm that merges Xi’s repeat-
edly, and finishes when k becomes 1. We use the entropy measure to ana-
lyze three example problems, sorting, shortest paths and minimum spanning
trees. For sorting Xi is an ascending run, and for minimum spanning trees,
Xi is interpreted as a partially obtained minimum spanning tree for a sub-
graph. For shortest paths, Xi is an acyclic part in the given graph. When k
is small, the graph can be regarded as nearly acyclic. The entropy measure,
H(S), is defined by regarding pi = |Xi|/|X| as a probability measure, that
is, H(S) = −n(p1 log p1 + . . . + pk log pk), where n = |X1| + . . . + |Xk|. We
show that we can sort the input data S(X) in O(H(S)) time, and that we can
complete the minimum cost spanning tree in O(m + H(S)) time, where m in
the number of edges. Then we solve the shortest path problem in O(m+H(S))
time. Finally we define dual entropy on the partitioning process, whereby we
give the time bounds on a generic quicksort and the shortest path problem for
another kind of nearly acyclic graphs.

1. Introduction

The concept of entropy is successfully used in information and communication
theory. In algorithm research, the idea is used explicitly or implicitly. In Ref. 1),
entropy is explicitly used to navigate the computation of the knapsack problem.
On the other hand, entropy is used implicitly to analyze the computing time of
various adaptive sorting algorithms 2). In this paper, we develop a more unified
approach to the analysis of algorithms using the concept of entropy. We regard
the entropy measure as the uncertainty of the input data of the given problem
instance, that is, the computational difficulty of the given problem instance.
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First let us describe the framework of amortized analysis. Let S0, S1, . . .,
SN be the states of data such that S0 is the initial state and SN is the final
state. The computation in this paper is to transform Si−1 to Si at the i-th step
for i = 1, · · · , N . The potential of state S is denoted by Φ(S), which describes
some positive aspect of data. That is, increasing the potential will ease the
computation at later steps. The actual time and amortized time for the i-th step
are denoted by ti and ai. We use the words “time” and “cost” interchangeably.
The amortized time is defined by the accounting equation

ai = ti −ΔΦ(Si), (1)
where ΔΦ(Si) = Φ(Si)−Φ(Si−1). That is, the amortized time is the actual time
minus the increase of potential at the i-th step. By summing up the equation
over i, we have

Σai = Σti + Φ(S0)− Φ(SN ), or Σti = Σai − Φ(S0) + Φ(SN ).
The purpose of amortized analysis is to simplify the analysis process. That is,
we can focus on one step of accounting equation, proving ai is bounded by some
value. We do amortized analysis in algorithms and data structures separately.

The rest of the paper consists of the following sections. In Section 2, we define
the entropy on a list of partially solved data sets, and give a generic algorithm
that merges two sets repeatedly. The merging process is regarded as decreasing
the entropy of the list. In Section 3, we analyze the minimal mergesort that
finishes sorting of partially sorted list with minimum effort, which is given by
entropy. Also minimal mergesort is proven to be asymptotically optimal under
the entropy measure. In Section 4, an array-based algorithm for merging is used
in minimal mergesort, instead of tree-based one in the previous section. Sec-
tion 5 is devoted to the analysis of the remaining work of Kruskal’s algorithm
for the minimum cost spanning tree problem. In Section 6, we review the 2-3
heap and define a delete operation, which will be used in the following section of
the shortest path problem. Section 7 describes how to use the entropy measure
for the single source shortest path problem on a nearly acyclic directed graph.
Roughly speaking, a nearly acyclic graph is composed of a small number of

�1 Preliminary versions of this paper appeared at CATS 1997 2) and MFCS 2009 3). Part of
this research was done while the first author was on leave at Kansai University
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1833 Entropy as Computational Complexity

acyclic graphs connected to each other by global links. The analysis is done
here directly, except for using amortized analysis of data structures, as amor-
tized analysis does not result in simplification. The partial solution cannot be
defined before the algorithm starts, that is, only defined dynamically by the al-
gorithm itself. Section 8 addresses this issue, and offers some upper bound on
the computing time using the entropy derived from some structural property of
the graph, although the bound is not as sharp as the bound in Section 7. Sec-
tion 9 defines the concept of dual entropy, based on a generic algorithm based on
partitioning process, rather than merging process. The result in this section is
rather straightforward, but offers some viewpoint of the entropy analysis of this
paper. Section 10 concludes the paper.

2. Generic Algorithm and Entropy

In this section we propose a generic algorithm based on merging and its analysis.
Those results will be applied to a few examples in the later sections in their
original forms or with minor modifications.

Let the state of data be given by a decomposition of a set X, called the list
of partially solved sets, as S(X) = (X1, . . . , Xk). In the following algorithm,
we remove W1 = Xi and W2 = Xj for some i and j from the list, merge them
and put the merged set back to the list. Then we iterate this process. If the
list becomes a list of one set, we finish. The operation “merge” here is the one
in the general meaning of putting two sets together under some constraint. We
regard each Xi as a solved set, meaning that the elements in it satisfy some
constraints given by each problem, and S(X) as a partial solution. In case of
sorting, Xi is a set of sorted items. In the shortest path problem, Xi can be a set
of vertices such that the subgraph induced from it forms an acyclic graph, etc.
In a later section we regard Xi as unsolved and the order in which Xi are placed
in S(X) = (X1, . . . , Xk) satisfies some constraint, suggesting S(X) is a partial
solution in a different definition.

The left arrow at lines 4 and 5 in Algorithm 1 means that some sets from the
list M are chosen and removed, and assigned to W1 and W2. The left arrow at
line 7 means the set is put into list M . The problem of from where we take the
sets or to where we put the merged set will depend on the specific nature of the

given problem. Variable k maintains the number of the sets in the list. We keep
merging while k > 1.

Algorithm 1 (Generic algorithm based on merging)
1 Decompose X into S(X) = {X1, . . . , Xk};
2 M := S(X);
3 while k > 1 do begin
4 W1 ←M ;
5 W2 ←M ;
6 W := merge (W1,W2);
7 M ←W ;
8 k := k − 1;
9 end

To analyze this algorithm, we define the following concepts. Let |X| = n,
ni = |Xi| and pi = ni/n. Note that

∑
pi = 1. We define the entropy of a

decomposition of X, H(S(X)), abbreviated as H(S), by

H(S) = −n

k∑

i=1

pi log pi =
k∑

i=1

|Xi| log(|X|/|Xi|) (2)

The entropy is regarded as a negative aspect of the data, i.e., the less entropy,
the closer to the solution. Normally entropy is defined without the factor of n,
the size of the data set. We include this to deal with a dynamic situation where
the size of the data set changes. Logarithm is taken with base 2 unless otherwise
specified. Since pi (i = 1, · · · , k) can be regarded as a probability measure,
we have 0 ≤ H(S) ≤ n log k and the maximum is obtained when |Xi| = n/k

(i = 1, · · · , k).
We capture the computational process as a process of decreasing the entropy

in the given data set X. We assume H(S0) ≥ H(S1) ≥ . . . ≥ H(SN ). For the
potential in equation (1), we set Φ(Si) = −cH(Si) for some constant c > 0, which
is determined for each application.

