WEKO3
アイテム
A Fast Algorithm for (σ + 1)-Edge-Connectivity Augmentation of a σ-Edge-Connected Graph with Multipartition Constraints
https://ipsj.ixsq.nii.ac.jp/records/70275
https://ipsj.ixsq.nii.ac.jp/records/7027592d551b2-a2fd-419d-ad7d-76e3afc21f85
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2010 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2010-09-15 | |||||||
タイトル | ||||||||
タイトル | A Fast Algorithm for (σ + 1)-Edge-Connectivity Augmentation of a σ-Edge-Connected Graph with Multipartition Constraints | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | A Fast Algorithm for (σ + 1)-Edge-Connectivity Augmentation of a σ-Edge-Connected Graph with Multipartition Constraints | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者所属 | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者所属 | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Engineering, Hiroshima University | ||||||||
著者名 |
Tadachika, Oki
× Tadachika, Oki
|
|||||||
著者名(英) |
Tadachika, Oki
× Tadachika, Oki
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The k-edge-connectivity augmentation problem with multipartition constraints (kECAM for short) is defined by “Given an undirected graph G = (V, E) and a multipartition π = {V1, . . . , Vr} of V with Vi ∩ Vj = ∅ for ∀i, j ∈ {1, . . . , r} (i ≠ j), find an edge set E' of minimum cardinality, consisting of edges that connect distinct members of π, such that G' = (V, E ∪ E') is k-edge-connected.”In this paper, we propose a fast algorithm for finding a solution to (σ+1)ECAM when G is σ-edge-connected (σ > 0), and show that the problem can be solved in linear time if σ ∈ {1, 2}. The main idea is to reduce (σ + 1)ECAM to the bipartition case, that is, (σ+1)ECAM with r = 2. Moreover, we propose a parallel algorithm for finding a solution to (σ + 1)ECAM, when a structural graph F(G) which represents all minimum cuts of G is given and σ is odd. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The k-edge-connectivity augmentation problem with multipartition constraints (kECAM for short) is defined by “Given an undirected graph G = (V, E) and a multipartition π = {V1, . . . , Vr} of V with Vi ∩ Vj = ∅ for ∀i, j ∈ {1, . . . , r} (i ≠ j), find an edge set E' of minimum cardinality, consisting of edges that connect distinct members of π, such that G' = (V, E ∪ E') is k-edge-connected.”In this paper, we propose a fast algorithm for finding a solution to (σ+1)ECAM when G is σ-edge-connected (σ > 0), and show that the problem can be solved in linear time if σ ∈ {1, 2}. The main idea is to reduce (σ + 1)ECAM to the bipartition case, that is, (σ+1)ECAM with r = 2. Moreover, we propose a parallel algorithm for finding a solution to (σ + 1)ECAM, when a structural graph F(G) which represents all minimum cuts of G is given and σ is odd. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN1009593X | |||||||
書誌情報 |
研究報告アルゴリズム(AL) 巻 2010-AL-131, 号 10, p. 1-8, 発行日 2010-09-15 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |