
IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010)

Regular Paper

SELinux Security Policy Configuration System

with Higher Level Language

Yuichi Nakamura,†1 Yoshiki Sameshima†1

and Toshihiro Yamauchi†2

Creating security policy for SELinux is difficult because access rules often
exceed 10,000 and elements in rules such as permissions and types are un-
derstandable only for SELinux experts. The most popular way to facilitate
creating security policy is refpolicy which is composed of macros and sample
configurations. However, describing and verifying refpolicy based configura-
tions is difficult because complexities of configuration elements still exist, using
macros requires expertise and there are more than 100,000 configuration lines.
The memory footprint of refpolicy which is around 5 MB by default, is also a
problem for resource constrained devices. We propose a system called SEEdit
which facilitates creating security policy by a higher level language called SPDL
and SPDL tools. SPDL reduces the number of permissions by integrated per-
missions and removes type configurations. SPDL tools generate security policy
configurations from access logs and tool user’s knowledge about applications.
Experimental results on an embedded system and a PC system show that prac-
tical security policies are created by SEEdit, i.e., describing configurations is
semi-automated, created security policies are composed of less than 500 lines
of configurations, 100 configuration elements, and the memory footprint in the
embedded system is less than 500 KB.

1. Introduction

In order to prevent intrusion to a system by attackers such as malwares and
crackers, virus check software and updating software are commonly used. How-
ever, since they require pattern files and security patches which must be dis-
tributed before attacks, they are not effective to zero-day attacks. Once attackers
obtain root privilege by exploiting security holes of services running as root, or
by exploiting vulnerabilities leading to privilege escalation 1),2), they can do ev-

†1 Hitachi Software Engineering Co., Ltd.
†2 Graduate School of Natural Science and Technology, Okayama University

erything in traditional Linux. In order to limit root privilege, Security-Enhanced
Linux (SELinux) 3),4) provides mandatory access control where all processes in-
cluding root processes can access no resources unless access rules are described in
the security policy. SELinux adopts TE (Type-Enforcement) 5) mandatory access
control model where domain labels are assigned to processes and type labels are
assigned to resources such as files and ports. Set of access control rules (what
kind of domain can access what kind of type) is called as security policy. As
long as the security policy is configured properly, all processes including root and
malicious processes have only limited access rights. As a result, the damage by
attackers is confined even when zero-day attack happens. Because of this con-
finement feature, SELinux is included in major Linux distributions 6), and is used
for servers that require high level security. SELinux is also useful for network
connected embedded devices such as cell phones and TVs. Actually, some Linux
distributions for embedded system include SELinux 7).

To deploy SELinux to a system, a security policy must be created. However,
creating security policy for SELinux is difficult because access rules often exceed
10,000 and elements in rules such as permissions and types are understandable
only for SELinux experts. The most popular method to facilitate creating secu-
rity policy is customizing refpolicy (Reference Policy) 8),9) which is composed of
macros and sample configurations. Refpolicy can be applied with almost no cus-
tomization when configurations for applications in a target system are included
in refpolicy. For example, refpolicy is almost perfectly configured for default
applications included in Fedora and CentOS. However, customizing refpolicy is
required for systems where refpolicy is not configured enough. For example, ref-
policy is not configured for commercial package software, custom applications
and embedded systems.

There are three problems with customization. First, it is difficult to describe
configurations because there are more than 700 permissions and 1,000 macros. In
addition, type labels must be associated with file names and network resources.
Second, it is difficult to verify refpolicy. Since refpolicy is intended for mul-
tiple use cases, more than 100,000 lines of configurations are included. When
engineers verify refpolicy before reuse, they have to review such a lot of con-
figurations. Third is the problem of resource consumption. When SELinux is

1670 c© 2010 Information Processing Society of Japan

1671 SELinux Security Policy Configuration System with Higher Level Language

applied to resource constrained systems such as embedded systems, the files used
and memory consumed by the security policy are a problem because refpolicy is
large.

This paper proposes a security policy configuration system SELinux Policy
Editor (SEEdit) that facilitates creating security policy by a higher level language
called Simplified Policy Description Language (SPDL) and SPDL tools.
• SPDL

Instead of complicated macros, we propose a higher level language called
SPDL. SPDL simplifies describing and verifying SELinux security policy con-
figurations with two features. Firstly, integrated permissions in SPDL reduce
the number of permissions by grouping related SELinux permissions. Sec-
ondly, it removes type configurations by identifying resources with names
such as path name and port number.

• SPDL tools
To solve the verification and size problems of refpolicy, the security policy
is created by writing only the necessary configurations in SPDL without
refpolicy. SPDL tools help the writing process by generating configurations
using access logs and knowledge of users about applications.

The remaining of this paper is organized as follows. Problems in creating security
policy (Section 2), approaches of SEEdit to facilitate creating security policy
(Section 3) are explained. The detail of SEEdit (Section 4), experimental results
(Section 5) are shown. Finally, related works (Section 6), summary (Section 7)
and future works (Section 8) are described.

2. Problems in Creating Security Policy

In this section, problems in creating a security policy for a target system based
on refpolicy are described after an overview of SELinux policy language, and its
difficulty.

