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Principal Component Analysis of Port-scans

for Reduction of Distributed Sensors
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There are many studies aimed at using port-scan traffic data for fast and
accurate detection of rapidly spreading worms. This paper proposes two new
methods for reducing the traffic data to a simplified form comprising of sig-
nificant components of smaller dimensionality. (1) Dimension reduction via
Principal Component Analysis (PCA), widely used as a tool in exploratory
data analysis, enables estimation of how uniformly the sensors are distributed
over the reduced coordinate system. PCA gives a scatter plot for the sensors,
which helps to detect abnormal behavior in both the source address space and
the destination port space. (2) One of the significant applications of PCA is to
reduce the number of sensors without losing the accuracy of estimation. Our
proposed method based on PCA allows redundant sensors to be discarded and
the number of packets estimated even when half of the sensors are unavailable
with accuracy of less than 3% of the total number of packets. In addition to our
proposals, we report on experiments that use the Internet Scan Data Acquisi-
tion System (ISDAS) distributed observation data from the Japan Computer
Emergency Response Team (JPCERT) �1.

1. Introduction

The Internet backbone contains port-scanning packets that are routinely gener-
ated by malicious hosts, e.g., worms and botnets, looking for vulnerable targets.
These attempts are usually made on a specific destination port for which ser-
vices with known vulnerable software are available. Ports 135, 138, and 445 are
frequently scanned. There are also malicious software that uses particular ports
to provide a “back door” to companies. The number of packets targeting the
destination port used for the back door is not large, but the statistics for these
ports are sometimes helpful for detecting a new type of attack, a coordinated
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attack made by a botnet, or targeted attacks. For instance, Ref. 3) published
the alert indicating that the number of scans destined to TCP 5168 are rapidly
increasing. Port 5168 is not commonly used but should be considered carefully
because it is used by a particular anti-virus service.

Related Works
There have been several attempts to identify attacks via changes in the traffic

data observed by sensors distributed across the Internet. A honeypot is a semi-
passive sensor that pretends to be a vulnerable host in faked communications
with intruders or worms 4). Some sensors are passive in the sense that captured
packets are sent to an unused IP address without any interaction. The Network
Telescope 5), Internet Storm Center 6), DShield 7), and ISDAS 8) are examples of
passive sensors.

There are many studies aimed at using port-scan traffic data for the fast and
accurate detection of rapidly spreading worms. Kumar used the characteristics
of the pseudorandom number generation algorithm used by the Witty worm to
reconstruct the spread of infected hosts 9). Ishiguro, et al. proposed Wavelet
coefficients as metrics for anomaly detection 10). Jung, et al. presented an algo-
rithm to detect malicious packets, called Sequential Hypothesis Testing based on
Threshold of Random Walk (TRW) 11). Dunlop, et al. presented a simple statis-
tical scheme called the Simple Worm Detection Scheme (SWorD) 12), where the
number of connection attempts is tested with threshold values.

The accuracy of detection, however, depends on the assumption that the set
of sensors is independently distributed over the address space. Since the locality
of destination addresses in port-scans has been well studied 9),13),14), it is known
that when sensors are distributed too closely, they may observe packets from
common source addresses with high probability. Moreover, the installation of
sensors is limited to unused address blocks, and hence it is not easy to ensure
truly independent sensor distribution. Since any distortion of the address dis-
tribution could cause false detection and a misdetection, independence of sensor
distribution is one of the issues we should consider. Nevertheless, it is not trivial
to evaluate the distribution of sensors in terms of its independence because the

�1 Parts of this work have been published in Refs. 1) and 2).
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traffic data comprise ports and addresses that are correlated in high-dimensional
domains.

Our Contribution
This paper proposes a new method for reducing the traffic data to a simplified

form comprising significant components of smaller dimensionality. Our contribu-
tion is twofold:
( 1 ) Dimension reduction via PCA. Our proposal is based on an orthogonal

linear transformation, which is widely used as a tool in exploratory data
analysis. PCA enables the estimation of how independently the sensors are
distributed over the reduced coordinate system. The results of PCA give
a scatter plot of sensors, which helps to detect abnormal behavior in both
the source address space and the destination port space.

