
IPSJ SIG Technical Report

Constant Time Generation of Trees with Degree Bounds

Bingbing Zhuang†1 and Hiroshi Nagamochi†1

Given a number n of vertices, a lower bound d on the diameter, and a capacity
function ∆(k) ≥ 2, k = 0, 1, . . . , ⌊n/2⌋, we consider the problem of enumerating
all unrooted trees T with exactly n vertices and a diameter at least d such that
the degree of each vertex with distance k from the center of T is at most ∆(k).
We give an algorithm that generates all such trees without duplication in O(1)-
time delay per output in the worst case using O(n) space.

1. Introduction

The problem of enumerating (i.e., listing) all graphs with bounded size is one

of the most fundamental issues in graph theory. Time delay of an enumera-

tion algorithm is a time bound between two consecutive outputs. Enumerating

graphs with a polynomial time delay would be rather easy since we can exam-

ine the whole structure of the current graph anytime. However, algorithms with

a constant time delay in the worst case is a hard target to achieve without a

full understanding of the graphs to be enumerated, since not only the difference

between two consecutive outputs is required to be O(1), but also any operation

for examining symmetry and identifying the edges/vertices to be modified to get

the next output needs to be executable in O(1) time. One of the common ideas

behind efficient enumeration algorithms (e.g.,5),6),8)) is to define a unique repre-

sentation for each graph in a graph class as its “parent,” which induces a rooted

tree that connects all graphs in the class, called the family tree F , where each

node in F corresponds to a graph in the class. Then all graphs in the class will

be enumerated one by one according to the depth-first traversal of the family tree

F . However, the crucial point to attain an O(1)-time delay is to find a “good”

parent which enables us to generate each of the children from a graph in O(1)

†1 Graduate School of Informatics, Kyoto University

time.

Enumeration of restricted graphs or graphs with configurations has many appli-

cations in various fields such as machine learning and chemoinformatics. Enumer-

ation of trees and outerplanar graphs can be used for many purposes including

the inference of structures of chemical compounds2),4). For example, the alkane

molecular family {CnH2n+2 | n ≥ 1} is one of the most fundamental classes of

tree-like compounds, where each alkane contains only single bonds (either C-C or

C-H bonds). Aringhieri et al.1) designed an algorithm that generates all alkane

isomers for a given n in O(n4)-time delay on average.

Our research group has been developing algorithms for enumerating chemi-

cal graphs that satisfy given various constraints2)–4). We have designed effi-

cient branch-and-bound algorithms for enumerating tree-like chemical graphs2),4),

which are based on the tree enumeration algorithm6), and implementations of

these algorithms are available on our web server⋆1. Our algorithms can enumer-

ate all alkane isomer in O(n2)-time delay on average2), improving the O(n4)-time

delay1).

Several algorithms to generate all trees with n vertices without repetition have

been already known. The best algorithm9) runs in time proportional to the num-

ber of trees, i.e., the time delay is O(1) on average. Nakano and Uno7) gave

an O(1)-time delay algorithm to generate all trees with exactly n vertices and

diameter d without repetition. However, for applications to chemical graph enu-

merations, we wish to use an efficient algorithm to generate trees with bounded

degrees, because each vertex corresponding to an atom in a chemical graph has

a small and fixed degree.

In this paper, given a number n of vertices, a lower bound d on the diameter,

and a capacity function ∆(k) ≥ 2, k = 0, 1, . . . , ⌊n/2⌋, we consider the problem

of enumerating all unrooted trees T with exactly n vertices and a diameter at

least d such that the degree of each vertex with distance k from the center of

T is at most ∆(k). We give an algorithm that generates all such trees without

duplication in O(1)-time delay per output in the worst case using O(n) space. For

example, alkane isomers CnH2n+2 can be regarded as unrooted trees with exactly

⋆1 http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

n carbon atoms (neglecting hydrogen atoms) such that the degree of each vertex

is at most four. Hence our result implies that all alkane isomers CnH2n+2 can be

generated in O(1)-time delay in the worst case without duplication, which is an

improvement over the O(n2)-time delay on average2).

2. Preliminaries

For two sequences A and B over a set of elements for which a total order is

defined, let A > B mean that A is lexicographically larger then B, and let A ≥ B

mean that A > B or A = B. Let A = B mean that B is a prefix of A and A ̸= B,

and let A ≫ B mean that A > B but B is not a prefix of A. Let A ⊒ B mean

that A = B or A = B, i.e., B is a prefix of A.

A graph stands for a simple undirected graph, which is denoted by a pair

G = (V,E) of a vertex set V and an edge set E. The set of vertices and the set

of edges of a given graph G are denoted by V (G) and E(G), respectively. The

degree deg(v;G) of a vertex v in a graph G is the number of neighbours of v in

G. A path is a sequence of distinct vertices (v0, v1, . . . , vk) such that (vi−1, vi) is

an edge for i = 1, 2, . . . , k. The length of a path is the number of edges in the

path. The distance between a pair of vertices u and v is the minimum length of

a path between u and v. The diameter of G is the maximum distance between

two vertices in G.

Unrooted Trees A tree (unrooted tree) is a connected graph without cycles.

For two vertices u and v in a tree, let PT (u, v) be the unique path that connects

u and v in T . In an unrooted tree, there are at most two vertices the maximum

distance from which to other vertices is minimized. If such a vertex v is unique

(i.e., the diameter of T is even), then we call v the center of T , and define the

depth of a vertex u to be the distance from u to the center. On the other hand,

if there are two such vertices v and v′ (i.e., the diameter of T is odd), then we

call the (v, v′) the center of T , and define the depth dep(u;T) of a vertex u to be

the distance from u to the endvertices of the center, i.e., the length of the path

from u to the center (v, v′) including the edge (v, v′).

Let ∆ : [0, ⌊n/2⌋] → [2, n − 1] denote a capacity function, where ∆(k) is an

upper bound on the degree of a vertex v with depth k in an unrooted tree. An

unrooted tree T is called ∆-bounded if

2 ≤ deg(r;T) ≤ ∆(0) and deg(v;T) ≤ ∆(dep(v;T)) ∀ v ∈ V (T)−{r}. (1)

In this paper, we show the following result.

Theorem 1 For an integers n ≥ 3 and d ≤ n, and a capacity function ∆ :

[0, ⌊n/2⌋] → [2, n− 1], all ∆-bounded unrooted trees with exactly n vertices and

a diameter at least d can be generated in O(1)-time delay in the worst case using

O(n) space after an O(n)-time initialization.

Let Todd(n,∆) (resp., Teven(n,∆)) denote the set of all ∆-bounded unrooted

trees with exactly n vertices and an odd (resp., even) diameter.

depth=0
r

depth=5

depth=4

depth=3

depth=2

depth=1

depth=5

depth=4

depth=3

depth=2

depth=1

(a) (b)

centerv

l2l1

c2c1‘v

rml(T)

=lml(T) =lml(T(c))1

Fig. 1 (a) A tree T ′ with an odd diameter; (b) the tree T obtained from T ′ by subdividing
the center (v, v′) with root r.

Unrooted Rooted Trees We represent unrooted trees as “rooted trees.” A

rooted tree is a tree with one vertex r designated as its root. If PT (r, v) has

exactly k edges then we say that the depth dep(v;T) of v is k. The parent of

v ̸= r is its neighbour on PT (r, v), and the ancestors of v ̸= r are the vertices on

PT (r, v). The parent of the root r and the ancestors of r are not defined. We

say that if v is the parent of u then u is a child of v, and if v is an ancestor of

u then u is a descendant of v. A leaf is a vertex that has no child. Note that

PT (r, v) denotes the set of all ancestors of a vertex v in a rooted tree T , where

v ∈ PT (r, v).

Now we show how to convert the problem of generating unrooted trees in

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

Todd(n,∆)∪ Teven(n,∆) to a problem of generating rooted trees in some classes.

Given a capacity function ∆ : [0, ⌊n/2⌋] → [2, n − 1], let us call a rooted tree T

∆-bounded if it satisfies (1).

We call an rooted tree T centerized if T has an even diameter and r is the

center of T , i.e., there are two children c1 and c2 of the root r such that the

subtrees Ti at ci, i = 1, 2 attain dep(T1) = dep(T2) = dep(T)− 1. Let RT (n,∆)

denote the set of all ∆-bounded centerized trees. Let T +
odd(n,∆) denote the set

of trees obtained from each tree T ∈ Todd(n,∆) by subdividing the center (v, v′)

with a root r (see Fig. 1(a)-(b)). It is a simple matter to see by definition that

the next lemma holds.

Lemma 2 (i) For a given integer n ≥ 3, Teven(n,∆) is given by RT (n,∆).

(ii) For a given integer n ≥ 2, T +
odd(n,∆) is given by RT (n+1,∆), where ∆(0) =

2.

In what follows, we consider only how to generate rooted trees in RT (n,∆).

Ordered Trees Rooted trees are then represented as “ordered trees.” An ordered

tree (o-tree, for short) is a rooted tree with a left-to-right ordering specified for

the children of each vertex. For an o-tree T and a vertex in T , let T (v) denote the

ordered subtree induced from T by the set of v and descendants of v, preserving

the left-to-right ordering for the children of each vertex.

For an o-tree T ′, a leaf v in T ′ is called the leftmost (resp., rightmost) leaf if

v is a descendant of the leftmost (resp., rightmost) child of any ancestor of v in

T ′. Let lml(T ′) (resp., rml(T ′)) denote the leftmost (resp., rightmost) leaf in an

o-tree T ′. See Fig. 1(b).

