
IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010)

Regular Paper

Approximate Model Checking

Using a Subset of First-order Logic

Kiyoharu Hamaguchi,
†1

Kazuya Masuda
†1

and Toshinobu Kashiwabara
†1

In order to reduce the computational complexity of model checking, we can
use a subset of first-order logic, called EUF, but the model checking prob-
lem using EUF is generally undecidable. In our previous work, we proposed a
technique for checking invariant property for an over-approximate set of states
including all the reachable states. In this paper, we extend this technique for
handling not only invariants but also temporal properties written in computa-
tional tree logic with EUF extension. We show that model checking becomes
possible for designs which are hard to handle without the proposed technique.

1. Introduction

The difficulty of model checking technique 1) lies in state explosion of hard-
ware or software designs to be verified. Although there are many advantages of
the technique such as exhaustiveness of error search or test-pattern-free verifica-
tion, and we have now practical model checking tools such as SMV 12), SPIN 13),
CBMC 14), and UCLID 15), state explosion still hinders application of the tech-
nique to large and complicated designs.

One of the approaches for tackling the state explosion is abstraction, where
original designs are simplified so that they come to have a smaller number of
states, but at the same time, the resulting abstracted designs reflect or contain
all the behaviors of the original designs.

In our previous work 2), we proposed an algorithm using Quantifier-free First-
order Logic with Equality and Uninterpreted Functions (EUF) for this purpose.
In this framework, arithmetic operations are abstracted away by function or
predicate symbols of the EUF logic. By handling them as symbols without con-

†1 Osaka University

sidering specific meanings, we can avoid state explosion caused by the complexity
of sequences of arithmetic operations.

For example, this EUF-based approach can be used for verification of digi-
tal signal processing units. Suppose that such a unit receives a command, and
performs a specified arithmetic operation depending on the command. We can
give a property such that, for a specific command and input data, output data
is always correctly computed after some cycles. Even if the computation in-
cludes complicated arithmetic operations which are intractable at Boolean level
in terms of model checking, verification can succeed in our framework, because
of abstraction.

This approach also enables design or property descriptions which include some
abstract function call. If we try to have the function call at Boolean level, we need
to have the concrete description of the function call, which would be very costly
in general. In the EUF-based approach, we do not have to have such detailed
descriptions. Instead, we use a function symbol abstractly. For example, we can
write down a property such that the result of a function call is “true” inside
some loop, then the execution eventually exits the loop. If the design has a
corresponding conditional branch, and if the design and property use the same
predicate and function symbols to represent branch conditions, verification can
be successful without specifying the details of the function call.

When we consider state machines defined by the EUF logic, the “unbounded”
model checking problem has been known to be undecidable 4). In our approach 2),
we perform over-approximate state traversal instead of precise state traversal,
while guaranteeing decidability. We have shown that this approach is effective
to some designs with fairly complicated arithmetic operations, such as an zero-
point calculation by Bisection method, or an ADPCM encoding algorithm. These
examples cannot be handled by any EUF-based or Boolean-based model checking
techniques.

The above work, however, can handle only invariant properties, that is, prop-
erties to be valid at any state reachable from initial states. We cannot specify
temporal properties such as “if some condition holds at a state, then some event
happens eventually”.

The contribution of this paper is an extension of our approach 2) for handling

268 c© 2010 Information Processing Society of Japan

269 Approximate Model Checking Using a Subset of First-order Logic

more general temporal properties. We define EUF-based computational tree
logic (CTL), called EUF-CTL, and show a model checking algorithm for the logic.
More precisely, this EUF-CTL is based on so called ACTL 1), which does not allow
existential path quantifier E but only universal path quantifier A for temporal
expressions. This restriction is necessary to guarantee the conservativeness of the
verification result, when we handle over-approximation of reachable state sets 1).

The algorithm is based on the classical CTL model checking algorithm, but its
straightforward application to our approach does not work well. Each state in
a state transition graph generated by our algorithm 2), represent, in actuality, a
set of multiple states. And thus, validity of atomic formulas at each state cannot
be determined generally. Our algorithm in this paper resolves this problem and
enables model checking for temporal properties. We implemented the algorithm
and applied it to some designs.