2.1 SELinux Policy Language
The security policy is loaded to SELinux kernel in binary representation. How-

ever, it is hard to handle the binary security policy because it is unreadable for
humans. To represent the security policy in text, SELinux has a basic policy
language 10) and which is mainly composed of four syntax elements shown in

(1) Type assignment

<file name> system_u:object_r:<type>

portcon <port number> system_u:object_r:<type>

netifcon <NIC name> system_u:object_r:<type>

(2) Label declaration

type <type or domain>, <attribute>;

(3) Allowing access

allow <domain> <type> <permission>;

(4) Conditional policy expression

if(<parameter>){<statement>}

Fig. 1 Main components of SELinux Policy Language.

Fig. 1. SELinux identifies resources by labels called type. Types are assigned to
resources such as files, port number and NICs (Fig. 1 (1)). Domains and types
must be declared by type statements (Fig. 1 (2)). <type or domain> inherits
configurations described for <attribute>. The following statements are example
of attribute. admin t can read both httpcontent t and ftpcontent t.
type httpcontent_t, content;

type ftpcontent_t, content;

allow admin_t content:file read;

The allow statements (Fig. 1 (3)) comprise access rules, i.e., domains are per-
mitted to access types using some permissions. <permission> is composed of
object classes and access vector permissions. Object class means classification of
resources such as file (normal file), dir (directory) and tcp socket (TCP socket).
For each object class, access vector permissions such as read and write are de-
fined. For example, permission file read means reading normal files, dir read
means reading directories. Conditional policy expression (Fig. 1 (4)) is written to
support multiple use cases in one security policy. <statement> is effective only
when <parameter> is true. For instance, when CGI is necessary, the parameter
httpd enable cgi is set true, then rules related to using CGI are enabled.

2.2 Difficulties in Writing Security Policy
The fine grained access control of SELinux is effective to prevent behavior of

attackers, but there are difficulties in writing security policy.
2.2.1 Amount of Access Rules
To grant enough permissions for applications to work correctly, a lot of access

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1672 SELinux Security Policy Configuration System with Higher Level Language

rules must be configured because the SELinux security policy is white list which
means applications are not granted any permissions unless rules are described.
In addition, more than 700 permissions make the amount much larger. In fact,
the total number of access rules in a security policy often becomes more than
10,000, and sometimes exceeds that number.

2.2.2 Describing Individual Access Rules
Access rules are composed of allow statements, but it is hard for engineers to

write individual rules because of permission and types.
(1) Configuring permissions

Since SELinux permissions are designed from the view point of system calls,
engineers are required to have knowledge of Linux kernel. For example,
when engineers want to grant an application to use TCP ports. Permis-
sions related to system call such as listen, accept, bind and so on should
be configured. Additionally, the number of permissions which exceed 700
makes using permissions more difficult.

(2) Configuring types
Engineers have to assign types to all files and ports in a system. This
means, for each file, they have to group some files and ports appropriately,
then name types, and assign types. The work is very hard because there
are more than 10,000 files in standard Linux systems.
In addition, there are two more difficulties in types. First, engineers have to
get used to types because they have been identifying files by file names not
types in traditional Linux. Secondly, there is also a problem of dependency
in assigning new types. This problem is explained with an example. When
the foo t type is assigned under /foo directory and the bar t domain is
allowed to read the foo t type, the bar t domain can read all files under
the /foo directory. If the foo2 t type is newly created, and assigned to the
file /foo/foo2, then the bar t domain can not access /foo/foo2 because the
bar t domain is not allowed to access foo2 t. In this way, the bar t domain
was able to read /foo/foo2 before assigning the new type foo2 t, but bar t
can not access /foo/foo2 after the new type is assigned to /foo/foo2.

2.3 Overview of Refpolicy
Because of the difficulties explained above, it is not realistic to create security

#Macro definition

define(‘r_file_perms’,‘file { read getattr lock ioctl }’)

#Example usage of the macro

allow httpd_t contents_t r_file_perms;

Fig. 2 Example of an m4 macro.

policy from nothing. The most popular way to facilitate creating security pol-
icy is refpolicy which is developed and maintained by the SELinux community.
Refpolicy is composed of macros and configurations for typical applications.
(1) Macros

M4 11) macros are defined to describe frequently used phrases in short
words. For instance, Fig. 2 shows r file perms macro, which is expanded
to permissions related to reading regular files.

(2) Configurations for typical applications
Configurations for applications shipped with Linux distributions are pre-
pared by the SELinux community and Linux distributors, and they are
included in refpolicy. Figure 3 is part of the configuration for the ftp
daemon. There are many macros, such as init daemon domain, misc-
files read public files and so on. In the figure, conditional expressions are
omitted, but in fact, many conditional expressions are also included be-
cause refpolicy is intended to support as many use cases as possible, such
as ftp login, and DB connection.

2.4 Problems in Creating Security Policy Using Refpolicy
Customizing refpolicy is necessary when the system usage case of the system

or its installed applications is beyond the expectations of refpolicy. For exam-
ple, embedded systems and commercial applications are not within the scope
of refpolicy. However, there are three problems in customizing refpolicy. One
is the difficulty in describing configurations, second is the difficulty of verifying
refpolicy and third is resource consumption.