Let T be an o-tree with n vertices, and (v1, v2, . . . , vn) be the list of the vertices

of T in preorder, i.e., vertices are indexed in the order of DFS. For two vertices

u = vi and v = vj , we write u >T v if i < j. Consider two vertices u = vi and

v = vj , i ≤ j in T . Let [u, v] denote the set of all vertices vi′ with i ≤ i′ ≤ j,

and let T [u, v] denote the graph induced from T by the vertex set [u, v]. Also

let lca(u, v) denote the least common ancestor of u and v in T . Let lcaL(u, v)

denote the child w of lca(u, v) such that w ∈ PT (r, u), where we let lcaL(u, v) = u

if lca(u, v) = u. Similarly, lcaR(u, v) denotes the child w′ of lca(u, v) such that

w′ ∈ PT (r, u), where we let lcaR(u, v) = v if lca(u, v) = v. We denote the children

of the root r in an o-tree by c1, c2, . . . , cp from left to right. Let OT (T) denote

the set of all o-trees obtained from a rooted tree T .

3. Left-heavy Trees

Since all o-trees in OT (T) of the same tree T are isomorphic, we choose a

particular o-tree as the representative of T . For this, we use “left-heavy trees”7).

For an o-tree T ′, we define the depth sequence L(T ′) to be

L(T ′) = [dep(v1;T
′), dep(v2;T

′), . . . , dep(vn;T
′)].

If L(T ′) > L(T ′′) for two ordered trees T ′ and T ′′, then we say that L(T ′) is

heavier than L(T ′′). An o-tree T ′ ∈ OT (T) of a rooted tree T is called left-heavy

tree if L(T ′) ≥ L(T ′′) holds for all o-trees T ′′ ∈ OT (T). For two vertices vi and

vj , i ≤ j, let Li,j(T
′) = [dep(vi;T

′), dep(vi+1;T
′), . . . , dep(vj ;T

′)]. It is known

that left-heavy trees can be characterized as follows.

Lemma 3 7) An o-tree T ′ ∈ OT (T) is the left-heavy tree of a rooted tree T

if and only if, for a non-root vertex v and its immediate right sibling v′ of v (if

any) in an o-tree T ′, it holds L(T (v)) ≥ L(T (v′)).

For each rooted tree T , a left-heavy tree in OT (T) is unique up to the iso-

morphism with respect to the root. In what follows, we assume that unordered

rooted trees are represented by left-heavy trees.

By definition of left-heavy trees, we can easily observe that the following in-

equality on depth also holds.

Lemma 4 For a non-root vertex v and its immediate right sibling v′ of v (if

any) in a left-heavy tree T , it holds dep(T (v)) ≥ dep(T (v′)).

In particular, dep(T (c1)) = dep(T (c1)) ≥ · · · ≥ dep(T (cp)) holds for the children

c1, c2, . . . , cp of the root r in a left-heavy and ceterized tree T . We call a left-

heavy and ceterized T distinguished if, for each i = 1, 2, the number of leaves

with the maximum depth in T (ci) is 1 (i.e., no other leaf than lml(T (ci)) attains

dep(T (ci))).

We consider how to add a new leaf along the rightmost path PT (r, rml(T)) of a

left-heavy tree T so that the resulting o-tree remains left-heavy. This problem has

been solved by Uno and Nakano6). We here use another solution “competitors”

proposed in our companion paper10), since “competitors” are easier to handle the

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

case where some left part of a left-heavy tree may change.

For an o-tree T and a vertex u in T , let T + (u, v) denote the o-tree obtained

from T by appending a new vertex v at u as the rightmost child of u. A vertex u in

a left-heavy tree T is called valid if T+(u, v) remains left-heavy. Let v be a vertex

in an o-tree T . For a descendant vi of v in T , we define the pre-sequence ps(v, vi)

of vi to v to be Lk,i−1(G) = [dep(vk;T), dep(vk+1;T), . . . , dep(vi−1;T)] for the

child vk of v such that vk is an ancestor of vi. For a vertex vi and a vertex vj with

j < i incomparable vi, we call vj pre-identical to vi if ps(v, vj) = ps(v, vi) holds,

and lcaL(vj , vi) is the immediate right sibling lcaR(vj , vi) for v = lca(vj , vi)
10).

We define the competitor of a vertex vi to be the vertex vj pre-identical to vi
which has the smallest index j (< i) among all vertices pre-identical to vi. A

vertex vi has no competitor if no vertex vj , j < i is pre-identical to vi.