The remainder of this paper is organized as follows. Firstly, we discuss related
works on this paper, and we give the definition of EUF, its state machine. Sec-
ondly, we briefly explain the procedure of generating state transition graphs we
proposed before 2). Then, we define the syntax and the semantics of EUF-based
CTL (EUF-CTL). We show how to modify the previously proposed algorithm
for enabling model checking. Finally, we show some experimental results.

2. Related Works and Comparison

There have been proposed several approaches using the EUF logic for verifying
state transition systems with complex datapaths.

Burch and Dill 3) applied the EUF logic for proving the equivalence of pipelined
and non-pipelined microprocessors. Their approach reduces the problem to va-
lidity checking of the EUF logic in which equivalence within a given finite number
of cycles is focused. The recent tools such as Ref. 15) or SAL 6) can handle EUF-
based descriptions, but they are based on bounded model checking, that is, they
check the designs up to a given finite number of cycles.

As for unbounded model checking with more powerful logic, Cyrluk and
Narendran 7) proposed ground temporal logic which is an extension of linear-
temporal logic (LTL) for verification. They showed, generally, the model checking
problem using this logic is undecidable. They also showed a decidable fragment

of the logic, but it is a very small class. For example, it does not allow “until”
operator, which can be handled in the approach of this paper.

Bohn, et al. 8) proposed first-order CTL and its unbounded model checking
procedure. Xu, et al. 10) also showed first-order LTL, which is weaker than ground
temporal logic in terms of expressiveness, and its unbounded model checking
procedure using multiway decision diagrams 9). Both of these approaches cannot
guarantee termination of the procedures, unlike our approach.

The EUF-CTL we handle in this paper is weaker than those in the above.
For example, the past or future value of a data variable represented as an EUF
variable, cannot be referred to from a present state, that is, it is not allowed
to use an expression such as v = Xu, meaning that the value of v is equivalent
to that of u at the next cycle. It remains an open question whether we can
enhance the expressiveness of temporal logic, without losing decidability based
on over-approximation.

3. EUF and State Machine

This section defines the syntax and the semantics of the EUF logic and state
machines using that logic. Datapaths in designs are abstracted by this logic.

3.1 EUF Syntax
EUF is a subset of first-order logic. The logic does not have any quantifier, but

has the equal sign as a predefined predicate. It is constructed from terms and
formulas. The syntax is shown in the below. The number of arguments is called
arity , which is finite for any function or predicate.

term := variable | function-symbol(term, . . ., term) |
ITE(formula,term,term)
formula := true | false | Boolean-variable |
(term=term) | predicate-symbol(term, . . ., term) |
formula ∨ formula | formula ∧ formula | ¬ formula

The term-height of term t, denoted by term-height(t), is defined as follows:

term-height(t) =

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

270 Approximate Model Checking Using a Subset of First-order Logic{
MAX (term-height(t1), . . . , term-height(tn)) + 1, if t = f(t1, . . . , tn).
0, if t is a variable.

,

where MAX is the function which returns the maximum from its arguments and
f is a function symbol. This notion is used for approximating state transition
graphs. For example, for variables c1 and c2 and function symbols f and g, the
term-heights of c1, f(c1) and g(g(c1,f(c2)),f(c1)) are 0, 1 and 3, respec-
tively.

In this paper, atomic formulas are an equation, a predicate and a Boolean
variable. An atomic formula and negation of an atomic formula are literals. A
product term is a literal or conjunction of more than one literals. A disjunction
normal form (DNF) is a product term or disjunction of more than one product
terms.

We can assume all of the ITE terms have been removed. This can be done by
recursively replacing t = ITE(α, t1, t2) with (α ∧ (t = t1)) ∨ (¬α ∧ (t = t2)).

3.2 EUF Semantics
For a nonempty domain D and an interpretation σ, the truth of a formula is

defined. The interpretation σ maps a function symbol and predicate symbol of
arity k to a function Dk → D and Dk → {true, false}, respectively. Also, σ maps
each variable to an element in D. Boolean variables are mapped to {true, false}.