2.4.1 Difficulty in Describing Configurations
The major difficulty in describing configurations is complicated configuration

elements such as permissions, macros and types. The main reason of complexity
is the number of configuration elements. For example, there are more than 700
permissions and more than 1,000 macros and 1,000 types. In addition, difficulties

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1673 SELinux Security Policy Configuration System with Higher Level Language

#Assign ftpd_t domain to ftp daemon

1 type ftpd_t;

2 type ftpd_exec_t;

3 init_daemon_domain(ftpd_t,ftpd_exec_t)

4 init_system_domain(ftpdctl_t,ftpdctl_exec_t)

5 /usr/sbin/vsftpd --gen_context(system_u:object_r:ftpd_exec_t,s0)

#Permit ftpd_t to read contents

6 miscfiles_read_public_files(ftpd_t)

7 /var/ftp(/.*)? gen_context(system_u:object_r:public_content_t,s0)

#Permit ftpd_t to wait connection on tcp port 21

8 corenet_non_ipsec_sendrecv(ftpd_t)

9 corenet_tcp_sendrecv_all_if(ftpd_t)

10 corenet_udp_sendrecv_all_if(ftpd_t)

11 corenet_tcp_sendrecv_all_nodes(ftpd_t)

12 corenet_udp_sendrecv_all_nodes(ftpd_t)

13 corenet_tcp_sendrecv_all_ports(ftpd_t)

14 corenet_udp_sendrecv_all_ports(ftpd_t)

15 corenet_tcp_bind_all_nodes(ftpd_t)

16 corenet_tcp_bind_ftp_port(ftpd_t)

17 corenet_tcp_bind_ftp_data_port(ftpd_t)

18 corenet_dontaudit_tcp_bind_all_ports(ftpd_t)

19 portcon tcp 21 gen_context(system_u:object_r:ftp_port_t,s0)

Fig. 3 Part of the configuration for the ftp daemon in refpolicy.

in configuring types as discussed in Section 2.2.2 still remain, and nested macro
definitions make understanding macros harder.

2.4.2 Difficulty in Verifying Refpolicy
For the purpose of quality assurance for a security policy which is created based

on refpolicy, refpolicy should be verified. In this context, verify means understand
what is configured, then find misconfigurations and modify them. However, it
is difficult to verify because of the complexity of the configuration elements as
stated before. In addition, the following points make verification more difficult.
• Amount of configurations

The size of refpolicy makes verification more difficult. For example, refpolicy
included in Fedora 9 has configurations for almost all applications shipped
with Fedora 9 and is composed of more than 2,000 types and more than
150,000 access rules.

• Conditional expressions

Many conditional expressions are embedded in refpolicy, and they are some-
times included in macro definitions. Thus, it is difficult to figure out which
configurations are enabled.

• Attributes
Attributes are often used for types and they increase the time necessary
to understand what configurations mean, as shown in the next example.
The line allow httpd t httpdcontent:file read; is included in refpolicy. httpd t
is a domain for the apache daemon, and httpdcontent is an attribute. To
understand what kind of files httpd t can access from the line, types that have
the httpdcontent attribute have to be found by searching for type declaration
statements, which are sometimes embedded in macro definitions.

2.4.3 Resource Consumption
A security policy is saved as files in storage, then it is loaded to RAM at

system boot. Therefore, the security policy consumes storage and RAM. Since
refpolicy is intended for multiple use cases, many conditional expressions and
configurations for many applications are included. As a result, the size of refpol-
icy becomes large. For example the refpolicy included in Fedora Core 6 consumes
1.4 MB storage and 5.4 MB RAM. In resource constrained systems such as em-
bedded systems, this is a problem because they often have less than 64 MB RAM
and storage.

2.4.4 Tools for Refpolicy
Tools are developed by SELinux community to aid customizing refpolicy based

security policy.
To help describing configurations, tools called setroubleshoot 12), SLIDE13) and

system-config-selinux 14) are developed. Setroubleshoot analyzes access logs and
presents configurations when an application does not work due to SELinux access
denial. SLIDE is an Integrated Development Environment (IDE) to configure ref-
policy. It has features to aid describing configurations such as input completion.
System-config-selinux is a tool to generate templates of configurations for new
applications. It can generate templates using a wizard. These tools are helpful,
but remain problems. Setroubleshoot is targeted only for minor modifications. In
SLIDE and system-config-selinux complexities of SELinux policy language and
refpolicy such as many permissions, types, macros are not resolved.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1674 SELinux Security Policy Configuration System with Higher Level Language

To aid verifying refpolicy, setools 15) has a features to query security policy,
such as querying what kind of types a domain can access. It is also useful, but
problems discussed in Section 2.4.2 still exist.

3. Approach to Creating Security Policy

To encounter problems in creating security policy based on refpolicy, we pro-
pose a different approach. This means that we propose a new security policy
configuration system called SEEdit instead of using refpolicy. SEEdit aims to
facilitate describing configurations, verifying a created security policy and creat-
ing a small security policy. The idea of the proposed system is explained in this
section.

3.1 Higher Level Language: SPDL
The difficulty in describing configurations in refpolicy is caused by the large

number of permissions, complicated macros and type configurations. Sophisti-
cated macros can partly solve such problems, i.e., creating a small number of
macros and removing nested macro definitions. However, type configurations are
still necessary in such macros. Instead of macros, we propose a higher level lan-
guage SPDL on top of SELinux policy language. SPDL aims to reduce the num-
ber of configuration elements by integrated permissions where related SELinux
permissions are grouped. In addition, SPDL removes type configurations by
identifying resources with their names. An example of configuration by SPDL is
shown in Fig. 4. The configured access rules are almost the same as Fig. 3, but
SPDL is simpler. Permissions related to reading files and directories are merged

1 {

Assign ftpd_t domain to ftp daemon

2 domain ftpd_t;

3 program /usr/sbin/vsftpd;

Permit ftpd_t to read /var/ftp

4 allow /var/ftp/** r;

Permit ftpd_t to wait connection on

tcp port 21

5 allowcom -protocol tcp -port 21 server;

6 }

Fig. 4 A configuration example of SPDL for ftp daemon.

to integrated permission r and permissions to wait for connection on ports are
merged to server . Additionally, names such as /var/ftp and port 21 are used
to identify resources and assigning types to resources is not necessary. To ap-
ply SPDL configurations, the SPDL converter translates these configurations to
SELinux policy language, i.e., SPDL converter generates the necessary type con-
figurations, and expands integrated permissions to related SELinux permissions.