Lemma 5 10) Let T be a left-heavy tree, let u0, u1, . . . , uq(= rml(T)) denote

the rightmost path of T . Then there is an index h∗ such that a vertex ui is valid

if and only if 0 ≤ i ≤ h∗. Moreover such an index h∗ is determined as follows.

(i) uq has no competitor: Then h∗ = q.

(ii) uq has a competitor vj : Let vh be the parent of the vertex vj+1 next to vj in

T . Then h∗ = dep(vh;T).

Let us call such a vertex vh∗ the lowest valid ancestor of uq in T . By maintain-

ing vertices {v1, v2, . . . , vn} in an array and the current tree T in a linked data

structure, we can compute vh∗ from uq in O(1) time.

We review how to compute competitors. For each vertex vi, i = 1, 2, . . . , n in

this order, we can set the competitor of a vertex vi to be the vertex vj , j < i

which satisfies one of the next cases holds, where we also compute lca(vj , vi) and

lcaR(vj , vi):

(a) i ≥ 2 and the previous vertex vi−1 of vi has a competitor vj−1 and it holds

lca(vj , vi) = lca(vj−1, vi−1), where dep(vi−1;T) = dep(vj−1;T) holds: Then

the competitor of vi is given by vj . We set lca(vj , vi) := lca(vj−1, vi−1) and

lcaR(vj , vi) := lcaR(vj−1, vi−1).

(b) vi has no such previous vertex vi−1 in case (a), and vi has a left sibling vj :

Then the competitor of vi is given by vj . We set lca(vj , vi) to be the parent of

vi and lcaR(vj , vi) := vi.

Lemma 6 10) In a left-heavy tree T , the competitor of vertex vi is correctly

obtained in cases (a) and (b), if any, if the competitors of all vertices vt, t < i

have been obtained.

In case (a), whether lca(vi, vj) = lca(vi−1, vj−1) or not can be tested with-

out knowing the value of lca(vi, vj). For this, we use lca(vi−1, vj−1) and

lcaR(vi−1, vj−1) as follows: lca(vi, vj) = lca(vi−1, vj−1) if and only if j < h and

dep(vh;T) > dep(vi;T) for vh = lcaR(vi−1, vj−1). Hence we can determine the

competitor of a new vertex v according to cases (a) and (b) in O(1) time per

operation of appending a new leaf.

4. Parent-trees of ∆-bounded Left-heavy Trees

In this section, we define the “parent-tree” of each left-heavy tree T in the class

RT (n,∆) of ∆-bounded and centerized trees with n vertices, where dep(T) −
1 = dep(T (c1)) = dep(T (c2)) holds. For ease of applications of the properties

on left-heavy trees, we also define the “parent-tree” of each left-heavy tree in

RT (n−1,∆)∪RT (n−2,∆) with respect to n so that the parent-child relationship

over these classes forms a family tree F . We will design an algorithm that visits

all nodes in family tree F each in O(1)-time. However, we output only trees in

RT (n,∆) during the traversal of F .

For the leftmost and second leftmost children c1 and c2 of the root r in a left-

heavy tree T , let ℓi, i = 1, 2 denote the leftmost leaf of the subtree T (ci) rooted

at ci. We call each vertex in PT (r, ℓ1) ∪ PT (r, ℓ2) a core vertex. Let vlast denote

the non-core vertex with the largest preporder index in T .

For an even n, let Pn−1 denote the o-tree obtained from a path with n − 1

vertices by choosing its center as the root, and let Pn−1 + i be obtained from

Pn−1 by adding a new leaf at the ith vertex vi, i ∈ [0, n/2]. Let RT ([n, n−2],∆)

denote RT (n,∆) ∪RT (n− 1,∆) ∪RT (n− 2,∆).

For an odd (resp., even) n, we define the parent-tree of a left-heavy tree T ∈
RT ([n, n−2],∆)−{Pn} (resp., T ∈ RT ([n, n−2],∆)−{Pn−1+i | 0 ≤ i ≤ n/2})
with respect to n as follows.

(1) If T ∈ RT (n,∆)∪RT (n− 1,∆), then the parent-tree P(T) of T is defined

to be the o-tree T − vlast obtained from T by removing vlast. For example,

the parent-tree of T1 with n vertices (reps., T2 with n − 1 vertices) is T2 (resp.,

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

v10

v2

v6

v7

v3

v8

v12

v4

v11

v9

v5

v1

v14

v18

v17

v19v13

v16

v15

v24

v23

v20

v21

∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r= v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r= v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v22

(a) T (b) T (c) T

(d) T (e) T (f) T

1 2 3

4 5 6

c2c1 c2c1 c2c1

c2c1 c2c1 c2c1

l2l1 l2l1

l2l1 l2l1 l2l1

l2l1

vvlast

vvlast

vvlast

vvlastvvlast

vv

last

Fig. 2 Examples of left-heavy trees for n = 24, where T1, T4 ∈ RT (n,∆), T2, T5 ∈ RT (n −
1,∆), and T3, T6 ∈ RT (n− 2,∆), and Ti+1 is the parent-tree of Ti, i = 1, 2, . . . , 5.