The accounting equation becomes ai = ti − cΔH(Si), where ΔH(Si) =
H(Si−1) − H(Si). That is, the amortized time is the actual time minus a con-
stant factor the decrease of entropy at the i-th step. In Algorithm 1, the merging
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process is supposed to decrease the entropy.
Let T and A be the actual total time and the amortized total time. Summing

up ai for i = 1, . . . , N , we have A = T + c(H(SN ) − H(S0)), or T = A +
c(H(S0) −H(SN )). In the following we see three applications, where A can be
easily obtained. In many applications, H(SN ) = 0, meaning that the total time
is A + O(H(S)), where H(S) = H(S0) is the initial entropy.

Theorem 1 Let us assume n1 = |W1| and n2 = |W2| without loss of generality.
If the actual time of the i-th merge at line 6 is bounded by O(n1 log(1+n2/n1)+
n2 log(1 + n1/n2)) and the final entropy is 0, the computing time of Algorithm 1
is O(H(S)).

Proof. Let ti ≤ c(n1 log(1 + n2/n1) + n2 log(1 + n1/n2)). Since the change of
entropy occurs only with n1 and n2, we have

ΔH(Si) = n1 log(n/n1) + n2 log(n/n2)− (n1 + n2) log(n/(n1 + n2))
= n1 log(1 + n2/n1) + n2 log(1 + n1/n2)

ai ≤ c(n1 log(1 + n2/n1) + n2 log(1 + n1/n2))− cΔH(Si) = 0
Thus A ≤ 0 and we have the result.

Let S′(X) = (X ′
1, . . . , X

′
k′) be a refinement of S(X) = (X1, . . . , Xk), that is,

S′(X) is a decomposition of X and for any X ′
i there is Xj such that X ′

i ⊆ Xj .
Then we have H(S) ≤ H(S′). As the entropy is a measure of uncertainty, we
can say S(X) is more solved than S′(X).

In later sections, we show a few interpretations of Xi’s. In sorting, Xi’s are
ascending runs which are regarded as solved. In the minimum spanning tree
problem, Xi is the set of vertices of a partially solved minimum spanning tree
for a subgraph. In shortest paths, Xi is an acyclic subgraph, for which shortest
distances are easily computed.

The main point of the paper is to offer a new method for algorithm analysis
rather than designing new algorithms.

3. Application to Adaptive Sort – Minimal Mergesort

Adaptive sorting is to sort the list of n numbers into increasing order as effi-
ciently as possible by utilizing the structure of the list which reflects some presort-

edness. See Estivill-Castro and Wood 4) for a general survey on adaptive sorting.
There are many measures of disorder or presortedness. The simplest one is the
number of ascending runs in the list. Let the given list X = (a1, a2, · · · , an) be
divided into k ascending runs Xi (i = 1, · · · , k), that is, S(X) = (X1,X2, · · · ,Xk)
where Xi = (a(i)

1 , · · · , a(i)
ni ) and a

(i)
1 is the |X1| + · · · + |Xi−1| + 1-th element in

X. We denote the length of list X by |X|. S(X) is abbreviated as S. Note that
a
(i)
1 ≤ · · · ≤ a

(i)
ni for each Xi and a

(i)
ni > a

(i+1)
1 if Xi is not the last list. The

sort algorithm called natural merge sort 5) sorts X by merging two adjacent lists
for each phase, halving the number of ascending runs after each phase so that
sorting is completed in O(n log k) time. Mannila 6) proved that this method is
optimal under the measure of the number of ascending runs.

In this paper we generalize the measure RUNS (S) of the number of ascending
runs into that of the entropy of ascending runs in X, denoted by H(S). Then we
analyze a sorting algorithm, called minimal merge sort, that sorts X by merging
two minimal length runs successively until we have the sorted list. We show that
the time for this algorithm is O(H(S)) and is asymptotically optimal under the
measure of H(S). Hence the measure H(S) is sharper than RUNS measure of
O(n log k).

The idea of merging two shortest runs may be known. The algorithm style
based on “meta-sort” in this section is due to Ref. 2). All lists are maintained
in linked list structures in this section. Let S(X) = (X1, · · · ,Xk) be the given
input list such that each Xi is sorted in ascending order. Re-arrange X into
S′(X) = (Xi1 , · · · ,Xik

) in such a way that |Xij
| ≤ |Xij+1 | (j = 1, · · · , k − 1),

that is, (X1, · · · ,Xk) is sorted with |Xi| as key. We call this “meta-sort.” Since
each |Xij

| is an integer up to n, we can obtain S′(X) in O(k) time by radix sort.
Now we sort S′(X) by merging two shortest lists repeatedly. Formally we have
the following. Let M and L be lists of lists, whereas Wi (i = 1, 2) and W are
ordinary lists. By the operation M ⇐ L, the leftmost list in L is moved to the
rightmost part of M . By the operation Wi ⇐M (i = 1, 2) the leftmost list of M

is moved to Wi. By the operation M ⇐ W , W is moved to the rightmost part
of M . M is regarded as a “meta-queue”, consisting of a mixture of original Xi’s
and merged lists, sorted by the key of length. First(L) is the first list in L. We
assume L is not empty.
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Algorithm 2 (Minimal mergesort)
1 Meta-sort S(X) into S′(X) by length of Xi;
2 Let L = S′(X);
3 M := ∅;
4 M ⇐ L;
5 if L �= ∅ then M ⇐ L else W ⇐M ;
6 for i := 1 to k − 1 do begin
7 W1 ⇐M ;
8 W2 ⇐M ;
9 W := merge (W1,W2);

10 while L �= ∅ and |W | > |first(L)| do M ⇐ L;
11 M ⇐W

12 end

In line 9, we use the tree-based merge algorithm of O(m log(1+n/m)) time by
Brown and Tarjan 7), that merges two sorted lists of length m and n in balanced
trees such that m ≤ n. We use the array-based algorithm of O(m + n− 1) time
in the next section. We mainly measure the computing time by the number of
key comparisons in the merge operation at line 9.

Lemma 1 The amortized time for the i-th merge is not greater than zero.

Proof. Lemma follows from the fact that
ti ≤ cn1 log(1 + n2/n1) = O(n1 log(1 + n2/n1) + n2 log(1 + n1/n2))
ai ≤ cn1 log(1 + n2/n1)− cΔH(Si) ≤ 0

Theorem 2 The algorithm minimal mergesort sorts S(X) = (X1, · · · ,Xk)
where each Xi is an ascending sequence in O(H(S)) time.

Proof. Theorem follows from Lemma 1, the initial entropy being H(S) and
the final one being 0. The complexity of radix sort is absorbed in H(S).

The initial scan for ascending runs including transformation to balanced trees
takes O(n) time, meaning the time including scanning becomes O(n + H(S)).