The difficulty in verifying refpolicy is caused by two factors. First is the com-
plicated configuration elements such as macros, permissions, attributes and con-
ditional expressions. This complexity is solved by SPDL. Second is that many
lines of configurations for access rules for applications not installed in the system
and for rules disabled by conditional expressions are included. Our approach
to solve the problem of many configuration lines is to describe only necessary
configurations by SPDL without refpolicy, i.e., write configurations only for ap-
plications installed in the target system. Since neither conditional configurations
nor configurations for unused applications are included, the number of configura-
tion lines are expected to be reduced. This also helps reduce resource usage by
the security policy.

3.2 SPDL Tools
In order to support writing configurations by SPDL without refpolicy, we pro-

pose SPDL tools composed of template generator and allow generator . SPDL
tools aim to reduce the number of configurations written by hand during the
process of creating a security policy.

Table 1 shows a typical process of creating a security policy and this process
is iterated for each target applications. Configurations to assign a domain to a
target application are described as lines 2 and 3 in Fig. 4 (Step 1). In order to
figure out what kind of access rules should be described, access logs are obtained
by running the target application (Step 2). Access rules are described using the

Table 1 Typical process of creating a security policy.

Step Necessary works Available SPDL tools
1 Assign domain Template generator
2 Run application -
3 Describe allow rules Allow generator
4 Check configuration -

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1675 SELinux Security Policy Configuration System with Higher Level Language

access logs (Step 3). For example, when an access log entry shows foo t domain
read accessed filename bar then an access rule that allows foo t to read bar is
described. Run the application again and see whether it works correctly (Step 4).
If the application does not work correctly, go back to Step 2.

Allow generator supports writing configurations allowing access in Step 3 of
Table 1. We adopt an approach of audit2allow 16) to automate describing con-
figurations, i.e., generate configurations that permit accesses appearing in access
logs.

Template generator outputs configurations in Step 1 of Table 1 by using config-
urations typical to application categories. For example, most daemon programs
require access rights to create temporary files under /var/run and communicate
with syslog. To produce more configurations, template generator uses the knowl-
edge of the tool user about the target application, such as what kind of files and
network resources the application accesses.

4. Design and Implementation of SEEdit

We designed and implemented SEEdit following the approaches discussed in
the previous section. SEEdit provides SPDL and SPDL tools layers on top of
SELinux Policy Language as shown in Fig. 5. In SPDL layer, SPDL converter
generates the security policy written in SELinux policy language from configura-
tion written in SPDL. SELinux policy language is converted to binary format by
checkpolicy, then loaded to SELinux kernel by load policy command. In SPDL
tools layer, SEEdit has allow generator and template generator to help writing
configuration. The design of SPDL and the implementation of SPDL converter
and SPDL tools are described in the following subsections.

4.1 Design of SPDL
The main features of SPDL are integrated permissions to reduce the number

of permissions, and configurations using resource names to remove type configu-
rations. SPDL also has an include statement to reduce the number of lines. The
detail is explained in this section.

4.1.1 Integrated Permissions
While integrated permissions reduce the number of permissions by grouping

permissions, those permissions important for security should be kept. In order to

include such important permissions, integrated permissions are designed from the
viewpoint of protecting the confidentiality, integrity and availability of a target
system. Compromising confidentiality happens when an unexpected information
goes out, and compromising integrity happens when an unexpected information
comes into the system. Thus, permissions related to input and output to files,
network resources and IPCs have to be included in integrated permissions. The
other permissions are privileges which can be abused to compromise availability
and to facilitate attacks. For example, setrlimit permission that controls the
resource usage limit of processes can lead to compromised availability. Permission
cap insmod can result in installation of malicious kernel modules. Therefore,
privileges have to be included in integrated permissions. The details of integrated
permissions are shown as follows.
(1) Integrated permissions for files

Integrated permissions for files are taken from previous research by Ya-
maguchi, et al. 17) because they are designed to control input and output
to files and directories. The integrated permissions are, r (read), x (exe-
cute), s (list directory), o (overwrite), t (change attribute), a (append), c
(create), e (erase) and w (= o+t+a+c+e).

(2) Integrated permissions for network
Two integrated permissions related to input and output are designed for
port numbers, NIC, IP address and RAW socket. For example, integrated
permissions for port numbers are server (wait for a connection from out-
side) and client (begin a connection to outside).

(3) Integrated permissions for IPC
Integrated permissions for Sysv IPCs are send and recv to control input

Fig. 5 The architecture of SEEdit.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1676 SELinux Security Policy Configuration System with Higher Level Language

and output to processes. Integrated permissions for signals are designed
to control sending each signal because SELinux can only control sending of
signals. For example, integrated permission k allows sending sigkill.

(4) Integrated permissions for other privileges
46 integrated permissions for other privileges are designed. Almost all per-
missions about privileges are included to prevent attackers from compromis-
ing availability and facilitating attacks. However, overlapped permissions
are merged as an exception. For example, SELinux permission capability
net admin and netlink route socket nlmsg write overlap each other because
they are related to change kernel configuration of network. Thus, they are
merged to the integrated permission net admin.

4.1.2 Configurations Using Resource Names
To remove type configurations, SPDL enables configurations using resource

names. SPDL statements allow and allownet are designed as shown in Fig. 6
to enable name based configurations for files and network resources such as port
number, NIC and IP address. To configure IPCs and other privileges, allowcom
and allowpriv are also designed. Assigning types for IPCs and privileges is not
required in SELinux, but they are shown for reference in and Fig. 6.

4.1.3 Include Statement
In order to reduce the number of configuration lines, the include statement

imports configuration from a file. For example, when the file daemon.te includes
access rules commonly used for daemon applications, describing #include dae-
mon.te; imports those access rules.

4.2 Implementation of SPDL Converter
SPDL converter translates SPDL to SELinux policy language. The translation

process is shown with an example of converting SPDL configurations in Fig. 7 (1)
to configurations in Fig. 7 (2).

The ftpd t domain is allowed to read files and directories under /var/ftp in
Fig. 7 (1). SPDL converter generates types from resource names. For example,
it generates var ftp t type from filename /var/ftp, then outputs configuration to
assign var ftp t under /var/ftp in the first two lines in Fig. 7 (2), and it generates
configuration to allow access to the generated type as line 3–6 in Fig. 7 (2).

When different types are generated for files or directories under /var/ftp, ac-

(1) Statements

(a) Permits access to files

allow <filename> <integrated permission>;

(b) Permits access to network resources

allownet <resourcename> <integrated permission>;

(c) Permits access to domain using IPC

allowcom <IPCname> <domain> <integrated permission>;

(d) Permits usage of privilege

allowpriv <integrated permission>

(2) Example

(a) Permits to read files under /foo/bar directory.

allow /foo/bar/** r

(b) Permits to wait connection on tcp port 80.

allownet -protocol tcp -port 80 server;

(c) Permits to read data from process running as foo_t domain

via unix domain socket.

allowcom -unix foo_t r;

(d) Permits to use chroot system call.

allowpriv cap_sys_chroot;

Fig. 6 Statements in SPDL to allow access to resources.

(1) SPDL to be converted by SPDL converter

1 domain ftpd_t;

2 allow /var/ftp/** r;

(2) Output of SPDL converter

Declare and assign type

1 type var_ftp_t;

2 /var/ftp(|/.*) system_u:object_r:var_ftp_t

#Allows permissions related to integrated permission r

3 allow ftpd_t var_ftp_t:lnk_file { iotcl lock read };

4 allow ftpd_t var_ftp_t:file { iotcl lock read };

5 allow ftpd_t var_ftp_t:fifo_file { iotcl lock read };

6 allow ftpd_t var_ftp_t:sock_file { iotcl lock read };

Fig. 7 SPDL configurations and output of SPDL converter.

cesses to such types are allowed. For example, when some domains are configured
allow /var/ftp/content1/** r;, then configuration that assigns var ftp content1 t
to /var/ftp/content1 is generated. SPDL converter also generates configuration
for ftpd t that allows reading var ftp content1 t.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1677 SELinux Security Policy Configuration System with Higher Level Language

However, configurations using resource names do not work well for files dynam-
ically created by processes. Dynamically created files mean files that are removed
and created again. In SELinux, when a file is removed and created again, the
type of the file is the same as the directory where it belongs. This behavior
is sometimes a problem. For example, allow /tmp/foo r; is configured in foo t
domain. At first, /tmp/foo is assigned tmp foo t type, but when /tmp/foo is
removed and created again, then the type is tmp t. Therefore, the foo t domain
can no longer access /tmp/foo. To handle such cases, SPDL has allowtmp to
configure assigning types correctly. The syntax of allowtmp is as follows.
allowtmp -dir <directory> -name <type> <integrated permission>;

This means files created under <directory> are assigned <type>. When <type>
is auto, type is named automatically. For example, when foo t domain creates
temporary files under /tmp, we have to describe allowtmp -dir /tmp -name auto
r; in foo t domain, then type foo tmp t is generated and assigned to temporary
files.

4.3 Implementation of SPDL Tools
4.3.1 Allow Generator
Allow generator outputs configurations that permit accesses recorded in the

access log. The process is explained by an example below. First, allow generator
reads SELinux access log, then extracts domain, resource name and permission
from an access log entry. When a log entry is recorded that says httpd t domain
process accessed filename /foo/bar whose type is foo bar t with permission file
read, httpd t, /foo/bar/ and file read is extracted. The extracted information
is not enough to create SPDL based configuration, because the permission is
not an integrated permission. In order to obtain an integrated permission, allow
generator converts SELinux permissions to integrated permissions by permission
mapping, which contains mapping of integrated permission to SELinux permis-
sions as illustrated in Fig. 8. In the example, recorded SELinux permission is
file read, then permission mapping is looked up and corresponding integrated
permission file r meaning integrated permission r for file is found. As a result,
allow generator is able to output SPDL based configurations allow /foo/bar/ r;,
from obtained domain, resource name and integrated permission.