( 2 ) Reduction of the set of sensors without sacrificing the accuracy
in estimation. Our proposed method based on PCA allows us to identify
the principal components of sensors, discard the redundancy of sensors and
finally estimate the number of packets when only a part of the sensors
are available. This is especially useful because the unused IP addresses
are assigned under the constraint of the routing and the lack of address
space. Some sensors may be distributed closely and redundantly. Our
experiments show that one third of the sensors is needed to estimate the
number of packets with accuracy of less than 3% of the total number of
packets.

We give experimental results for our method using the JPCERT/ISDAS dis-
tributed observation data.

The remainder of the paper is organized as follows. After we define some
fundamental notations, the idea of PCA in our model is covered in Section 2,
and experimental results are given in Section 3, where the scatter plots of port-
scanning packets in the principal components are provided. Section 4 gives some
concluding remarks.

2. Preliminary

2.1 Port-Address Matrices
We give the fundamental definitions necessary for discussion about the charac-

teristics of worms.
Definition 1 A scanner is a host that performs port-scans on other hosts,

looking for targets to be attacked.
A sensor is a host that can passively observe all packets sent from scanners. Let
S be a set of sensors {s1, s2, . . . , sn}, where n is the number of sensors.

Typically, a scanner is a host that has some vulnerability and thereby is con-
trolled by malicious code such as a worm or a virus. Some scanners may be human
operated, but we do not distinguish between malicious codes and malicious op-
erators. Sensors have always-on static IP addresses, i.e., we will ignore the effect
from the dynamic behavior of address assignments provided via Dynamic Host
Control Protocol (DHCP) or Network Address Translation (NAT).

An IP packet, referred to as a “datagram”, specifies a source address and a
destination address, in conjunction with a source port number and a destination
port number, as part of the TCP header.

Definition 2 Let P be a set of ports {p1, p2, . . . , pm}, where m is the number
of possible port numbers. Let A be a set of addresses {a1, a2, . . . , a�}, where � is
the number of all possible IP addresses.

In IP version 4, possible values for m and � are 216 and 232, respectively.
Because not all address blocks are assigned as of yet, the numbers of addresses
and ports observed by the set of sensors are typically limited, i.e., m � 216,
� � 232. To handle reduced address set sizes, we distinguish addresses with
respect to the two highest octets. For example, address a = 221.10 contains the
range of addresses from 221.10.0.0 through 221.10.255.255.

Let cij be the number of packets whose destination port is pj that are captured
by sensor si over a time period T . Let bik be the number of packets that are
observed by sensor si and sent from source address ak. An observation of sensor
si is characterized by two vectors

ci =

⎛
⎜⎝

ci1

...
cim

⎞
⎟⎠ and bi =

⎛
⎜⎝

bi1

...
bi�

⎞
⎟⎠ ,

which are referred to as the port vector and the address vector. All packets ob-
served by n independent sensors are characterized by the m × n matrix C and
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� × n matrix B specified by C = (c1 · · · cn) and B = (b1 · · · bn). Matrices B

and C will usually contain many unexpected packets caused by possible miscon-
figurations or by a small number of unusual worms, which we wish to ignore to
reduce the quantity of observation data.

Definition 3 (accuracy) An approximation of B is an � × n matrix of the
number of packets, denoted by

B′ =

⎛
⎜⎝

b′11 · · · b′1n
...

. . .
...

b′�1 · · · b′�n

⎞
⎟⎠ ,

estimated from the subset of sensor S′ ⊂ S. Similarly, an approximation of C is
an m × n matrix C ′ estimated from S′ ⊂ S. The accuracy of the approximation
is evaluated by the Mean Square Error (MSE) of B′, i.e.,

MSE(B′) =
�∑
i

n∑
j

(bij − b′ij)
2.

The accuracy of the approximation of C ′ is defined similarly for B′. We often
refer to the number of sensors used for the estimate as n = |S| and n′ = |S′|.
The steps to estimate the number of packets will be given in Section 2.3.