T3) in Fig. 2. The inequalities in Lemma 3 still hold in T − vlast, and hence

P(T) = T − vlast remains left-heavy. Clearly P(T) = T − vlast remains ∆-

bounded.

(2) If T ∈ RT (n − 2,∆), then the parent-tree P(T) of T is defined to be the

o-tree obtained from T by appending a new leaf to ℓi for each i = 1, 2. For

example, the parent-tree of T3 with n−2 vertices is T4 in Fig. 2. The inequalities

in Lemma 3 still hold in P(T) = (T + (ℓ1, v)) + (ℓ2, v
′), since the leftmost paths

in T (c1) and T (c2) extend. T − vlast remains left-heavy. Also P(T) = (T +

(ℓ1, v)) + (ℓ2, v
′) remains ∆-bounded by ∆(dep(ℓ1;T)) = ∆(dep(ℓ2;T)) ≥ 2.

Lemma 7 For each left-heavy tree T ∈ RT ([n, n−2],∆)−({Pn}∪{Pn−1+i |
0 ≤ i ≤ n/2}), the parent-tree P(T) with respect to n is a ∆-bounded left-heavy

tree which belongs to RT ([n, n− 2],∆).

5. Generating Child-trees

A left-heavy tree T ′ is called a child-tree of a left-heavy tree T if T is the parent-

(a) (b)

bvav

rr

l2l1
l2l1

c2c1pcc2c1

c3

vvlast

vvlast

S (T)

S(T)
S (T)

1

2

u
R

u
L

l
v

v

depth d*
v

u
R

l
v

v

u
L

depth d*
v

s11s4

s3
s10

s2
s9

s1
s8

s7

s6

s5

s4

s3

s2

s1

s5

s12

=s
k

Fig. 3 (a) Spine S(T) = {s1, s2, . . . , s5} in a tree T with vlast ̸∈ V (T (c1)); (b) spine
S(T) = S1(T) ∪ S2(T) = {s1, s2, . . . , s11} in a tree T with vlast ∈ V (T (c1)).

tree of T ′, where T ′ may not be ∆-bounded. A vertex v in T is called unsaturated

if deg(v;T) < ∆(dep(v;T)). In Sections 5.1 and 5.2, we first characterize the set

of all child-tree of a left-heavy tree T ∈ RT ([n, n − 2],∆). In Section 5.3, we

next describe an entire algorithm Enumerate for enumerating all left-heavy

trees T ∈ RT ([n, n−2],∆) by a recursive procedure Gen of generating all child-

trees of a given a left-heavy tree T ∈ RT ([n, n− 2],∆).

5.1 Appending a Leaf to T ∈ RT (n− 1,∆) ∪RT (n− 2,∆)

Let T ∈ RT (n−1,∆)∪RT (n−2,∆). By definition of parent-trees, any child-

tree T ′ of T has n or n− 1 vertices, and T is obtained from T ′ by removing the

non-core vertex vlast(T
′) with the largest index in T ′. Thus, T ′ is obtained from

T by appending a new leaf (u, v) so that T +(u, v) is left-heavy and ∆-bounded.

We here consider when T +(u, v) is left-heavy, i.e., (i) u is a valid vertex in T and

(ii) v is the non-core vertex vlast(T + (u, v)) with the largest index in T + (u, v).

We define the spine S(T) of a left-heavy tree T ∈ RT (n−1,∆)∪RT (n−2,∆)

as the set of vertices u at which appending a new leaf (u, v) results in an o-tree

T + (u, v) such that v is the non-core vertex vlast(T + (u, v)) with the largest

index in T + (u, v). By definition of S(T), we observe the next.

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

Lemma 8 For each left-heavy tree T ∈ RT (n − 1,∆) ∪ RT (n − 2,∆), the

o-tree T ′ obtained by appending a new leaf (u, v) is a child-tree of T if and only

if u is a valid vertex in S(T).

We show how to find all valid vertices in S(T) in the following two cases.

Case-1: The non-core vertex vlast with the largest index in T does not belong

to the subtree T (c1): In this case, S(T) = (s1 = vlast, s2, . . . , sm = r) is given as

the path from the last non-core vertex vlast to the root r. See Fig. 3(a). Since

S(T) is the rightmost path of T , all valid vertices in S(T) can be identified by

the lowest valid ancestor vh∗ = si (1 ≤ i ≤ m) of vlast, and vh∗ can be computed

in O(1) time in the same manner in Lemma 5 using the competitor of vlast.