Fig. 8 An example of permission mapping.

Fig. 9 Template generator GUI to generate typical configurations.

Fig. 10 Template generator GUI to generate using knowledge of users.

4.3.2 Template Generator
Template generator is implemented as a GUI. Figure 9 is a GUI to generate

typical configurations. Users choose the profile of applications, and configurations
are generated based on the profile. Figure 10 is a GUI to generate configurations
from the user’s knowledge. They can input their knowledge to the template
generator without having to manually enter the SPDL.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1678 SELinux Security Policy Configuration System with Higher Level Language

5. Evaluation

5.1 Experimental Setup
In order to make sure whether SEEdit works, we used two typical systems for

experiment. One is an embedded system and the other is a PC system. The
embedded system is a low power consumption small server often used in home
to serve as http and ftp server. It also has portmap daemon for the purpose
of sharing files from PC via NFS. The PC system is intended to represent a
PC server which serves typical Internet server applications (HTTP, FTP, Name
server, E-mail, File sharing). The detail of these systems is shown in Table 2.

Five domains are configured for services running on the embedded system, 16
domains are configured for services on the PC system. Access rules are written
for these services to work properly. Memory usage of the security policy on the
embedded system was also measured to evaluate whether SELinux is applicable
to embedded systems. The memory consumption by SELinux was defined as the
difference between memory usage when SELinux enabled and that when SELinux
is disabled.

For comparison, we also evaluated refpolicy based security policies. We pre-
pared three kinds of refpolicy. The first is default refpolicy shipped with Cent
OS 5 which was used without modification. Second and third are refpolicy tuned
for the PC system and the embedded system. The tuning is assumed to be
possible for a usual engineer who is not SELinux specialist. In the tuning, con-

Table 2 Systems used in the evaluation.

Embedded system PC system
CPU SH7751R (SH4) 240 MHz Core2Duo 2 GHz
RAM 64 MB 1 GB
Storage 64 MB Flash ROM 10 GB HDD
Linux distribution Not used Cent OS 5
SELinux Linux 2.6.22 Linux 2.6.18
Services httpd, vsftpd, syslogd, klogd, auditd, avahi daemon,

portmap crond,cupsd, dhclient,
gdm, httpd,klogd,
mcstransd, named,
ntpd, portmap,
samba, sendmail

figurations for unused applications are removed by hand, but further removal is
not done because only SELinux experts can understand and remove unnecessary
configuration lines from each application’s configurations.

5.2 Result and Consideration
In the experiment, we have successfully created security policies for both the

embedded and the PC system. The process of describing configurations, verifying
configurations and resource consumption are reviewed and considered. At last,
trade-offs in SEEdit are also discussed.

5.2.1 Describing Configurations
The first step to describe configuration is using template generator. To evaluate

template generator, the assumption of knowledge on the part of the tool user is
necessary because generated configurations depend on the user’s knowledge. For
evaluation, it is assumed that users know how to manage applications, i.e.: they
know file path of configuration files for applications, names of log files, names
of content files which applications deliver and port numbers for applications.
Assuming this, template generator produced 52% of the lines of configuration
for the evaluation systems. For example, total 24 lines of configurations were
described for http service in the PC system, and 12 lines were generated by
template generator.

Next step is to produce configurations from access logs by allow generator.
Most of the configurations generated by allow generator were able to be used
without modification except for the following two cases. First is allow state-
ments generated for dynamically created files. These allow statements have to
be replaced with allowtmp statements. For example, foo t domain dynamically
creates and removes /tmp/foo, then log entry foo t domain write /tmp/foo is
recorded. Allow generator outputs allow /tmp/foo w; from the log entry. How-
ever, it should be replaced with allowtmp -dir /tmp -name auto w; as shown in
Section 4.2. Second is configurations generated from log entries which record
access to normal files. Allow generator outputs allow /var/www/index.html r;
for httpd t from log entry httpd t read /var/www/index.html. When the user
knows http t domain accesses /var/www directory, it is better to permit access
to directory like allow /var/www/** r;. For the above two cases, the generated
integrated permissions still can be used without modification.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1679 SELinux Security Policy Configuration System with Higher Level Language

Table 3 Number of permissions in refpolicy and SPDL.

refpolicy SPDL
File 130 9
Network 453 14
IPC 45 7
Privilege 80 46
Total 708 76

Table 4 Comparison of number of configuration lines.

refpolicy refpolicy refpolicy SEEdit SEEdit
(default) (PC) (embedded) (PC) (embedded)

Number of lines 147,218 98,915 92,019 401 174

Table 5 Result of resource consumption in the embedded system.

refpolicy refpolicy SEEdit
(default) (tuned)

File size (KB) 1,843 302 71
RAM usage (KB) 5,820 1,168 465

As shown above, SPDL tools generate most parts of the configurations. In
addition, to modify a generated SPDL configuration is easier than modifying
refpolicy because the number of permissions is reduced as shown in Table 3,
complicated macros are not necessary, and type configurations are removed.

5.2.2 Verifying Configurations
To verify created security policy, the difficulty depends on the number of config-

uration lines. The number of configuration lines are shown in Table 4. Refpolicy
has more than 90,000 lines even when it is tuned for evaluation systems. In ad-
dition, complicated permissions, macros and types are included. On the other
hand, in the experiment, the total lines of configuration are 174 for the embedded
system, 401 for the PC system, and they are described with SPDL. Therefore, it
is easier to verify configurations in SPDL than configurations in refpolicy.