2.2 Principal Component Analysis
PCA is a well-known technique, which is used to reduce multidimensional data

to a lower dimension where lower-order principal components that contributes
most to its variance are kept, while higher-order components are ignored.

Our goal is to transform a given matrix C = (c1 · · · cm) of m dimensions
(observations) to an alternative matrix Y of smaller dimensionality as follows.

Given a matrix of packets

C =

⎛
⎜⎝

c11 · · · c1n

...
. . .

...
cm1 · · · cmn

⎞
⎟⎠ ,

where cij is the number of packets such that the destination port is pj , captured
by sensor si, we subtract the mean for every port to obtain C ′ = (c′1 · · · c′m),
where

c′i =

⎛
⎜⎝

ci1 − c1

...
cim − cm

⎞
⎟⎠

and cj is the average number of packets at the j-th port, i.e., cj = 1/n
∑n

i=1 cij .
PCA transforms C ′ to Y = (y1, . . . ,ym) such that, for i = 1, . . . , n,

c′i = U · yi = yi1u1 + · · · + yimum,

where u1, . . . ,um are m unit vectors, called the principal component basis, which
minimizes the mean square error of the data approximation. The principal com-
ponent basis is given by a matrix U comprising the eigenvectors u1, . . . ,um,
sorted in order of decreasing eigenvalue λ1 > · · · > λm, and the covariance
matrix which is defined as

V =
1
n

n∑
i=1

cic
�
i .

From the fundamental property of eigenvectors, the elements of the principal
component basis are orthogonal, i.e., ui ·uj = 0 for any i �= j ∈ {1, . . . , m}. This
gives the matrix Y = (y1 · · ·ym), where

yi = U�c′i = (yi1 · · · yim)�, (1)

which maximizes the variance for each element and gives a zero average, for
i = 1, . . . , m.

The first principal component, namely yi1, contains the most significant aspect
of the observation data, while the second component yi2 contributes the second
most significant effect on the variance. These “lower-frequency” components
give a first impression of the port-scanning pattern, even though the “higher-
frequency” ones are ignored.

We apply the PCA transformation not only to the matrix C defined over the
port number and the sensors (m × n) but also to the matrix B of the address
spaces and the sensors (�× n), and to the transposed matrices C� and B�. We
use the notation u(C) and u(B) if we need to distinguish between matrices C

and B.
The matrix C is often too large to apply PCA due to the large computational
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power needed for the size of the matrix. In order to make the PCA possible
for the large matrix, we apply a technique used in information retrieval and
data mining, called TF-IDF weighting. The TF-IDF weight gives the degree of
importance of a word in a collection of documents. TF-IDF is properly defined
in Appendix A.1.

2.3 Estimation of Port-Scan Packets
One of the significant applications of PCA is to reduce the set of sensors without

losing the accuracy of estimation. This is especially useful when a limited number
of sensors are available over the set of IP addresses space because of the lack of
unused IP addresses and the constrained assignment of addresses coming from
the routing requirements. Note that the distribution of sensors is not ideally
uniform and some sensors are distributed closely and redundantly in the reduced
coordinate spaces. The redundancy of sensors can be discarded by using the
orthogonal property of principle components basis as follows.

Recall that the m × n port-sensor metrics C

C ′ = C −

⎛
⎜⎝

1
...
1

⎞
⎟⎠ ·

⎛
⎜⎝

c1

...
cm

⎞
⎟⎠

�

is estimated by the principal component basis u1, . . . ,un and the PCA coefficient
matrix is

Y = (y1 · · ·yn) =

⎛
⎜⎝

y11 · · · y1n

...
. . .

...
ym1 · · · ymn

⎞
⎟⎠ = C ′ · U .

The first order approximation of C ′ is given by
C ′ ≈ y1 · u1

where u1 is the first eigenvector (1× n), shown by Table 3. In the same way, we
have the k-th order approximation of C ′ as

C ′ ≈
k∑

i=1

yi · ui.