Valuation of a term t and a formula α, denoted by σ(t) and σ(α) respectively,
are defined as follows. Here, f is a function symbol and p is a predicate symbol.
1) For term t = f(t1, t2, . . . , tn), σ(t) = σ(f)(σ(t1), σ(t2), . . . , σ(tn)). 2) For
term t = ITE(α, t1, t2), σ(t) = σ(t1) if σ(α) = true, otherwise σ(t) = σ(t2).
3) For formula α = p(t1, t2, . . . , tn), σ(α) = σ(p)(σ(t1), σ(t2), . . . , σ(tn)). 4) For
formula α = (t1 = t2), σ(α) = true if and only if σ(t1) = σ(t2). 5) For formula
α = ¬α1, σ(α) = ¬σ(α1). 6) For formula α = α1 ◦ α2, where ◦ is ∨ or ∧,
σ(α) = σ(α1) ◦ σ(α2).

A formula α is valid if and only if σ(α) = true for any interpretation σ and
any domain D.

For simplicity, we introduce a new special constant TRUE, and treat
p(t1, . . . , tn) and ¬p(t1, . . . , tn) as p(t1, . . . , tn) = TRUE and ¬(p(t1, . . . , tn) =
TRUE), respectively. Then each literal can be either an equation, a Boolean

=⇒
x := 1;
if(y > 1)

y := (x+y) * 2;
else

y := (x+y) / 2;

x := c1;
if(p(y,c1))

y := g(f(x,y),c2);
else

y := h(f(x,y),c2);

Fig. 1 Example: a high-level description.

b1’ := ITE(b1=false, true, b1)
t1’ := ITE(b1=false, c1, t1)
t2’ := ITE(b1=true,

ITE(p(t2,c1)=true, g(f(t1,t2),c2), h(f(t1,t2),c2)), t2)

Fig. 2 Example: transition functions.

variable or negated forms of them.
3.3 EUF State Machine
Example 1 We give an example first. Figure 1 shows a C-like high-level

description of a design. The left C-like code can be translated to the right de-
scription in the figure. In this example, the inequality is represented by predicate
p, and addition, multiplication and division are represented by function symbols
f , g and h respectively. The constants 1 and 2 are represented by variables c1
and c2 respectively.
Figure 2 shows its transition functions. Term state variables t1 and t2 are
introduced to represent x and y, and b1 is used as a program counter, whose
initial value is false. �

In order to obtain EUF state machines, in this paper, we do not assume any
sophisticated procedure for predicate abstraction. We assume that we are given
high-level descriptions as in Fig. 1, and that we can transform them into EUF-
based transition functions. Basically, each arithmetic operators are replaced with
function symbols, and equality or inequality are replaced with predicates.

Precisely, an EUF state machine is defined by a set of transition functions.
To describe transition functions, we assume four types of variables as fol-
lows: 1) Boolean state variables: b1, . . . , bm, 2) term state variables: t1, . . . , tn,
3) Boolean variables: a1, . . . , ap, 4) term variables: c1, . . . , cq.

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

271 Approximate Model Checking Using a Subset of First-order Logic

The variables of 1) and 3) are Boolean variables, and those of 2) and 4) are
variables of the EUF. We introduce next state variables b′1, . . . , b

′
m and t′1, . . . , t

′
n

corresponding to b1, . . . , bm and t1, . . . , tn respectively. Then, transition functions
are described by b′i := Fi (1 ≤ i ≤ m) and t′j := Tj (1 ≤ j ≤ n), where Fi is
a formula and Tj is a term. Fi and Tj do not contain any next state variables.
Some of Boolean variables and term variables are specified as inputs. This means
that each of these input variables at each step is treated as distinct, and an
interpretation for such a variable at the i-th step can be different from that at
the j-th step (i �= j).

We call the following formula transition relation:∧
1≤i≤m

(b′i = Fi) ∧
∧

1≤j≤n

(t′j = Tj) (1)

In our previous work 2), the behavior of an EUF state is determined by a se-
quence of interpretations, each of which gives an interpretation for variables,
functions and predicates at each step. In this paper, however, we use an inter-
pretation tree, in order to have correspondence to the CTL semantics with EUF
extension. An interpretation tree can be regarded as a collective representation
of interpretation sequences.