Example. Let |X1| = 2, |Xi| = 2i−1 (i = 2, · · · , k − 1) and n = 2k. Then
minimal mergesort sorts S(X) in O(n) time, since H(S) = O(n), whereas natural

mergesort takes O(n log log n) time to sort S(X).

Lemma 2 For any sorting algorithm A and k integers n1, . . ., nk such that
ni ≥ 2 and k ≥ 1, there exist k sorted lists X1, . . ., Xk such that |Xi| = ni and
A runs in Ω(H(S)) time when given S = (X1, . . . , Xk) as input.

Proof. Sorting S(X) into S′(X) = (a′
1, · · · , a′

n) where a′
1 ≤ · · · ≤ a′

n means
that S′(X) is a permutation of S(X). To establish a lower bound, we can assume
that all elements in X are distinct. Let Xi = (a(i)

1 , · · · , a(i)
ni ). Let a

(i)
ni (i =

1, · · · , k), the last element of Xi, be fixed to be the i-th largest element in X.
Then there are

(
n−k
n1−1

)
possibilities of X1 being scattered in S′(X). Since the

constraint of a
(1)
n1 > a

(2)
1 is satisfied by the choice of a

(1)
n1 , we have

(
n−k−n1+1

n2−1

)

possibilities of X2 being scattered in S′(X). Repeating this calculation yields the
number of possibilities N as

N =
(n− k)!

(n1 − 1)! (n− k − n1 + 1)!
× (n− k − n1 + 1)!

(n2 − 1)! (n− k − n1 − n2 + 2)!

×· · · (nk−1 − 1)!
(nk − 1)! 0!

=
n !

n1! · · ·nk!
· n1 · · ·nk

n(n− 1) · · · (n− k + 1)
.

Since the number of possible permutations is not smaller than this, we have
the lower bound T on the computing time based on the binary decision tree
model approximated by T = log N . In the following we use natural logarithm for
notational convenience. The result should be multiplied by log2 e. We use the
following integral approximation.

n log n− n + 1 ≤
n∑

j=1

log j ≤ n log n− n + log n

T is evaluated by using the first inequality for n and the second for ni,

T = log N ≥ log n!−
k∑

i=1

log ni! +
k∑

i=1

(log ni − log(n− i + 1))

≥
k∑

i=1

ni log
n

ni
− k log n + 1
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since
∑

ni log n
ni

is minimum when n1 = · · · = nk−1 = 2 and nk = n− 2(k − 1),

2T −H(S) ≥
∑

ni log
n

ni
− 2k log n + 2

≥ 2(k − 1) log
n

2
+ (n− 2k + 2) log

n

n− 2k + 2
− 2k log n + 2

= (n− 2k) log
n

n− 2k + 2
− 2 log(n− 2k + 2) + 4

≥ −2 log(n− 2k + 2),
since 1 ≤ k ≤ n/2. On the other hand we can show T ≥ log(n − 2k + 2)
from a combinatorial consideration, that is, when n1 = 2, a

(1)
1 can go to any of

n − k places other than the last k places, meaning N ≥ n − k. Thus we have
T ≥ H(S)/4 = Ω(H(S)).

Remark. The above constant 1/4 may not be sharp. Indeed, if we use Stirling’s
approximation formula for factorial, we can improve this constant, although we
cannot cover the extreme cases where some ni are small despite a large n.

Theorem 3 When the lengths of ascending runs are 2 or greater, minimal
mergesort is asymptotically optimal under the entropy measure.

If ni=1 for some i, a
(i)
ni and a

(i+1)
1 form a part of a descending sequence. By

reversing the descending sequences, we can guarantee that the sequence is decom-
posed into ascending runs of length at least 2. Let us extend minimal mergesort
with this extra scanning in linear time, and define the entropy on the modified se-
quence. From this extension and the above lemma we see that minimal mergesort
is asymptotically optimal for any sequence under the extended entropy measure,
excluding scanning.

We can define entropy by decomposing the given sequence in non-ascending
portions. Minimal mergesort is not optimal under the entropy measure defined
in this way. There are more entropy measures defined in Ref. 2).

4. Use of the Array-based Merge Algorithm

We use the straight-forward merging with |W1| + |W2| − 1 key comparisons.
This merge can be implemented on arrays whereby efficiency is increased. We
define the adjusting term f(i) to be the number of unmerged elements, where
merged elements are those that have been compared in a merge operation at

line 9. For the potential in equation (1), We set Φ(Si) = −cH(Si) − f(i). Here
f(i) is an adjusting term at step i and constant c is defined in the analysis
below. The accounting equation becomes ai = ti − cΔH(Si) − Δf(i), where
ΔH(Si) = H(Si−1)−H(Si) and Δf(i) = f(i− 1)− f(i). That is, the amortized
time is the actual time minus the decrease of entropy minus the decrease of f at
the i-th step.

Let T and A be the actual total time and the amortized total time. Summing
up ai for i = 1, . . . , N , we have A = T + c(H(SN ) −H(S0)) + f(N) − f(0), or
T = A + c(H(S0)−H(SN )) + f(0)− f(N).

Lemma 3 If W2 is not an original Xi for any i, it holds that |W2| ≤ 2|W1|.
Proof. Suppose to the contrary that |W2| > 2|W1|. Then for the previously

merged lists V1 and V2, that is, W2 = merge (V1, V2), we have |V1| > |W1| or
|V2| > |W1|. Thus V1 or V2 must have been merged with W1 or a shorter list, a
contradiction.

Lemma 4 The amortized time for the i-th merge is not greater than zero.

Proof. Let |W1| = n1 and |W2| = n2. Note that f(i) are initially n, non-
negative and monotonically non-increasing. The change of entropy occurs only
with n1 and n2. Let W2 be a merged list and constant c be c = 1/ log(3/2).
Then, noting n1 ≤ n2 ≤ 2n1, the decrease of entropy is

ΔH(Si) = n1 log(1 + n2/n1) + n2 log(1 + n1/n2)
≥ n1 log 2 + n2 log(3/2) ≥ log(3/2)(n1 + n2)

Thus, noting that Δf(i) ≥ 0,
ai = n1 + n2 − 1− cΔH −Δf(i) ≤ 0, where c = 1/ log(3/2) > 1.

When W2 is one of the original lists, that is, unmerged, we observe Δf(i) ≥ n2,
and also that ΔH(Si) ≥ n1, since n1 ≤ n2. Thus we have ai ≤ n1 + n2 − 1 −
(cn1 + n2) ≤ 0.

Theorem 4 The algorithm minimal mergesort sorts S(X) = (X1, · · · ,Xk)
where each Xi is an ascending sequence in O(n + H(S)) time.

Proof. Theorem follows from Lemma 4 and the initial entropy is given by
H(S) and that f(0) = n.

IPSJ Journal Vol. 51 No. 9 1832–1846 (Sep. 2010) c© 2010 Information Processing Society of Japan



1837 Entropy as Computational Complexity

The total time is the same as before, that is, O(n + H(S)).