Case-2: vlast belongs to the subtree T (c1) (i.e., r has only two children and

the subtree T (c2) is a path): Let va denote the lowest core vertex in T (c1) with

deg(va) ≥ 3, and let vb be the vertex vb in T (c2) with dep(vb;T) = dep(va;T).

See Fig. 3(b). Then S(T) consists of two sequences S1(T) and S2(T), where

S1(T) = (s1 = vlast, s2, . . . , st = c1) is obtained by visiting the path PT (vlast, c1)

from vlast to c1, and S2(T) = (st+1 = vb, st+2, . . . , sm = r) by visiting PT (vb, r)

from vb to r, where S1(T) is followed by S2(T) in S(T). We easily see that all

vertices in S2(T) are always valid. For the vertex sk = lca(ℓ1, vlast), all vertices

sk, sk+1, . . . , st ∈ S1(T) are also valid. The valid vertices in {s1, s2, . . . , sk−1}
can be determined by applying Lemma 5 to the subtree T (sK). Thus the lowest

valid ancestor vh∗ = si (1 ≤ i ≤ k − 1) of vlast in T (sK) can be computed in

O(1) time in the same way using the competitor of vlast.

Let spn(v) denote the parent v′ = si+1 ∈ S(T) of a vertex v = si ∈ S(T),

where spn(r) = ∅.
5.2 Shortening Depth of T ∈ RT (n,∆)

Let T ∈ RT (n,∆) be a left-heavy tree. By definition of parent-trees, T has

at most one child-tree, which is given by T − {ℓ1, ℓ2}. Note that T − {ℓ1, ℓ2}
can be a child-tree of T only when T is distinguished, since the parent-tree of

any tree T ∈ RT (n − 2,∆) with respect to n is distinguished. In fact, for a

distinguished left-heavy tree T ∈ RT (n,∆), T − {ℓ1, ℓ2} is a child-tree of T if

and only if T −{ℓ1, ℓ2} is left-heavy. We show how to examine the left-heaviness

of T − {ℓ1, ℓ2} in O(1) time. By definition, we first observe the following case.

Lemma 9 Let T ∈ RT (n,∆) be a distinguished left-heavy tree. If T ′ =

T − {ℓ1, ℓ2} remains distinguished, then T ′ is left-heavy.

We next show how to check whether T can have a non-distinguished child-tree,

i.e., whether the o-tree T−{ℓ1, ℓ2} remains left-heavy or not. LetX1 = V (T)−{r}
and X2 = V (T) − (V (T (c1) ∪ {r}). For each vertex v ∈ Xi, i = 1, 2, we define

statei(v) as follows.

We first define state1(v), v ∈ X1. For the leftmost leaf ℓ1 = lml(T (c1)) of

T (c1) and a vertex v ∈ X1, let us denote uL = lcaL(ℓ1, v) and uR = lcaR(ℓ1, v)

(see Fig. 3(b)). We compare subtree T (uL) at uL and subtree T R
v = T [uR, v] in

the following way. The depth dep(T R
v) of T R

v is determined by its leftmost leaf

ℓv = lml(T R
v). Hence the depth d∗v = dep(ℓv;T) of ℓv in T is given by

d∗v = dep(lca(ℓ1, v);T) + dep(T R
v) + 1.

If T (c1) has a non-core vertex u′ <T ℓv with dep(u′;T) > d∗v or uR is not the

second leftmost child of lca(ℓ1, v), then we let state1(v) = ∅. Then the set of

vertices u′ <T ℓv with dep(u′;T) > d∗v consists of core vertices in T (c1); i.e., it is

given by {u′ ∈ PT (r, ℓ1) | dep(u′;T) > d∗v}. Let L∗ be the sequence of depth of

the vertices in {u′ ∈ PT (r, ℓ1) | dep(u′;T) > d∗v}, and L(T (uL)) − L∗ denote the

sequence obtained from L(T L
v) by eliminating the entries in L∗. We compare the

label sequences L(T (uL))− L∗ and L(T R
v), and define

state1(v) =


(d∗v,⊒) if L(T (uL))− L∗ ⊒ L(T R

v)

(d∗v,≫) if L(T (uL))− L∗ ≫ L(T R
v)

(d∗v, <) if L(T (uL))− L∗ < L(T R
v).

(2)

We define state2(v), v ∈ X2 analogously with state1 (see Fig. 3(a)). For ℓ2 =

lml(T (c2)) and a vertex v ∈ X2, let us denote uL = lcaL(ℓ2, v) and uR = lcaR(ℓ2, v).

Let T R
v = T [uR, v] and d∗v = dep(lca(ℓ2, v);T) + dep(T R

v) + 1. If T (c2) has a non-

core vertex u′ <T ℓv with dep(u′;T) > d∗v or uR is not the second leftmost child

of lca(ℓ2, v), then we let state2(v) = ∅. Otherwise define state2(v) by (2).