Note that verifying configurations written in SPDL is meaningful as long as
the output of SPDL converter is correct. Another work is necessary to ensure
the result of SPDL converter. One possible way is a test tool. The tool inputs
configurations in SPDL and is run for each domain defined in the configurations,
then the tool tries all access patterns to see if only accesses configured in the

policy are permitted.
5.2.3 Resource Consumption
The file size of the security policy in the embedded system is 71 KB and RAM

usage is 465 KB. In the system used in the experiment, storage is 64 MB, RAM is
64 MB. The consumption of storage and RAM is less than 1%. Thus, the created
security policy is usable for the resource constrained embedded devices.

In addition, the resource consumption is also smaller compared with refpolicy
based security policy as shown in Table 5. The file size of SEEdit based security
policy is about 24% and the RAM usage is 40% of tuned refpolicy.

5.2.4 Trade-offs
There are two usability-security trade-offs in SEEdit. The first trade-off is in-

tegrated permissions used in SPDL because integrated permissions reduce gran-
ularity. For example, integrated permission for file r means read permissions for
file, symlink and socket file. Therefore, allowing read access to symlink but not
to file and directory can not be configured by r permission. To solve this prob-
lem, the security policy generated by SPDL converter has to be edited. Another
solution is to create a new statement in SPDL that enables configuring SELinux
permissions directly. The second trade-off is the audit2allow approach in allow
generator. If there is a bug or malicious code in a program, and the program ac-
cesses files unnecessary for the program to work correctly, allow generator outputs
configurations to permit access to such files. For example, if code that accesses
confidential data is embedded in a CGI program by an evil programmer, then a
configuration that permits access to the confidential data is outputted by allow
generator after running the CGI. To prevent such a dangerous configuration to
be included in the security policy, generated configurations should be checked
by the SEEdit user. To help the check process, a tool that evaluates generated
configurations would be useful.

6. Related Work

There are some researches for improving the usability of mandatory access
control. Shan proposed a kind of new mandatory access control model, named
CUMAC 18). CUMAC can improve both compatibility and usability. Li, et al.
also proposed Usable Mandatory Integrity Protection (UMIP) model 19). UMIP

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1680 SELinux Security Policy Configuration System with Higher Level Language

model adds usable mandatory access control to operating systems. In addition,
AppArmor is implemented using the Linux Security Modules kernel interface 20).
AppArmor is a mandatory access control system based on file paths. It is easier
to use than SELinux. These researches proposed new mandatory access control
systems, because existing mandatory access control systems for operating systems
are difficult to use. On the other hand, this paper proposes a higher level language
for an existing mandatory access control system.

There are some works about higher level language for SELinux. Sniffe, et
al. introduced a tool called polgen 21) with a higher level language to describe
template configurations. The purpose is different from SEEdit because SPDL
in SEEdit is intended to describe whole configurations. SENG 22) is a higher
level language intended to replace m4 macros. However, it is not targeted to
reduce to reduce permissions and remove type configurations. Sellers, et al. 23)

also designed a higher level language and IDE 24) on top of the language. The
language is designed from the viewpoint of information flow control, but is not
intended to simplify configurations.

There are also works related to security policy verification. SLAT 25) is a se-
curity policy analyzer which points out violations of the information flow goal
described by analyzers in advance. Gokyo 26) analyzes a security policy based on
constraints called Access Control Spaces, then suggests configurations violating
the constraints. The purpose of these tools is to assist formal verification. On
the other hand, SPDL is intended to facilitate casual verification which means
understanding what is configured.

7. Summary

Security policy for SELinux is usually created by customizing a sample policy
called refpolicy. However, creating security policy based on refpolicy has prob-
lems in describing and verifying configurations, and in resource consumption.

We proposed a security policy configuration system SEEdit which makes cre-
ating security policy easier with a higher level language called SPDL and SPDL
tools. SPDL reduces the number of permissions by integrated permissions, and
removes type configurations by name based configurations. SPDL tools help in
writing configuration by generating configurations based on access logs and the

knowledge of tool users about applications. Experimental results on an embedded
system and a PC system have shown that SEEdit resolves the problems creating
security policy and practical security policy can be created with SEEdit.

8. Future Work

There are remaining issues in ensuring the results of SPDL converter (Sec-
tion 5.2.2) and trade-offs in SEEdit (Section 5.2.4). Another issue is co-existing
with refpolicy. Currently SEEdit can not be used with refpolicy because type
configurations generated by SPDL converter conflict with existing type configu-
rations in refpolicy. SPDL converter has to be improved to resolve such conflicts.

References

1) CVE-2008-0600: Common Vulnerabilities and Exposures (2008).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0600

2) CVE-2007-5964: Common Vulnerabilities and Exposures (2007).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5964

3) Security-Enhanced Linux: http://www.nsa.gov/research/selinux/
4) Loscocco, P. and Smalley, S.: Integrating Flexible Support for Security Policies

into the Linux Operating System, Proc. FREENIX Track of the 2001 USENIX
Annual Technical Conference, pp.29–42 (2001).

5) Boebert, W.E. and Kain, R.Y.: A Practical Alternative to Hierarchical Integrity
Policies, Proc. the Eighth National Computer Security Conference, pp.225–237
(1985).