2.4 Estimation from Limited Sensors
The PCA transformation provides us an efficient way of reducing the number

of redundant sensors. Since the principal component basis are constant vectors
representing the correlation over a set of sensors, we can estimate the number of
packets given a fraction of the sensor set.

Letting n′ be n′ < n, we replace from the n′-th and the n-th rows by 0 vectors,
resulting in the partial matrix (m × n)

C(n′) =

⎛
⎜⎝

c11 · · · c1n′ 0 · · · 0
...

. . .
... 0 · · · 0

cm1 · · · cmn′ 0 · · · 0

⎞
⎟⎠ ,

and then estimate the number of packets from the remaining n′ sensors as,

C ′
(n′) ≈

k∑
i=1

y(n′)i · ui.

where

Y(n′) = (y(n′)1 · · ·y(n′)n) = C ′
(n′) · U .

3. Analysis

We apply the proposed methods to the dataset of packets observed by sensors
distributed over the Internet.

3.1 Experimental Data
3.1.1 ISDAS Distributed Sensors
ISDAS is a distributed set of sensors 8), under the operation of the JPCERT

Coordination Center (JPCERT/CC), that can estimate the scale of a current
malicious event and its performance.

Table 1 shows the statistics for m = 30 sensors from April 1, 2006 through
March 31, 2007, where we denote by h(x) a unique IP address observed by sensor
x. The most frequently scanned sensor is s1 with about 451,000 counts, which
is 70 times that for the least frequently scanned sensor s15. In this sense, the
destination addresses to scan are not uniformly distributed.
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Table 1 Statistics for ISDAS distributed sensors.

sensor count unique h(x) Δh(x)[/day]

Average – 146000 37820 104.9

Standard deviation – 134900 29310 82.72
Max s1 450671 98840 270.79
Min s15 6475 1539 4.22

3.2 Principal Component Basis
We have performed PCA for each of the matrices C,B,C�, and B�, namely

the ports-and-sensors, addresses-and-sensors, sensors-and-ports, and sensors-
and-ports matrices, respectively.

Table 2 shows the experimental results for the first two orthogonal vectors of
the principal component basis u1(C),u2(C), . . . for the ports-and-sensors matrix
C and the basis u1(B),u2(B), . . . for the addresses-and-sensors matrix B. The
elements indicated in boldface are the dominant elements of each basis. For
example, the ports 445 and 135, having the largest (in absolute value) elements
−0.37 and −0.36 in u1(C), are the primary elements determining the value of
the first principal component y1. Informally, we regard the first coordinate as the
degree of well-scanned ports because 445 and 135 are likely to be vulnerable. In
the same way, the second principal component basis u2(C) indicates attacks on
web servers (p = 80) and ICMP, and we may therefore refer to y2 as the degree
of http attacks. The second principal component has about half the effect of the
projected values because eigenvalue λ1 is almost double in value compared to λ2.

The addresses-and-sensors matrix B provides the principal component vectors
indicating the degree of importance in source address set A, as shown in Table 3,
as well as in matrix C. In these results, we find that u1(B) has dominant
addresses that are disjoint from those of u2(B).

3.3 Major and Minor Port Numbers
There are many backdoors on P2P Botnet and a Trojan code that uses minor

port numbers other than the major ones such as 445, 135, 137, 1434, 80, and
ICMP. Hence, the proposed PCA-based method may have a risk to fail to detect
small changes happen on minor ports that the malware often uses. In order to
minimize the risk of false detection, we chose significant ports in terms of a TF-
IDF measure mentioned in Appendix A.1. The significance of a port is evaluated

Table 2 The first two vectors of principal component basis u1(C), u2(C), . . . for port
matrix C and basis u1(B), u2(B), . . . for address matrix B.

pj u1(C) u2(C)

445 −0.37 0.01

135 −0.36 0.01
137 −0.34 −0.07
1433 −0.33 0.17
4899 −0.30 0.27
1434 −0.30 0.16
1026 −0.28 −0.27
1025 −0.28 −0.01
1027 −0.25 −0.28
22 −0.23 0.08