In the following, we formulate an interpretation tree σ̃M = (V,E) for an EUF
state machine M . V is a set of interpretations of the EUF logic, each of which
specifies the values for state variables or input variables at each step along the
behavior of M . The interpretations for function or predicate symbols are fixed
throughout all the nodes for each interpretation tree. E is the set of transitions
between such interpretations, which correspond to those between states in M .
Details are shown in the below.

Note that an interpretation tree generally contains an infinite number of nodes,
and that each node can have an infinite number of children.

(M-1) The interpretations of term variables, Boolean variables, function sym-
bols and predicate symbols are the same at every node, except for input
variables, variables assigned to state variables at initial states and next state
variables. In other words, for each non-input variable cj , each non-input
Boolean variable aj , each function symbol fj and each predicate symbol pj ,
σ(cj) = σ0(cj), σ(aj) = σ0(aj), σ(fj) = σ0(fj) and σ(pj) = σ0(pj) for each

node σ ∈ V , where σ0 is an interpretation for the root node of the interpre-
tation tree.

(M-2) As for each input term variable cj and for each input Boolean variable
aj at node σ, we introduce new variable names cσ

j and aσ
j for distinction.

σ(cσ
j) and σ(aσ

j) are given arbitrary at node σ. For descendant node σc of σ,
σc(c′j) = σ(c′j) (k = i, i + 1, . . .), and σc(a′

j) = σ(a′
j) (k = i, i + 1, . . .). The

interpretations of these variables for ancestors of σ are not defined.
(M-3) For an initial state in which each term state variable tj and a Boolean

state variable bj are mapped to variable cj and aj , σ0(tj) = σ0(cj) and
σ0(bj) = σ0(aj).

(M-4) (σ, σ′) ∈ E if and only if, for transition functions b′j := Fj and t′j := Tj ,
σ′(bj) = σ(Fj) and σ′(tj) = σ(Tj).

We call an interpretation tree which satisfies the above conditions a normal
interpretation tree. In this paper, we assume that interpretation trees are all
normal.

The model checking problem for an EUF-based state machine M and an EUF-
CTL formula f is defined over interpretation trees of M . Basically, it checks
whether, at the root of all possible interpretation trees for M , f holds or not.
The precise definition will be given later in Section 5.1.

4. Generating State Transition Graphs

In this section, we briefly explain the algorithm for generating state transition
graphs based on our previous work 2).

We show, firstly, a simple state traversal procedure. This procedure does not
terminate in general, because generated state transition graphs can have an in-
finite number of states. Later, we show techniques called term-height reduction
and state merging, which generates an over-approximate state transition graphs
with a finite number of states.

The infinite state set may seem to be strange, because the original description
assumes Boolean interpretations and, as a result, the state space is originally
finite. On the other hand, the EUF-based (non-approximate) state traversal
can produce infinite state space. The reason of this is that equivalent concrete
states under Boolean interpretations can be represented by different forms of

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

272 Approximate Model Checking Using a Subset of First-order Logic

term vectors.
4.1 A Simple State Traversal Procedure
Each state s is composed of the following elements:
• State vector −→v = (−→b ,

−→
t)

• Condition set C ⊆ T × T × Rel

where T is the set of terms which do not contain ITE terms, and Rel = {=, �=}.
We suppose −→

b = (b1, . . . , bm) and −→
t = (t1, . . . , tn), where for 1 ≤ i ≤ m, bi is

true or false, and for 1 ≤ j ≤ n, tj is a term. C is the set of all conditions which
must be satisfied in order to reach the state. The conditions in C can also be
regarded as constraints to the terms assigned to state variables.

We can consider more than one interpretations which satisfy C. In other words,
a “state” in the graph can be regarded as a representation of a set of states instead
of a single state. However, in the rest of this paper, we call the set of states simply
as a state.

As for state traversal, based on the transition relation, we enumerate all the
reachable states from initial states one by one.

Example 2 Figure 3 shows a part of state traversal for the example shown
in Fig. 2. Each box corresponds to a state. The binary values for b1 in the

Fig. 3 Simple state traversal.

state vectors are omitted in the figure for brevity. The initial values for state
term variables t1 and t2 are d0 and c0 respectively, where d0 and c0 are EUF
variables. �

Firstly, we perform a preprocessing to convert the transition relation into DNF
(disjunctive normal form).