5. Remaining Work for the MST Problem

Let G = (V,E) be an undirected graph with edge cost function c(u, v) for the
edge (u, v). Let Kruskal’s algorithm continue to work for the minimum (cost)
spanning tree (MST) problem after the problem has been solved partially by the
same algorithm. We estimate how much more time is needed to complete the
work by using the concept of entropy. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be
subgraphs of G such that V1, . . . , Vk form a decomposition of V and Gi is the
induced sub-graph from Vi. We assume the MST problem has been solved for
Gi with spanning trees Ti for i = 1, . . . , k. The state of data S(V ) is defined by
S(V ) = (V1, . . . , Vk), and the entropy of the state is defined by (2) where Xi is
interpreted as Vi.

The remaining work is to keep merging two trees by connecting them by the
best possible edge. We use array name to keep track of names of trees to which
vertices belong. If the two end points of an edge have different names, it con-
nects distinct trees successfully. Otherwise it would form a cycle, not desirable
situation, resulting in skipping the edge. The following algorithm completes the
work from line 4.

Algorithm 3 {To complete the MST problem}
1 Let the sorted edge list L have been partially scanned
2 Let minimum spanning trees for G1, . . . , Gk have been obtained
3 Let name[v] = i for v ∈ Vi have been set for i = 1, . . . , k

4 while k > 1 do begin
5 Remove the first edge (u, v) from L

6 if u and v belong to different subtrees T1 and T2 (without loss of generality)
7 then begin
8 Connect T1 and T2 by (u, v);
9 Change the names of the nodes in the smaller tree

to that of the larger tree;
10 k := k − 1;
11 end

12 end.

The analysis is similar to the proof of Lemma 1. We first analyze the time for
name changes at line 9. Let ti and ai be the actual time and amortized time for
the i-th operation that merges T1 and T2, where |T1| = n1 and |T2| = n2 and
V1 and V2 are the sets of vertices corresponding to those spanning sub-trees. We
measure the time by the number of name changes. Let the state of data after
the i-th merge be Si. The change of entropy occurs only with n1 and n2. Thus
the decrease of entropy is

ΔH(Si) = n1 log(1 + n2/n1) + n2 log(1 + n1/n2) ≥ min{n1, n2}
Noting that ti = min{n1, n2} and letting c = 1, amortized time becomes ai =
ti−ΔH(Si) ≤ 0. The rest of work is bounded by O(m). We conclude this section
by the following theorem.

Theorem 5 The remaining work becomes O(m + H(S)), where H(S) is the
initial entropy at the beginning of line 4.

6. Brief Review of 2-3 Heap and Delete Operations

In this section, we briefly review the 2-3 heap, which is a priority queue used
for the single source shortest path algorithm in the next section. For details, the
reader is referred to Ref. 8), and also Appendix. We use the 2-3 heap rather than
the Fibonacci heap, since the former has a more rigid structure of dimensionality,
and it is easier for describing the delete operation.

A 2-3 heap is a collection of heap ordered trees, which are formed through
repeated formation of trunks. A trunk consists of 2 or 3 nodes (we call this
the 2-3 condition) whose labels (keys) are heap-ordered. The number of trunks
connected to the root of a heap ordered tree is called the degree of the tree. We
make a heap-ordered tree of larger size by connecting the roots of trees of the
same degree to form a trunk in such a way that their labels are heap-ordered
and the trunk follows the 2-3 condition. We define the dimension of a trunk as
follows. The dimension of a single node is 0. If we make a trunk of the roots of
trees of the same degree, the dimension of the new trunk is one greater than the
dimension of the highest-dimensional trunk of the trees, which is the degree of
those trees.
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A 2-3 heap is symbolically given by P = ak−1T (k−1)+. . .+a0T (0), where T (i)
is a tree of degree i. As there can be some T (i)’s, T (i) can be said to be a tree
type. The meaning of aiT (i) is that 0, 1, or 2 roots of T (i)’s are connected in the
trunk ai where ai is a 0-node trunk, 1-node trunk or 2-node trunk respectively.
These trunks are expressed by boldface, i.e., 0, 1 and 2. We assume there is no
tree if it is a 0-node trunk. The trunk ai forms the highest-dimensional trunk of
aiT (i) and is called the main trunk. The main trunk does not fully follow the
2-3 condition.

If there are n nodes in the 2-3 heap, there are O(log n) trees of different degrees,
that is, k is bounded by O(log n), and also the largest degree of trees is O(log n).
The potential of a 2-node trunk is defined to be 1 and that of a 3-node trunk is
3. The potential of a 2-3 heap is the sum of the potentials of all trunks.

As the minimum node, which has the minimum label, is among the roots of
the trees, find-min can be done in O(log n) time. Delete-min can be done in the
following way after find-min is done. The minimum node, which is the root of a
tree, is deleted, resulting in O(log n) trees broken apart, which were connected to
the root. They are brought to the existing trees, and merged with them. Merging
is done using the highest-dimensional trunks. If the highest-dimensional trunk
has more than three nodes after merge, that trunk is cut into two; one with a
3-node trunk, which is a carry to the next position of trees of higher degree,
and the remaining one. The carry is merged in the next position, etc. The
underlying trees are moved together in this carry propagation. The amortized
time for delete-min is shown to be O(log n).

Decrease-key is to decrease the key value of a node v, and recover the condition
for the 2-3 heap. This is done by removing the tree rooted at v, and merge the
tree with the existing trees. We call this the merging at the root level. Also we
re-shape the work space if it does not satisfy the condition after removal. The
work space is defined by the highest dimensional trunk t of dimension, say, i, on
which v was sitting, and one or two trunks whose roots and that of t share the
same trunk of dimension i + 1. Using the potential defined above, we can show
the amortized time for a decrease-key is O(1).

We maintain the priority queue for the single source shortest path problem by
a 2-3 heap. In traditional priority queues, decrease-key, insert and delete-min
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Fig. 2 The 2-3 heap after deleting 4.

operations are defined. We define a delete operation on a 2-3 heap. When we
delete node v, we remove the subtree rooted at v similarly to decrease-key on v,
entailing a re-shape of the work space. After destroying v, the subtrees of v are
broken apart like delete-min. We merge them with the trees at the root level. The
amortized time for a delete is proportional to the number of the subtrees, which
is O(log nv), where nv is the number of descendants of node v to be deleted. The
complexity O(log nv), not O(log n), is crucial. A delete is defined on a Fibonacci
heap in Ref. 9).

Example 1 Suppose we delete node(4) in Fig. 1. Then we have the following
T = 1T (3) given in Fig. 2.
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Let us express trunks by tuples and the node with label x by node(x). After
node(4) is deleted, we have a 2T (0) with (12, 19) as the main trunk and a 2T (1)
with (5, 16, 22) and (15, 17) connected in heap order. After (12, 14, 19) is formed
at position 0, it is carried to 2T (1), resulting in a T (2), which is carried to the
next position.