Lemma 10 Let T ∈ RT (n,∆) be a distinguished left-heavy tree such that

T ′ = T − {ℓ1, ℓ2} is not distinguished. Let d̃ be the current depth dep(ℓ1;T) =

dep(ℓ2;T) of T (c1) and T (c2). Then T − {ℓ1, ℓ2} is left-heavy if and only if, for

each i = 1, 2, T (ci) has no non-core vertex v such that statei(v) = (d̃− 1, <).

When a child-tree T is generated from T by appending a new vertex vlast

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

to v̂ in the current tree T ′, statei, i = 1, 2 are updated as follows. Let the

preorder index of vlast in T be K, i.e., vlast = vK . If vK = lml(T (ci)),

then statei(vK) := (dep(vK ;T),⊒). Assume vK ̸= lml(T (ci)). If the second

term in statei(vK−1) is “≫” or “<,” then statei(vK) := statei(vK−1). Assume

statei(vK−1) = (d∗,⊒). Let va = lca(ℓ1, vK), and h be the integer such that

vK appears as the hth vertex in T R
vK . If vertex va+h+1 belongs to T R

vK
, then set

statei(vK) to be (d∗, <). Otherwise, we set statei(vK) to be (d∗,≫) (resp., (d∗,⊒)

and (d∗, <)) if dep(va+h+1;T) > dep(vK ;T) (resp., dep(va+h+1;T) = dep(vK ;T)

and dep(va+h+1;T) < dep(vK ;T)).

When we remove ℓ1 and ℓ2 in the current tree T ′ ∈ RT (n,∆) and add a new

non-core vertex to obtain a child-tree T = T ′ − {ℓ1, ℓ2}, we need to recompute

the competitor of the current last non-core vertex vlast if T − {ℓ1, ℓ2} is not

distinguished. Only in this case, vlast ∈ X1 (resp., vlast ∈ X2) may have a

pre-identical vertex in the subtree T (c1) (resp., T (c2)) of T = T ′ − {ℓ1, ℓ2}. We

can test whether vlast has a pre-identical vertex in such a subtree T (ci) or not

by checking statei(vlast). Let d̂ = dep(T).

(i) vlast ∈ X1: If state1(vlast) = (d̂,⊒), then set the competitor of vlast to be

the vertex vk′ in T (c1) corresponding to vlast, i.e., lca(ℓ1, vlast) is a core vertex in

T (c1) and vk′ is the |V (T (lcaR(ℓ1, vlast)))|th vertex in subtree T (lcaL(ℓ1, vlast)).

(ii) vlast ∈ X2: If state2(vlast) = (d̂,⊒), then set the competitor of vlast to be

the vertex vk′ in T (c2) corresponding to vlast, i.e., lca(ℓ2, vlast) is a core vertex in

T (c2) and vk′ is the |V (T (lcaR(ℓ2, vlast)))|th vertex in subtree T (lcaL(ℓ2, vlast)).

5.3 Entire Algorithm

We are ready to describe the entire algorithm except for showing how to effi-

ciently find unsaturated vertices in the spine S(T). Algorithm Enumerate con-

structs initial ∆-bounded left-heavy trees T := Pn for an odd n and T := Pn−1+i,

i ∈ [0, n/2] for an even n before it invokes a recursive procedureGen of generating

child-trees.

Algorithm Enumerate(n,∆, d)

Input: An integer n ≥ 3, a capacity function ∆ : [0, ⌊n/2⌋] → [2, n− 1],

and an integer d ≤ n.

Output: All ∆-bounded left-heavy trees with exactly n vertices and

a diameter at least d.

if n is odd then let T be path Pn rooted at its center; Initialize (T);

Gen(T)

else /* n is even */

Let Pn−1 be rooted at its center, where (v1 = r, v2, . . . , vn/2 = ℓ1)

denotes the path from ℓ1 = lml(Pn−1) to the root r;

for each unsaturated vi (i.e., vi with ∆(i− 1) ≥ 3) do

Let T := Pn−1+(vi, v) be the tree obtained from Pn−1 by adding

a new leaf (vi, v) at vi; Initialize (T); Gen(T)

endfor

endif

The above initialization takes O(n) time. The next procedure Gen generates

the child-trees T ′ of the current ∆-bounded left-heavy T , and calls Gen(T ′) to

enumerate all descendants of T ′. We output only trees T with exactly n vertices

at every third depth 3a+1 of recursive call at T during an execution of Gen. To

attain an O(1)-time delay in the worst case, a generated tree T ∈ RT (n,∆) is

output immediately before or after Gen(T) is executed if a is even (resp., odd).

Procedure Gen(T)

Input: A left-heavy tree T ∈ RT ([n, n− 2],∆).