Then, the next state s′ = (−→v ′, C ′) is constructed from the current state s =
(−→v , C) based on the following rule. First, we replace all the current state variables
occurring in the transition relation in DNF, with the corresponding values or
terms in −→v . Then, we can get the formula α � α1 ∨ α2 ∨ . . . ∨ αp, where each
αi (1 ≤ i ≤ p) is a product term whose variables are next state variables b′k
(1 ≤ k ≤ m) and t′l (1 ≤ l ≤ n), Boolean variables and term variables. Note that
αi does not contain any current state variable, because it has been replaced by
a value or a term in −→v .

For each αi � β1 ∧ β2 ∧ . . . ∧ βq, where βj (1 ≤ j ≤ q) are literals, the next
state s′ is generated as follows. The contents of −→v ′ and C ′ are initialized with
the ones of −→v and C, respectively. Next, for each βj , the appropriate step shown
in the below is performed.

Here, we assign an arbitrary value in { true, false } to each input Boolean
variable in αi, and we introduce a term variable with a new distinct name to
each input term variable in αi. This means that multiple next states can be
generated for each αi.
(1) If βj is an equation b′k = b, where b′k is a next Boolean state variable and b

is a propositional formula, the Boolean state variable bk at the next state
is assigned to the value of b.

(2) If βj is an equation t′l = t, where t′l is a next term state variable and t is a
term, t is assigned to the term state variable tl at the next state.

(3) If βj is an equation t1 = t2 or its negation ¬(t1 = t2), where t1 and t2
are terms which do not contain any next state variable, the new condition
(t1, t2,=) or (t1, t2, �=) is added to C ′, respectively.

(4) If βj is an Boolean variable or its negation, the Boolean variable is assigned
to true or false so that βj is true.

The above Case (3) means that C ′ contains the conditions which enable the
transition from s to s′, in addition to C. Thus, we say that state s′ is reachable

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

273 Approximate Model Checking Using a Subset of First-order Logic

from state s in one step if s′ can be composed from s by applying the above rule
once, and the conjunction of the conditions in C ′ is satisfiable. State s is not
generated, if its condition set C ′ is unsatisfiable.

4.2 Approximate State Traversal
An approximate state graph is generated using the following techniques, that

is, term-height reduction and state merging. The details have been given in the
other literature 2).

4.2.1 Term-height Reduction
In order to control term-height among terms in the state traversal procedure,

we give parameter maxh as an input for the algorithm.
In the procedure, state vector −→v or condition set C can contain some term

whose height is larger than a given integer maxh (maxh ≥ 0). Then, we replace
the subterm of the term by a new variable so that the term-height is smaller than
or equal to maxh.

We call this operation term-height reduction. For example, suppose that
maxh = 1 and we have term g(g(c1, f(c2)), f(c1)). Firstly, the term-height
is reduced by one by replacing f(c2) by new variable c3. Then, we have
g(g(c1, c3), f(c1)). Furthermore, we replace g(c1, c3) and f(c1) by c4 and c5
to have g(c4, c5) with term-height 1. We record all these reductions such as
f(c2) → c3, g(c1, c3) → c4 and f(c1) → c5 as conversion rules, and apply them
to the terms which may appear later in the procedure.

This operation reduces constraints or relations among terms in a state. This
implies we can have more of possible interpretations for each state. In other
words, term-height reduction causes over-approximation to the state transition
graph.

4.2.2 State Merging
As we discussed earlier, a state in a state transition graph represents a set of

states under more than one interpretations. State merging of a state by other
state, in actuality, is based on inclusion relation between the two sets of states.
If a newly generated state in the state traversal can be merged into some other
state among the already generated ones, then the new state is merged to the old
state. The following procedure is basically the same as that by Isles, et al. 5).

Inclusion relation for two states is basically determined by checking the match

of each element in their state vectors, and by checking logical implication among
their reachablity condition sets. However, literal match of the state vectors does
not work well, because new variables are introduced in the state traversal proce-
dure. Thus, state vector match is checked under some renaming of variables.

For example, suppose that we have state vectors t = (f(c3, c2), c2) and t′ =
(f(c1, c2), c2). By considering renaming {c3 → d1, c2 → d2} for t and {c1 →
d1, c2 → d2} for t′, we can match the two state vectors. State inclusion is defined
precisely as follows. If state s′ can be merged to state s, then all transition edges
to s′ are redirected to s and s′ is deleted.