Let us delete nodes vj(j = 1, . . . , k) in the batch mode from a 2-3 heap of
size n. In the batch mode, we remove the sub-trees rooted at vj for all j and
bring them at the root level similarly to decrease-key. We process vj one by
one from lower dimensions with necessary changes for re-shape. After all vj are
processed, we destroy vj , disconnect all children of all vj and merge them at
root level. Assume the number of descendants of vj immediately before merge
is nj . The total amortized time T of deleting v1, . . . , vk in the batch mode is
T = O(log n1 + . . .+log n+k). Noting that n1 + . . .+nk ≤ n in the batch mode,
T is maximized as T = O(k(log(n/k) + 1)) when n1 = . . . = nk = n/k. Thus

Lemma 5 k consecutive delete operations on a 2-3 heap of size n can be done
in O(k(log(n/k) + 1) time.

Now we perform t batches of delete operations. Assume the i-th batch has ki

delete operations. Let the time for the i-th batch of delete operations be denoted
by Ti. Since Ti = O(ki(log(n/ki) + 1)) by Lemma 5, we have the total time for
all deletes bounded within a constant factor by

k1(log(n/k1) + 1) + . . . + kt(log(n/kt) + 1) = n(Σt
i=1(ki/n)(log(n/ki) + 1))

= n + n(−Σt
i=1pi log pi),

where pi = ki/n. We define H(S) = −nΣt
i=1pi log pi.

Let us perform those t batches of delete operations after t find-min operations;
each batch after each find-min. One find-min operation can be done in O(log n)
time. Thus the total time becomes O(t log n + n + H(S)), which is further sim-
plified to O(n + H(S)) by the following lemma.

Lemma 6 For t ≥ 2, t log n ≤ O(H(S)). Thus the time for heap operations
described above is bounded by O(n + H(S)).

Proof. H(S) is minimum when k1 = . . . = kt−1 = 1, and kt = n− t + 1. Thus
2H(S) ≥ 2(t− 1) log n + 2(n− t + 1) log(n/(n− t + 1)) ≥ t log n

Remark. The operation defined above can be viewed as a generalization of
delete-min=(find-min, delete) to (find-min, delete, . . . , delete).

7. Application to Shortest Paths for Nearly Acyclic Graphs

If the given directed graph with non-negative edge costs is nearly acyclic, we can
solve the single source shortest path (SSSP) problem faster than a general graph
as noted in Refs. 9), 10), etc. The main purpose of this section is to investigate the
possibility of measuring the degree of acyclicity of the given graph by entropy.
As the degree of acyclicity is determined by the SSSP algorithm itself, or in
other words, dynamically, we may well wish to have a measure derived from the
structure of the graph. This issue will be addressed in the next section. Apart
from the analysis of data structures, we analyze the computing time directly in
this section, not by amortised analysis of Section 2.

Let G = (V,E) be a directed graph where V is the set of vertices with |V | = n

and E is the set of edges with |E| = m. We assume every vertex is reachable
from the source so that m ≥ n. The non-negative cost of edge (vi, vj) is denoted
by c(vi, vj). Let OUT (v) (also IN(v)) be the list of edges from (to) v expressed
by the set of the other end points of edges from (to) v. A brief description
of Dijkstra’s algorithm 13) follows. Let S be the solution set, to which shortest
distances have been established by the algorithm. The vertices in V − S have
tentative distances that are those of the shortest paths that go through S except
for the end points. We take a vertex in V − S that has the minimum distance,
finalize it, and update the distances to other vertices in V − S using edge list
OUT (v). If we organize Q = V − S by a Fibonacci heap 14) or 2-3 heap 8), we
can show the SSSP problem can be solved in O(m + n log n) time. We call this
algorithm with one of those priority queues the standard single source algorithm.
Note that we use the same symbol S for the state of data and the solution set,
hoping this is not a source of confusion.

We give the following well known algorithm 11) and its correctness for acyclic
graphs for the sake of completeness. See Ref. 11) for the proof. It runs in O(m)
time, that is, we do not need an operation of finding the minimum in the priority
queue.
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Algorithm 4 {G = (V,E) is an acyclic graph.}
1 Topologically sort V and assume without loss of generality V = {v1, · · · , vn},

where (vi, vj) ∈ E ⇒ i < j;
2 d[v1] := 0; {v1 is the source}
3 for i := 2 to n do d[vi] :=∞;
4 for i := 1 to n do
5 for vj such that (vi, vj) ∈ E do
6 d[vj ] := min{d[vj ], d[vi] + c(vi, vj)}.

Lemma 7 At the beginning of Line 5 in Algorithm 4, the shortest distances
from v1 to vj (j < i) are computed. Also at the beginning of line 5, distances
computed in d[vj ] (j ≥ i) are those of shortest paths that lie in {v1, · · · , vi−1}
except for vj . Thus at the end shortest distances d[vi] are computed correctly
for all i(1 ≤ i ≤ n).

Abuaiadh and Kingston 9) gave a result by restricting the given graph to being
nearly acyclic. When they solve the single source problem, they distinguish
between two kinds of vertices in V − S. One is the set of vertices, “easy” ones,
to which there are no edges from V − S, e.g., only edges from S. The other is
the set of vertices, “difficult” ones, to which there are edges from V − S. To
expand S, if there are easy vertices, those are included in S and distances to
other vertices in V − S are updated. If there are no easy vertices, the vertex
with minimum tentative distance is chosen to be included in S. If the number
of such delete-minimum operations is t, the authors show that the single source
problem can be solved in O(m+n log t) time with use of a Fibonacci heap. That
is, the second term of the complexity is improved from n log n to n log t. If the
graph is acyclic, t = 1 and we have O(m+n) time. Since we have O(m+n log n)
when t = n, the result is an improvement of Fredman and Tarjan with use of the
new parameter t. The authors claim that if the given graph is nearly acyclic, t

is expected to be small and thus we can have a speed up.
The definition of near acyclicity and the estimate of t under it is not clear,

however. We will show that the second term can be bounded by the entropy
derived from a structural property of the given graph.

Algorithm 5 {Single source shortest paths with v0 being the source}9),10)
1 for v ∈ V do if v = v0 then d[v] := 0 else d[v] :=∞;
2 Organize V in a priority queue Q with d[v] as key;
3 S := ∅;
4 while S �= V do begin
5 if there is a vertex v in V − S with no incoming edge from V − S then
6 Choose v

7 else
8 Choose v from V − S such that d[v] is minimum;
9 Delete v from Q;

10 S := S ∪ {v} ;
11 for w ∈ OUT (v) ∩ (V − S) do d[w] := min{d[w], d[v] + c(v, w)}
12 end.

It is shown in Ref. 9) that a sequence of n delete, m decrease-key and t find-min
operations is processed in O(m + n log t) time, meaning that the SSSP problem
can be solved in the same amount of time.