32656 −0.13 −0.27
12592 −0.13 −0.27
139 −0.10 0.18

23310 −0.09 −0.03
80 −0.02 0.45

ICMP −0.02 0.44
113 0.00 0.25
4795 0.00 0.25
631 0.05 −0.04
1352 0.09 −0.08

eigenvalue λi 6.19 2.49

ak u1(B) u2(B)

221.188 −0.54 0.20

222.148 −0.54 0.20
219.114 −0.53 0.20
219.165 −0.28 −0.52
221.208 −0.17 −0.41
220.221 −0.14 −0.59
58.93 −0.01 −0.20
222.13 0.00 −0.09
222.159 0.01 −0.06
61.199 0.03 0.03
219.111 0.03 0.02
220.109 0.03 0.03
61.205 0.03 0.03
221.16 0.03 0.03
61.252 0.03 0.04
203.174 0.03 0.04
61.193 0.03 0.04
203.205 0.04 0.04
219.2 0.06 0.14

218.255 0.06 0.14
eigenvalue λi 3.16 2.29

by means of the TF-IDF measure so that a high weight is attributed not only
to frequently observed port but also to minor ports that are not too frequently
observed. For instance, Table 4 shows TF-IDF measures for port numbers
chosen as the principal component basis in Table 2. Minor ports have small
document frequencies (DFs) which increase the TF-IDF measure and hence
ports are likely to be chosen. Indeed, it is clear that both major and minor port
numbers are used for the estimate the number of packets.

The use of the TF-IDF measure to chose port numbers before PCA is involved
has its pros and cons. The advantage of the TF-IDF measure when used with
PCA is to allow a scalable analysis in terms of large domains, e.g., full address
space and port number, with reduced computational overhead. The estimation
takes into consideration of both major and minor port numbers. On the other
hand, unknown minor ports newly used after TF-IDF can not be taken into
account here. We should note this disadvantage of combining TF-IDF with

IPSJ Journal Vol. 51 No. 9 1659–1669 (Sep. 2010) c© 2010 Information Processing Society of Japan



1664 PCA of Port-scan

Table 3 The principal component basis u1(C�), u2(C�), . . . for sensor-port matrix C�
and basis u1(B�), u2(B�), . . . for sensor-address matrix B�.

si u1(C�) u2(C�)

s7 −0.04 0.34
s20 −0.03 0.30
s8 −0.03 0.42
s22 −0.01 0.42
s26 −0.01 0.25
s30 0.03 −0.12
s28 0.05 −0.19
s12 0.06 0.37
s15 0.06 −0.16
s29 0.07 −0.22
s25 0.17 −0.01
s23 0.18 −0.08
s6 0.18 0.24
s24 0.19 0.04
s5 0.21 0.02
s4 0.22 0.08
s17 0.22 −0.12
s16 0.22 −0.09
s21 0.22 −0.02
s27 0.23 −0.06
s13 0.23 0.03
s14 0.24 −0.02
s18 0.24 0.10
s11 0.24 0.07
s19 0.24 0.01
s3 0.24 0.05
s1 0.24 0.03
s2 0.24 0.01
s10 0.24 −0.02
s9 0.24 0.03

eigenvalue λi 16.64 3.73

si u1(B�) u2(B�)

s12 −0.34 0.16
s18 −0.34 0.18
s6 −0.34 0.18
s20 −0.34 0.02
s22 −0.34 0.18
s13 −0.32 0.21
s17 −0.32 0.01
s29 −0.28 −0.20
s28 −0.21 −0.35
s27 −0.20 −0.11
s4 −0.17 −0.27
s23 −0.10 −0.33
s1 −0.05 −0.30
s3 −0.05 −0.21
s5 −0.03 −0.03
s11 −0.01 0.03
s10 0.00 −0.15
s14 0.01 −0.08
s26 0.01 −0.05
s9 0.01 0.07
s2 0.01 0.06
s15 0.02 −0.11
s30 0.02 −0.07
s16 0.03 −0.00
s19 0.03 0.12
s24 0.04 0.15
s8 0.04 0.13
s25 0.04 0.32
s21 0.06 0.31
s7 0.07 0.18

eigenvalue λi 7.81 2.66

Table 4 TF-IDF measures in major and minor ports.

port TF DF TF-IDF

major 445 762283 43 17661

135 1011078 45 22447
137 49600 43 1149

minor 32656 4168 3 333

12592 2774 1 286
23310 23687 2 2095

Fig. 1 Scatter plot for ISDAS sensors S of a dataset with n = 30, displaying the coefficients
of the first two principal components in terms of ports.