More precisely, state inclusion relation is defined as follows. For a state s =
(−→v , C), where −→v = (−→b ,

−→
t) and −→

t = (t1, . . . , tn), let Vt be the set of variables
occurring in −→

t , D be a set of variables {d1, d2, . . . , d|Vt|}, where Vt ∩D = φ, and
mapD

t be a bijective function from Vt to D. We denote by mapD
t [ti] the term

obtained from a term ti in which each variable c ∈ Vt is replaced with mapD
t (c).

Furthermore, we denote by mapD
t [−→t] the vector of terms obtained from −→

t in
which each term ti is replaced with mapD

t [ti]. Also, we denote by mapD
t [C] the

condition set obtained from C in which each condition (t1, t2, Re) is replaced with
(mapD

t [t1],mapD
t [t2], Re).

Definition 1 For two states s = (−→v , C) and s′ = (−→v ′, C ′), where −→v =
(−→b ,

−→
t), −→v ′ = (−→b ′

,
−→
t
′
), we say “s includes s′”, denoted by s ≥ s′, if the following

conditions are all satisfied.
(1) −→

b = −→
b

′

(2) |Vt| = |Vt′ |
(3) For a set of variables D, there exist two functions mapD

t and mapD
t′ such

that:
• mapD

t [−→t] = mapD
t′ [

−→
t
′
] and

•
∧

(t′1,t′2,R′
e)∈mapD

t′ [C
′]

(t′1R
′
et

′
2) −→

∧
(t1,t2,Re)∈mapD

t [C]

(t1Ret2) is valid

Example 3 Figure 4 shows term-height reduction and state merging for the
state transition graph in Fig. 3. We assume maxh = 2. The result of approxima-
tion is shown in Fig. 5. �

4.2.3 Overall Algorithm
Suppose that we have a set of candidate reachable states CS which contains

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

274 Approximate Model Checking Using a Subset of First-order Logic

Fig. 4 State merging.

Fig. 5 Approximate state graph.

only the initial state at first. We also have a set of reachable states RS, which
is initially empty. We pick up a state cs from CS, and check its reachability
by satisfiability checking of cs’s reachable condition set, and check if cs can be
merged into some other state in the reachable set. If it is reachable and cannot
be merged, then cs is inserted to RS. By using the transition relation, the set
of next candidate states from cs, that is, NS is computed. After applying term-
height reduction to each state in NS, the next candidate states are inserted into
CS. The above process is repeated while CS is not empty. When CS becomes
empty, we can obtain all reachable states in RS.

4.3 State Transition Graph and Interpretation Tree
We define an interpretation tree for a non-approximate or approximate state

transition graph. Since non-approximate state transition graphs are generated

from the transition relation of an EUF state machine, interpretation trees for the
EUF state machine, as defined in Section 3.3 and those for its state transition
graph should be the same. Approximate state transition graphs, however, do not
have direct correspondence to the EUF state machine. Thus, we give a slightly
different definition as interpretation tree for state transition graphs, which is
common for non-approximate or approximate state transition graphs.

Suppose that we have a state transition graph G for an EUF machine M . Each
node σ of an interpretation tree σ̃G corresponds to a state in G. We define a
mapping function ηS : ΣG → S, where ΣG is a set of interpretations and S is a
set of states of G. Note that more than one nodes in σ̃G can be mapped to a
state in G.

Interpretation tree σ̃G for G must satisfy (M-1)–(M-3) for interpretation tree
for M , in addition to the following (G-4’), (G-5) and (G-6). Condition (G-6)
is applied only to approximate state transition graphs. In order to distinguish
properties for state transition graph G, we use (G-1)–(G-3) instead of (M-1)–(M-
3), respectively.

(G-4’) (σ, σ′) is an edge in σ̃G if and only if (ηS(σ), ηS(σ′)) is an edge in G.
(G-5) For state s = ((−→t ,

−→
b), C) ∈ S, σ(tj) = σ(−→t [j]), σ(bj) = σ(−→b [j]) and

σ(
∧

c∈C c) = true, where tj is the j-th term state variable and −→
t [j] is the

j-th element of vector −→
t .