We use the 2-3 heap for priority queue Q with the additional operation of
delete. Let v1, . . . , vk be deleted between two consecutive find-min operations
such that v1 is found at a find-min operation at line 8, and vk is found at line 6
immediately before the next find-min. Each induced subgraph from them forms
an acyclic graph, and they are topologically sorted in the order in which vertices
are chosen at line 6. Thus they can be deleted from the heap without the effort
of find-min operations. Let V1, . . . , Vt be the sets of vertices such that Vi is the
acyclic set chosen following the i-th find-min operation and just before the next
find-min. We call this set the i-th acyclic set. We assume |IN(v0)| > 1 so that
the source is chosen by the first find-min. Then S(V ) = (V1, . . . , Vt) forms a
decomposition of the set V , called acyclic decomposition. We denote the entropy
of this decomposition by H(S). Lemma 6 shows that t find-min operations with
|V1| + . . . + |Vt| deletes interleaved in Algorithm 5 (each i-th find-min followed
by |Vi| deletes) can be done in O(n + H(S)) time. Let ms be the number of
edges examined at line 11 between the s-th find-min operation and the (s+1)-th
find-min operation. Between these operations, O(ms) amortized time (in the
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context of data structures) is spent at line 11. The total time for line 11 becomes
O(m). When t = 1, the whole graph is acyclic, and we can solve the single source
problem in O(m) time by Lemma 7. The time for building Q at line 2 is absorbed
in O(m). Thus we have the following theorem.

Theorem 6 Algorithm 5 solves the SSSP problem in O(m + H(S)) time.

Remark. In Ref. 9), O(t log n + H(S)) is bounded by O(n log t). Thus our
analysis of O(t log n + H(S)) ≤ O(H(S)) is sharper.

8. Relationship with 1-dominator

As a definition of near-acyclicity, the definition and algorithm for a 1-dominator
decomposition is given in Ref. 10). The decomposition is given by the set of
disjoint sets, called maximal acyclic structures, whose union is V . A maximal
acyclic structure dominated by a trigger v, Av, is the maximal set of vertices w

such that any path from outside Av to w must go through v, and the subgraph
induced by Av is an acyclic graph. Av is formally defined by the maximal set
satisfying the following formula for any w.

The induced graph from Av is acyclic, v ∈ Av and
(w ∈ Av)&(w �= v)→ (IN(w) �= φ)&(IN(w) ⊆ Av)

In Ref. 10) it is shown V is uniquely decomposed into several Av’s, and the
time for this decomposition is O(m). The 1-dominator decomposition is used
for identifying the set of the triggers, R. Only triggers are maintained in the
heap. Once the distance to a trigger is finalized, the distances to members of
the corresponding acyclic structure are finalized through Algorithm 4 in time
proportional to the number of edges in the set. At the border of the set. the
distances to other triggers are updated. The time for the SSSP problem becomes
O(m + r log r), where r is the number of triggers, that is, r = |R|.

We show that the entropy H(S) in Section 7 is bounded by the entropy defined
by the 1-dominator decomposition.

Theorem 7 The 1-dominator decomposition is a refinement of the decomposi-
tion defined by Algorithm 5.

Proof. Suppose a vertex v is obtained by find-min at line 8 and v is not a

trigger. Then v is inside some maximal acyclic structure. Since the distance to
the corresponding trigger is smaller, the trigger must have been included in the
solution set earlier, and v must have subsequently been deleted from the heap,
a contradiction. Thus v is a trigger. Then the maximal acyclic structure is sub-
sequently deleted from the heap, and possibly more maximal acyclic structures.
Thus the 1-dominator decomposition is a refinement of the decomposition S(V ).

The decomposition by Algorithm 5 is dynamically defined, i.e., it cannot be
defined statically before the algorithm starts. On the other hand, the algorithm
based on the 1-dominator decomposition is more predictable as the preprocessing
can reveal the 1-dominator decomposition and its entropy, which bounds the
entropy defined by Algorithm 5.

In Ref. 10), the SSSP algorithm is given in a slightly different way. It maintains
only triggers in the heap, and the distances between triggers are given by those
of pseudo edges and associated costs, which are defined between triggers through
the intervening acyclic part and obtained in O(m) time. In other words, the stan-
dard single source algorithm runs on this reduced graph. Thus the time becomes
O(m+r log r), which may be better than O(m+H(S)) of Algorithm 5. However
Algorithm 5 and the SSSP algorithm in Ref. 10) are not incompatible. We can
run Algorithm 5 on the reduced graph obtained through the 1-dominator decom-
position. Then the time will become O(m + H(S′)), where H(S′) is the entropy
defined by the algorithm run on the reduced graph. We note that O(H ′(S)) is
bounded by O(H(S)) and O(r log r)).

9. Dual Entropy

We defined entropy for the algorithm based on merging. In this section we
define entropy for a generic algorithm based on partitioning. We capture com-
putation as a partitioning process. Specifically if the state of data X is given by
S(X) = (X1, . . . , Xk), where each Xi is unsolved and the order in which they
are placed in S(X) gives the meaning of partial solution. We remove a W = Xi,
partition W into W1 and W2 and put them back to the location of Xi in the
order of W1 and W2.

We define the entropy of S(X) by
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H(S) = Σk
i=1|Xi| log |Xi|

We call this H(S) the dual entropy, and the entropy in Section 2 the primary
entropy in contrast. We note that H(S) ≥ n log(n/k).

The first example is quicksort for S(X) where Xi satisfy X1 ≤ X2 ≤ . . . ≤ Xk.
The meaning of X ≤ Y is for all x in X and y in Y , x ≤ y.

Algorithm 6 Generic quicksort
L = S(X);
while |L| < n do

W :=any member of L such that |W | > 1;
partition W into W1 and W2 of equal size;
put W1 and W2 in place of W in this order;

end

Remark. If |W | is odd, we partition W into W1, x and W2 such that W1 ≤ x ≤
W2. Also we will have n1 + n2 + 1 instead of n1 + n2 in the following formula.

Let |W1| = n1 and |W2| = n2. The decrease of entropy is given by
(n1 + n2) log(n1 + n2)− n1 log n1 − n2 log n2

= n1 log(1 + n2/n1) + n2 log(1 + n1/n2)
If we use the median selection algorithm of linear time, O(cn), for the partition,

we can have n1 = n2, meaning the decrease of entropy is n1 + n2. Thus the
amortized time ai = c(n1 + n2) − cΔH(Si) ≤ 0, and the computing time of the
above quicksort becomes O(H(S)).

Obviously if we use any sorting algorithm of O(ni log ni) time for each |Xi|, we
have the same time complexity. The analysis here is to highlight the meaning of
dual entropy.

The next example is from the single source shortest path algorithm for a nearly
acyclic graph.

In Section 8, we decomposed the graph into acyclic parts, where an acyclic part
is a subgraph which is acyclic and has a vertex through which other members
of the subgraph are reached from outside. If we have one such subgraph, the
whole graph is acyclic and the SSSP problem can be solved in O(m) time by

Algorithm 4 11). Let those subgraphs be G1 = (V1, E1), . . . , Gk = (Vk, Ek). If k

is small, we can say the graph is nearly acyclic. We showed that the SSSP problem
can be solved in O(m+H(S)) time where H(S) is defined by the primary entropy
for S(V ) = (V1, . . . , Vk).