Output: All descendants T ′′ of T such that T ′′ is ∆-bounded left-heavy

trees with exactly n vertices and a diameter at least d.

if |V (T)| = n and the current depth of recursive calls is 3a+ 1 for an

even integer a then Output T

endif;

if |V (T)| = n, T is distinguished, dep(T) ≥ d+ 1, and T − {ℓ1, ℓ2} is

left-heavy then T ′ := T − {ℓ1, ℓ2}; Gen(T ′)

endif;

if |V (T)| = n− 2orn− 1 then

for each unsaturated and valid vertex u in S(T) do

Let T ′ := T + (u, v) be obtained from T by adding a new leaf (u, v) ;

at u; Gen(T ′)

7 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

IPSJ SIG Technical Report

endfor

endif;

if |V (T)| = n and the current depth of recursive calls is 3a+ 1 for an

odd integer a then Output T

endif

We have shown that each line of Gen for generating a child-tree T ′ can be

performed in O(1) time, except for how to find unsatureted vertices in the spine

S(T).

(a)

(b)

u2

u1

u2

u1

u5

u4

u3

u2

u1

u3

u2

u1

u6

u5

u4

u3

u7

u2

u1

u6

u5

u4

u3

u7

u8

(c)

(d) (e)

lua=0/
lua=0/lua=0/lua=0/lua=0/

Fig. 4 Illustration for a process of appending new leafs, u2, u3, . . . , u8, where gray vertices
and dashed arrows indicate saturated vertices and lua, respectively.

In the rest of the section, we briefly show how to find all valid and unsaturated

vertices in the spine S(T) for a left-heavy tree T ∈ RT (n−1,∆)∪RT (n−2,∆).

We consider Case-1, i.e., vlast belongs to T (c1) (Case-2 can be treated anal-

ogously by applying the following argument to each of S1(T) and S2(T)). We

let lua(v) store the lowest unsaturated ancestor of v in S(T), and lua(v) = ∅
mean that there is no unsaturated ancestor of v in S(T), for the root lua(r) = ∅.
When we search all valid and unsaturated vertices in the spine S(T), we start

with the lowest valid vertex uh∗ , which can be determined by the competitor of

vlast together with lua(v̂). Recall that all vertices in S(T) higher than uh∗ are

valid by Lemma 5.

When a child-tree T ′ is generated from T by appending a new vertex v to v̂,

we need to update spn and lua (see Fig. 4), where lua(v) never changes since it is

only updated once when v is newly added to the tree. Including the maintenance

of all data values, we can find all unsaturated and valid vertices in the spine

S(T) in O(1) time per each, where we omit the detail due to space limitation

and procedures for updating the data can be found in a full version11). This shows

that, given integers n and g and a capacity ∆, all left-heavy and centerized trees

in R(n,∆) with a diameter at least d can be generated in O(1) time delay using

O(n) space, proving Theorem 1

References

1) R. Aringhieri, P. Hansen, F. Malucelli, Chemical trees enumeration algorithms,
4OR: Quart. J. Oper. Resear., 1 (2003) 67-83.

2) H. Fujiwara, J. Wang, L. Zhao, H. Nagamochi, and T. Akutsu, Enumerating tree-
like chemical graphs with given path frequency, J. Chem. Inf. Mod., 48, (2008)
1345-1357.

3) T. Imada, S. Ota, H. Nagamochi, and T. Akutsu, Enumerating stereoisomers of
tree structured molecules using dynamic programming, LNCS 5878, (2008) 14-23.

4) Y. Ishida, L. Zhao, H. Nagamochi, and T. Akutsu, Improved algorithm for enu-
merating tree-like chemical graphs, Genome Informatics, 21, (2008) 53-64.

5) S. Nakano, Efficient generation of triconnected plane triangulations, Computa-
tional Geometry Theory and Applications, 27(2), (2004) 109-122.

6) S. Nakano and T. Uno, Efficient generation of rooted trees, NII Technical Report
(NII-2003-005) (2003).

7) S. Nakano and T. Uno, Constant time generation of trees with specified diameter,
LNCS 3353, (2004) 33-45.

8) S. Nakano and T. Uno, Generating colored trees, LNCS 3787, (2005) 249-260.
9) R. A. Wright, B. Richmond, A. Odlyzko, and B. D. McKay, Constant time gener-
ation of free trees, SIAM J. Comput., 15, (1986) 540-548.

10) B. Zhuang and H. Nagamochi, Enumerating rooted graphs with reflectional block
structures, LNCS 6078, (2010) 49-60.

11) B. Zhuang and H. Nagamochi, Constant time generation of trees with degree
bounds, Dept. of Applied Mathematics and Physics, Kyoto University, Technical
Report 2010-006 (2010) http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technic
alreport/TR2010-006.pdf

8 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.8
2010/9/22