PCA. To avoid this risk, we also use the full PCA without any TF-IDF filtering
at a large computational cost. Consequently, there is a tradeoff between accuracy
and efficiency.

3.4 Analysis from Several Perspectives
PCA can be applied to arbitrary matrices prepared from different perspectives.

If we are interested in the independence of sensors, PCA enables us to show how
an independent set of sensors is distributed over the reduced coordinate system.
If we wish to identify the abnormal behavior of source addresses, applying PCA
to a sensors-and-address matrix B� gives a scatter plot of addresses in which
particular addresses stand out from the cluster of standard behaviors.

For these purposes, we show the experimental results of ISDAS observation
data, in Figs. 1 and 2, corresponding to matrices C, and B, respectively.

The set of ISDAS sensors is independently distributed in Fig. 1, but the dis-
tribution is skewed by some irregular sensors in Fig. 2, where the horizontal axis
has more elements with source addresses in class C. As a consequence, the distri-
bution of ISDAS sensors may be distorted in terms of differences between source
addresses.
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Fig. 2 Scatter plot for ISDAS sensors S of a dataset with n = 30, displaying the coefficients
of the first two principal components in terms of addresses.

3.5 PCA Evaluation
Figure 3 demonstrates the estimated number of packets observed by each

sensor. The original distribution of packets are well approximated by a 2nd
order approximation using just (u1,u2) out of n = 30 orthogonal vectors. We
see that even the first one alone is a good approximation of the number of packets,
except for sensor s26, which can be fixed by the 2nd order approximation.

In order to visually understand the accuracy, we show the approximation with
respect to port numbers in Fig. 4. The failure of estimation at port 1026 and
ICMP in the first order approximation are brought by the fact that the first
principal basis is independent from these port numbers. The difference between
the estimate and the original number of packets is reduced as the order of ap-
proximation increases.

Our proposed method applies various kinds of statistical values other than port
numbers. Figure 5 demonstrates the approximation of number of packets for
the attacker’s source IP address. The accuracy of the 1st estimation at address
space 222.148 improves after the 4th approximation in this experiment. Since
the distribution of the number of packets are distorted in comparison to the port

Fig. 3 Approximation of number of packets observed by each sensor ID.

Fig. 4 Approximation of number of packets with respect to port numbers.

number, more degrees of approximation is necessary compared to the case with
the port number.

The effect from the accuracy of improvement is shown in Fig. 6, where the
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Fig. 5 Approximation of number of packets with respect to source IP address.

Fig. 6 Mean squared error (MSE) of estimated number of packets for the order of
approximation.

overall accuracy for the order of approximation is given by the Mean Squared
Error (MSE). Note that the vertical axis uses a logarithmic scale. The size of the
error is relatively small for the total number of packets, shown in Table 5, where

Table 5 Mean squared error of estimated number of packets.

order MSE
√

MSE [%]

1 2124658.1 1457.6 21.41

2 86659.6 294.4 4.32
3 60916.4 246.8 3.63
4 40437.4 201.1 2.95
5 28317.8 168.3 2.47
6 19707.2 140.4 2.06

Fig. 7 Estimation of number of packets from several subsets of sensors.

the mean difference of packet counts between the original and the estimation is√
MSE.
3.6 Reduction of Sensors
The accuracy of the estimate used by the limited number of sensors is surpris-

ingly high. We illustrate this observation by showing the packet counts distribu-
tion over port numbers in Fig. 7, where estimates with the first n′ = 20 and 10
sensors out of 30 sensors appear to approximate the original distribution (n = 30)
well. According to the figure, the distribution goes flat when the number of sen-
sors n′ is reduced, even with one third of 30 the sensors a rough approximation
of the original data is possible. The size of the error can be normalized by taking
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Table 6 Mean squared error of estimated number of packets from subset of sensors.

n′ MSE
√

MSE [%]

1 3797064.7 1948.6 3

5 2860140.4 1691.2 2
10 2644375.6 1626.2 2
15 2267337.7 1505.8 2
20 2149148.9 1466.0 2
30 0 0 0

Fig. 8 Mean squared error (MSE) of estimated number of packets with respect to the
number of sensors.

the squire root, as shown in Table 6. The error is negligibly small even when
just one sensor is available.