6) Coker, F. and Coker, R.: Taking advantage of SELinux in Red Hat Enterprise
Linux, Redhat magazine, Issue 6 (2005).
http://www.redhat.com/magazine/006apr05/features/selinux/

7) Linuxdevices.com: MontaVista readies new Linux mobile phone OS (2007).
http://www.linuxdevices.com/news/NS4364061392.html

8) SELinux Reference Policy: http://oss.tresys.com/projects/refpolicy/
9) PeBenito, C., Mayer, F. and MacMillan, K.: Reference Policy for Secu-

rity Enhanced Linux, Proc. 2006 Security Enhanced Linux Symposium (2006).
http://selinux-symposium.org/2006/papers/05-refpol.pdf

10) Smalley, S.: Configuring the SELinux policy, NAI Labs Report #02-007.
http://www.nsa.gov/research/selinux/docs.shtml

11) GNU m4: http://www.gnu.org/software/m4/m4.html
12) Denis, J.: Setroubleshoot: A User Friendly Tool to Diagnose AVC Denials, Proc.

2007 Security Enhanced Linux Symposium (2007).
http://selinux-symposium.org/2007/papers/09-setroubleshoot.pdf

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

1681 SELinux Security Policy Configuration System with Higher Level Language

13) SLIDE: http://oss.tresys.com/projects/slide
14) Walsh, D.: A step-by-step guide to building a new SELinux policy module, Redhat

magazine (2007). http://magazine.redhat.com/2007/08/21/
15) SETools. http://oss.tresys.com/projects/setools
16) Linux man pages for audit2allow(1).

http://linuxcommand.org/man pages/audit2allow1.html
17) Yamaguchi, T., Nakamura, Y. and Tabata, T.: Integrated Access Permission: Se-

cure and Simple Policy Description by Integration of File Access Vector Permission,
Proc. The 2nd International Conference on Information Security and Assurance
(ISA2008), pp.40–45 (2008).

18) Shan, Z.: Compatible and Usable Mandatory Access Control for Good-enough
OS Security, Proc. International Symposium on Electronic Commerce and Security
(ISECS), Vol.1, pp.246–250 (2009).

19) Li, N., Mao, Z. and Chen, H.: Usable Mandatory Integrity Protection for Operating
Systems, Proc. IEEE Symposium on Security and Privacy, pp.164–178 (2007).

20) Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle, P. and Gligor, V.: Sub-
Domain: Parsimonious Server Security, Proc. 14th Systems Administration Confer-
ence (LISA 2000), pp.355–367 (2000).

21) Sniffen, B., Ramsdell, J. and Harris, D.: Guided Policy Generation for Application
Authors, Proc. 2006 Security Enhanced Linux Symposium (2006).
http://selinux-symposium.org/2006/papers/14-guided-polgen.pdf

22) Kuliniewicz, P.: SENG: An Enhanced Policy Language for SELinux, Proc. 2006
Security Enhanced Linux Symposium (2006).
http://selinux-symposium.org/2006/papers/09-SENG.pdf

23) Sellers, C., Athey, J., Shimko, S., Mayer, F. and MacMillan, K.: Experiences Im-
plementing a Higher-Level Policy Language for SELinux, Proc. 2006 Security En-
hanced Linux Symposium (2006).
http://selinux-symposium.org/2006/papers/08-higher-level-experience.pdf

24) CDS Framework IDE. http://oss.tresys.com/projects/cdsframework
25) Guttman, J., Herzog, A., Ramsdell, J. and Skorupka, C.: Verifying informa-

tion goals in security-enhanced linux, Journal of Computer Security, Vol.13, No.1,
pp.115–134 (2005).

26) Jaeger, T., Edwards, A. and Zhang, X.: Managing access control policies using
access control spaces, Proc. 7th ACM Symposium on Access Control Models and
Technologies (SACMAT 02), pp.3–12 (2002).

(Received November 30, 2009)
(Accepted June 3, 2010)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.18, pp.201–212.)

Yuichi Nakamura received his B.S. and M.S. degrees in
physics from the University of Tokyo in 1999 and 2001, and M.S.
degree in computer science from the George Washington Univer-
sity in 2006. He is working for Hitachi Software Engineering Co.,
Ltd. since 2001. His research interests are computer security, open
source software and home network. He is a member of IPSJ.

Yoshiki Sameshima received his B.S. degree from Kyoto Uni-
versity in 1984, the M.S. degree in mathematics from Osaka Uni-
versity in 1986, and the Ph.D. degree in computer science and
technology from Osaka University in 2008. He is working for
Hitachi Software since 1986, and stayed at Computer Science De-
partment of University College London from 1992 to 1994. Since
1993, he has been working in research of information security. He

is a member of IEICE, IPSJ, JSSM, the USENIX Association, and the WIDE
Project.

Toshihiro Yamauchi received his B.E., M.E. and the Ph.D.
degrees in computer science from Kyushu University, Japan in
1998, 2000 and 2002, respectively. In 2001 he was a research fel-
low of the Japan Society for the Promotion of Science. In 2002
he became a research associate in Faculty of Information Science
and Electrical Engineering at Kyushu University. He has been
an associate professor of Graduate School of Natural Science and

Technology at Okayama University since 2005. His research interests include op-
erating system and computer security. He is a member of IPSJ, IEICE, USENIX,
and ACM.

IPSJ Journal Vol. 51 No. 9 1670–1681 (Sep. 2010) c© 2010 Information Processing Society of Japan