The other nearly acyclic graph in this section is defined by decomposing the set
V in a different way. Let us decompose the set of vertices into strongly connected
(sc) components V1, . . . , Vk. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be subgraphs
such that Gi is the subgraph induced from the sc-component Vi. If the maximum
size, r, of the sc-components is small, we can say the graph is nearly acyclic.
When r = 1, the graph is acyclic. We assume a meta graph G̃ = (Ṽ , Ẽ) such that
vertices are given by V1, . . . , Vk and there is an edge from Vi to Vj if there is an
edge from a vertex in Vi to a vertex in Vj . Tarjan’s algorithm for sc-components
is based on depth-first search and V1, . . . , Vk are available in topological order
of the meta graph, which is acyclic. This decomposition is regarded as dual to
the acyclic decomposition in which each component graph is acyclic.

The generalized single source shortest path (GSS) algorithm is to generalize the
SSSP problem in such a way that we initialize distances arbitrarily over vertices.
Note that the initial distribution of distances in the traditional SSSP is given by
0 for the source and infinity for others.

We expand Algorithm 4 to the following algorithm with line numbers expanded
with dots.

Algorithm 7 {Solve the SSSP problem for graph G = (V,E) and source v0}
1 Compute sc-components V1, V2, · · · , Vk in topological order in meta graph;
2.1 for v ∈ V do d[v] :=∞;
2.2 d[v0] := 0; {For source v0 let v0 ∈ V1 without loss of generality}
3 for i := 2 to k do for v ∈ Vi do d[v] :=∞;
4.1 for i := 1 to k do begin
4.2 Solve the GSS for Gi;
5 for Vj such that (Vi, Vj) ∈ Ẽ do
6.1 for v ∈ Vi and w ∈ Vj such that (v, w) ∈ E do
6.2 d[w] := min{d[w], d[v] + c(v, w)}
7 end of for at line 4.1.
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Line 4.2 is to obtain shortest distances within sc-components whereas lines 6.1
and 6.2 are to update distances through edges between sc-components.

The correctness of this algorithm is given in Ref. 12), in which the time com-
plexity is given by O(m+n log r). We give a sharper analysis by the dual entropy.
The time for line 1 is O(m). The time spent at line 6.2 is O(m) in total. The
time for the GSS for Gi at line 4.2 is O(mi +ni log ni) where ni = |Vi|. Summing
up those complexities yields O(m + H(S)) where H(S) is the dual entropy of
S(V ) = (V1, . . . , Vk).

It is the topological order in which the sc-components are placed that gives
the meaning of partial solution, whereas in the acyclic decomposition, the acyclic
structures can be regarded as partially solved. This relation is similar to that
between minimal mergesort and quicksort given earlier. Algorithm 5 is regarded
as a process of merging acyclic parts into the solution set whereas Algorithm 7 is
regarded as that of partitioning process of sc-components into the solution set.
The solution is given by the shortest path spanning tree in both cases. In the
former this is regarded as the solved acyclic structure, which is actually a tree.
In the latter this is regarded as a set of singleton sc-components.

10. Concluding Remarks

We captured computation as a process of reducing entropy, starting from some
positive value and ending in zero. We showed that three specific problems of
sorting, shortest paths and minimum spanning trees can be analyzed by primary
entropy. The amortized time for a step of the computation is the actual time
minus the reduction of entropy. If the analysis of a single amortized time is easier
than the analysis of the total actual time, this method by amortization will be
useful for analysis.

We also defined the dual concept of the above mentioned entropy that can be
used for algorithms based on partitioning. The analysis is rather straightforward,
but can shed light on the algorithmic process and reduction of entropy.

If the computation process is a merging process of two sets in the decompo-
sition, or partitioning process of a set into two, our method may be used. The
definition of entropy and actual time needs care depending on the specifics of
each problem. It remains to be seen if more difficult problems can be analyzed

by this method.
The primary and dual entropy are defined in the worst case. They can be

defined in the average case, and may be used for a sharper analysis of expected
times of some other problems.

The motivation of this paper is an intuitive notion of partial solution. If the
given problem is likely to be partially solved, or easier to solve than the general
case in other words, we want to minimize our effort to complete the solution
using that information. More formal treatments of those concepts will need to
be done in future research.
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Appendix: Review of 2-3 heap

In this appendix we review the 2-3 heap as it is used in the shortest path
algorithm discussed earlier. We first define a polynomial queue, which has a rigid
structure based on dimensionality. Then we define a 2-3 heap, which is a more
flexible version of a 3-nomial queue. That is, a 2-3 heap allows some deformation
of the tree structure within some tolerance bound, which makes possible an O(1)
amortized time for decrease-key and insert. For the full description, readers are
referred to Ref. 8).

We define algebraic operations on trees. We deal with rooted trees in the
following. A tree consists of nodes and branches, each branch connecting two
nodes. The root of tree T is denoted by root(T ). A linear tree, called a trunk, of
size r is a linear list of r nodes such that its first element is regarded as the root
and a branch exists from a node to the next. The r − 1 nodes below the root
are the first, second, . . . , (r − 1)-th child. The linear tree of size r is expressed
by bold face r. Thus a single node is denoted by 1, which is an identity in our
tree algebra. The empty tree is denoted by 0, which serves as the zero element.
A product of two trees S and T , P = ST , is defined in such a way that every
node of S is replaced by a copy of T and every branch in S connecting two nodes
u and v now connects the roots of the trees substituted for u and v in S. Note
that 2 ∗ 2 �= 4, for example, and also that ST �= TS in general. The symbol “∗”
is used to avoid ambiguity.

The number of first children of node v is called the degree of v and denoted by
deg(v). The degree of tree T , deg(T ), is defined by deg(root(T )). The sum of two
trees S and T , denoted by S + T , is just the collection of two trees S and T . A
polynomial of trees is defined next. Since the operation of product is associative,
we use the notation of ri for the products of i r’s. Note that deg(ri) = i. An
r-ary polynomial of trees of degree k − 1, P , is defined by

P = ak−1rk−1 + . . . + a1r + a0 (3)

where ai is a linear tree of size ai and called a coefficient in the polynomial. Let

|P | be the number of nodes in P and |ai| = ai. Then we have |P | = ak−1r
k−1 +

. . .+a1r+a0. We choose ai to be 0 ≤ ai ≤ r−1, so that n nodes can be expressed
by the above polynomial of trees uniquely, like the k digit radix-r expression of
n is unique with k = �logr(n + 1)�. The term airi is called the i-th term. We
call ri the complete tree of degree i. Let the operation “•” be defined by the
tree L = S • T for trees S and T . The tree L is made by linking S and T in
such a way that root(T ) is connected as a child of root(S). This operation is not
associative. The product ri = rri−1 is expressed by

ri = ri−1 • . . . • ri−1(r − 1•’s are evaluated right to left) (4)
The whole operation in Eq. (4) is to link r trees, called an i-th r-ary linking. The
path of length r − 1 created by the r-ary linking is called the i-th trunk of the
tree ri, which defines the i-th dimension of the tree in a geometrical sense. If two
trunks a and b of the same dimension share the same trunk of dimension higher by
1 in the sense that their roots are sitting on the trunk, we say a and b are siblings.