The results of the experiment are shown in Fig. 8, where the accuracy, namely
the inverse of the MSE, is shown to improve as the number of sensors increases.

In this experiment, we just choose the first n′ sensors arbitrarily, hence it is
possible to improve the accuracy if we chose the top n′ sensor in terms of the
principal component basis. For example, Table 3 indicates that s14, s18, and s11

are more significant than s7, s20, and s8.

4. Conclusion

We have proposed a new analysis method for the distributed observation of
packets with high-dimensional attributes such as port numbers (216) and IP ad-
dresses (232). Our methods are based on PCA. Experimental results demonstrate
that both methods correctly reduce a given high-dimension dataset to a smaller
dimensionality, by at least a factor of two. The principal components of port
numbers, in terms of distinguishable sensors, include 445, 135, 137, 1433, 4899,
1434, 80, and ICMP, which enable any sensors to be classified. The source ad-
dresses 221.188, 222.148, 219.114, 219.165, 221.208 and 220.221 are specified as
dominant in terms of the principal component basis.

Our proposed method based on PCA allows not only the identification the prin-
cipal components of sensors, but also allows redundant sensors to be discarded
so that finally, the number of packets can be estimated when only a portion of
sensors are available. Our experiments show that the accuracy of the estimation
used by a more limited set of sensors is surprisingly high. A reduction of a third
of the sensors successfully provides an estimate of the number of packets with
accuracy of less than 3% of the total number of packets. The advantage of our
proposed method is to allow us to grasp any change of statistical values by means
of fewer principal components without suffering from too many involved factors
in the observation matrices.
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Appendix

A.1 Reduced Matrix via TF-IDF Values
TF-IDF weighting assigns a degree of importance of a word in a collection of

documents. The importance increases if the word is frequently used in the set
of documents (TF) but decreases if it is used by too many documents (IDF).
The term frequency in the given set of documents is the number of times the
term appears in the document sets. In our study, we use the term frequency to
evaluate how important a specific destination port pj is to a given set of packets
C = {c1, . . . , cn} observed by n sensors, and is defined as the average number of
packets for the port pj , i.e.,

TF (pj) =
1
n

n∑
i=1

cij .

The document frequency of destination port pj is defined by

DF (pj) =
∣∣{ci ∈ C|cij > 0, i ∈ {1, . . . , n}}∣∣,

which gives the degree of “uselessness”, because a destination port with the
highest DF (pj) ≈ n implies that the port is always specified by any sensor, and
therefore we would regard the port pj as being unable to distinguish between
sensors. By taking the logarithm of the inverse of the document frequency, we
obtain the TF-IDF for a given port pj as

TF-IDF(pj) = TF (pj) · log2

(
n

DF (pj)
+ 1

)
,

where the constant 1 is used to avoid the TF-IDF of a port with DF (pj) = n

from being zero.
Similarly for the destination port, we define the TF-IDF weight of source ad-

dress ak as TF-IDF(ak) = TF (ak) · log2(
n

DF (ak) + 1), where

TF (ak) =
1
n

n∑
i=1

cik,

DF (ak) =
∣∣{ci ∈ B|bik > 0, i ∈ {1, . . . , n}}∣∣.

Note that a high value for TF-IDF is reached by a high term (port/address)
frequency and a low document (sensor) frequency for the port among the whole
set of packets, with the aim of filtering out common ports. Based on the order of
TF-IDF values, we can choose the most important destination ports within the
216 possible values, from the perspective of frequencies of sets of packets.
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