The j-th ri−1 in Eq. (4) is called the j-th subtree on the trunk. Let the di-
mension of the highest-dimensional trunk on which a node v is sitting be i. The
dimension of node v is defined to be i − 1. The path created by linking ai

trees of ri in Eq. (3) is called the main trunk of the tree corresponding to this
term. A polynomial of trees is regarded as a collection of trees of distinct degrees
connected by their main trunks.

We next define a polynomial queue. An r-nomial queue is an r-ary polynomial
of trees with a label label(v) attached to each node v such that if u is a parent
or elder sibling of v, label(u) ≤ label(v). A binomial queue is a 2-nomial queue.

Example 2 A polynomial queue with r = 3 and an underlying polynomial of
trees P = 2 ∗ 32 + 2 ∗ 3 + 2 is given in Fig. 3.

Each term airi in Eq. (3) is a tree of degree i + 1 if ai > 1. One additional
degree is caused by the coefficient. The merging of two linear trees r and s is to
merge the two lists by their labels. The result is denoted by the sum r+s. The
merging of two terms airi and a′

iri is to merge the main trunks of the two trees
by their labels, spending ai +a′

i−1 comparisons. When the roots are merged, the
trees underneath are moved accordingly. If ai + a′

i < r, we have the merged tree
with coefficient ai+a′

i. Otherwise we have a carry tree ri+1 and the remaining
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Fig. 3 A polynomial queue with r = 3.

tree with the main trunk of length ai +a′
i−r. The sum of two polynomial queues

P and Q is made by merging two polynomial queues in a very similar way to the
addition of two radix-r numbers. We start from the 0-th term. Two i-th terms
from both queues and a carry if i > 0 are merged, causing a possible carry to the
(i + 1)-th terms. Then we proceed to the (i + 1)-th term.

An insertion of a key into a polynomial queue is to merge a single node with
the label of the key into the 0-th term, taking O(r logr n) time for possible propa-
gation of carries to higher terms. Thus n insertions will form a polynomial queue
P in O(nr logr n) time. The value of k in Eq. (3) is O(logr n) when we have n

nodes in the polynomial of trees.
Delete-min is done by finding the minimum node, which has the minimum key,

and deleting the node. Suppose the node is in airi. Deleting the root produces
r− 1, (r− 1)r, . . . , (ai − 1)ri, which can be regarded as another polynomial
queue and merged into the existing polynomial queue. Here a− 1 is a trunk
of size a − 1. We can take n successive minima from the queue by deleting the
minimum in some tree T , adding the resulting polynomial queue Q to P −T , and
repeating this process. This will sort the n numbers in O(nr logr n) time after
the queue is made. Thus the total time for sorting is O(nr logr n). In the sorting
process, we do not change key values. If the key values are updated frequently,
however, this structure of polynomial queue is not flexible. The best we can
do for decrease-key is to keep swapping the node with siblings or parents after
the key is decreased until finding a proper position, spending O(logr n) time.
Also we cannot afford to spend O(n log n) time for build-heap for shortest path

algorithms. The following data structure can accommodate those issues.
A 2-3 heap is similar to 3-nomial queue, but the size of each trunk is limited

to 2 or 3, except for main trunks whose size can be 0, 1 or 2. The potential of a
2-3 heap is the sum of potentials of all trunks. The potential of a two-node trunk
is 1, and that of a 3-node trunk is 3. The amortized cost of an operation is the
number of comparisons used minus the increase of potential.

A 2-3 heap is a collection of heap-ordered trees of different degrees, given in a
general form below.

P = ak−1T (k − 1) + . . . + a0T (0)
Here T (i) is a tree of degree i and T (0) = 1. We express various trees of degree
i by T (i), meaning that T (i) is a type of a tree. We do not distinguish between
a tree and tree type. We call ai the main trunk at position i.

In the following, comparisons between nodes mean comparisons between their
keys.

The merge process at the root level is now described. When a tree T ′(i), whose
root is v, is removed from a bigger tree, it is brought to aiT (i) and merged.
Merge means that v is merged into ai together with the underlying trees of T ′(i).
If ai is 1, v is compared with one node and placed above or below. If ai is 2,
v is compared with two nodes, and merged, that is, inserted into appropriate
place spending two comparisons. As the increase of potential and the number of
comparisons are equal, the amortized cost is zero.

Insert and delete-min are similar to those for trinomial queue, but we can show
insert is done in O(1) amortized time and delete-min is in O(log n) amortized
time. Thus heap initialization for n items can be done in O(n) time.

A decrease-key is to decrease the key value of the node, and remove the tree
rooted at v and take it to the root level. At the root level, the tree is merged
with the existing tree of the same degree. After the tree rooted at v is gone, the
near-by trees are reconnected to recover the requirement of the 2-3 tree. This
recovery process is done within the work space of v, which is defined by the trunk
on which v is sitting and one or two sibling trunks. Including v, the size of the
work space is between 4 and 9. If the size is 5 or greater, we can recover the
structure by moving trees within the work place. If it is 4, one tree is moved to
form a 3-node trunk, and recovery process continues to a work space of higher
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Fig. 4 A 2-3 heap.
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Fig. 5 The 2-3 heap after two decrease-key operations.

dimension, since a 2-node trunk cannot shrink further.
The amortized time for a decrease-key operation is shown to be O(1). The

re-adjustment with near-by trees of the tree at v takes O(1) amortized time. The
amortized cost for the merge process at the root level is zero.

Example 3 See P = 2T (2) + 2T (1) + 2T (0) in Fig. 4. In examples, we name
the node with label x by node(x). The first tree has three trunks of dimensions,
1, 2 and 3. node(6) and node(7) of dimension 0 are siblings on the same trunk
of dimension 1, and children of node(2). Similarly node(8) and node(9) are of
dimension 1. node(10) and node(25) are children of node(8) of dimension 0.
Trunks (2, 6, 7) and (8, 10, 25) are siblings.

Example 4 Suppose we decrease labels 6 to 4, and 29 to 14 in Fig. 4. Then we
have the following T = 1T (3)+1T (0) in Fig. 5. We first remove node(6), causing

the move of node(7) to the child position of node(2). The new node node(4) is
inserted into 2T (0), resulting in T (1) with node(12) and node(19) and carrying
over to 2T (1) to cause insertion. Then the newly formed T (2) will be carried
to 2T (2), resulting in T (3). For the second decrease-key, we have a new node
node(14). Since the trunk cannot shrink further, the two links from node(11) to
node(18) and node(26) are swapped.
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