(G-6) Suppose that s is merged to s′, and that variable v in s corresponds to
v′ in s′ through the mapping function. Then, σs′(v′) = σs(v).

5. EUF-CTL and Model Checking

5.1 EUF-CTL
The logic we use is based on ACTL. ACTL does not have existential path

operator E. In order to avoid expressing E by complementation, the negation
operator is used immediately before atomic formulas only. This means that, in
the logic defined in the below, the negation operator can be used immediately
before (non-temporal) EUF formulas only.

We assume that variables are those used in the descriptions for an EUF state
machine. An EUF-CTL formula is defined recursively as follows: 1) if p is a (non-
temporal) EUF formula, p is an EUF-CTL formula, 2) if f and g are EUF-CTL

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

275 Approximate Model Checking Using a Subset of First-order Logic

formulas, f ∨g and f ∧g are also EUF-CTL formulas. 3) if f is a (non-temporal)
EUF formula and g is an EUF-CTL formula, f → g is also an EUF-CTL formula,
4) if f and g are EUF-CTL formulas, then AXf , AFf , AGf , A(fUg) are also
EUF-CTL formulas.

The semantics is defined for an interpretation tree σ̃. Let s be a node in σ̃.
π = s0, s1, s2 . . . represents an infinite path in the tree. πi is the suffix of π

starting from si. σ̃, s |= f means f is true at node s in σ̃, and σ̃, π |= f means f

is true along path π in σ̃.
Then, the truth value of a given EUF-CTL formula is defined as follows:

(1) σ̃M , s |= p ⇔ s(p) = true

(2) σ̃M , s |= f1 ∨ f2 ⇔ σ̃M , s |= f1 or σ̃M , s |= f2

(3) σ̃M , s |= f1 ∧ f2 ⇔ σ̃M , s |= f1 and σ̃M , s |= f2

(4) σ̃M , s |= f1 → f2 ⇔ σ̃M , s |= ¬f1 or σ̃M , s |= f2

(5) σ̃M , s |= AXf1 ⇔ for all the paths π = s0, s1, . . . from s, σ̃M , s1 |= f1.
(6) σ̃M , s |= AFf1 ⇔ for all the paths π = s0, s1, . . . from s, there exists k ≥ 0

such that σ̃M , sk |= f1.
(7) σ̃M , s |= AGf1 ⇔ for all the paths π = s0, s1, . . . from s, and for all k ≥ 0,

σ̃M , sk |= f1.
(8) σ̃M , s |= A(f1Uf2) for all the paths π = s0, s1, . . . from s, there exists k ≥ 0

such that σ̃M , sk |= f2, and for all j such that 0 ≤ j ≤ k, σ̃M , sj |= f1.
The model checking problem for an EUF-CTL formula f and an EUF state

machine M , is to check, for an arbitrary interpretation tree σ̃M for M with root
node r, whether σ̃M , r |= f holds or not.

5.2 Extended Approximate State Transition Graph
Each state in a state transition graph represents a set of states under more

than one interpretations. As a result, the truth value of an EUF-formula at a
state in the state transition graph cannot be determined in general, because it
depends on an interpretation chosen from all possible interpretations. This causes
a difficulty when we try to perform a standard model checking algorithm for CTL
on an approximate state transition graph, because the algorithm assumes that
the truth values of each atomic formula appeared in a given EUF-CTL formula
are specifically true or false at each state. In order to handle this problem, we
split each state to multiple states so that the truth value of each atomic formula

is determined at each state.
For a given EUF-CTL formula f , we define set Z, each of whose element is an

equation appeared in f . If f contains r equations, then the size of Z is r. For
zi ∈ Z (i = 1, 2, . . . , r), we define zpi

i (pi ∈ {0, 1}), where z1
i = zi and z0

i = ¬zi.
For a binary vector −→p = (p1, p2, . . . , pr) of length r, we define as follows:

z
−→p =

∧
i=1,2,...,r

zpi

Extension is done by splitting a newly generated state s in the graph genera-
tion procedure, to 2r states by augmenting the original state with replace(z−→p)
for −→p ∈ {0, 1}r, where replace(z−→p) means a formula obtained by replacing
each of the state variables in z by its corresponding element in the state vec-
tor of s. The condition replace(z−→p) is added to reachable condition set C of
the state. For example, if Z = {f(x) = y, g(x, y) = z} and term state vec-
tor (x, y, z) = (f(c0), c1, c2), then we have four states having, in their condition
sets, (f(f(c0)) = c1)∧(g(f(c0), c1) = c2), (f(f(c0)) = c1)∧¬(g(f(c0), c1) = c2),
¬(f(f(c0)) = c1)∧(g(f(c0), c1) = c2) and ¬(f(f(c0)) = c1)∧¬(g((c0), c1) = c2),
respectively.

The initial state must be split similarly before starting the graph generation
procedure.

We perform this extension after term-height reduction and state merging are
done. In other words, the newly introduced constraints in the condition sets are
not affected by term-height reduction or state merging. This does not change
the set of possible interpretation trees for resulting approximate state transition
graphs, because this procedure simply split each state. The correctness is shown
through theorems later in this section.

We call the resulting graph an extended approximate state transition graph.
Interpretation trees for an extended approximate state transition graph can also
be defined as in Section 4.3.

Example 4 We assume property AF(t2 = g(f(t1, c0), c2)) for model check-
ing and maxh = 2. Figure 6 shows the extended graph for Fig. 3. For example,
c0 = g(f(c1, c0), c2) at state s11 comes from t2 = g(f(t1, c0), c2) replaced by
term state vector (t1, t2) = (c1, c0) at s11. The boxes surrounded by dashed
lines s310 and s300 are not generated in actuality, because the condition sets are

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

276 Approximate Model Checking Using a Subset of First-order Logic

Fig. 6 An extended approximate state transition graph.

unsatisfiable. �

5.3 EUF-CTL Model Checking
The model checking algorithm is basically the same as the standard CTL model

checking algorithm. For a given EUF-CTL formula f , whether each subformula
in f holds or not at each state is checked in a bottom-up manner. More precisely,
this algorithm labels subformula gf of f to state s if and only if gf is true at root
node σr of any interpretation tree such that ηS(σr) = s.

As for an atomic formula z, labeling z is performed by checking whether

replace(z) is true at C, that is, by checking whether the formula each of which
state variable in z is replaced by its corresponding element in the state vector of
state s, is included in C or not. This can be done easily because of the way of
augmenting extended approximate state transition graphs.

As for a non-atomic formula f , if we assume that subformulas in f have been
processed, that is, whether they are valid or not has been labeled at each state,
then we can determine whether f is valid or not at each state using those labels.
We omit the details because the rest of the algorithm is the same as the standard
CTL model checking algorithm 1).

The correctness of the algorithm is guaranteed throughout the following lemmas
and theorem. The proofs are given in Appendix.

Lemma 1 The set of interpretation trees for an EUF state machine M is
equivalent to the set of interpretation trees for the non-approximate state tran-
sition graph G generated for M . �

Lemma 2 The set of interpretation trees for the non-approximate state tran-
sition graph G is equivalent to the set of interpretation trees for the non-
approximate extended state transition graph Gex. �

Lemma 3 Any interpretation tree for a non-approximate extended or non-
extended state transition graph is a sub-tree of an interpretation tree for an
approximate extended or non-extended state transition graph. �

Theorem 1 Suppose that we have generated an extended approximate state
transition graph Gex

a for an EUF state machine M and that we perform the model
checking algorithm. If an EUF-CTL formula f is labeled at state s in Gex

a , then
f is true at root node σr of any interpretation tree for M an EUF machine M

such that ηS(σr) = s. �

5.4 Counter-Examples
By using some popular counter-example generation algorithm for CTL 1), we

can obtain a state sequence which violate the property in the extended approx-
imate state transition graph. Because of approximation in the state traversal
and also of abstraction by function symbols of EUF, this state sequence can be
spurious.

We can check the feasibility of this state sequence as follows. Firstly, we gen-
erate a non-approximate state sequence corresponding to the counter-example

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

277 Approximate Model Checking Using a Subset of First-order Logic

state sequence, by tracing the same transition conditions from the initial state,
without approximation, that is, without term-height reduction. Note that the
transition conditions are all inserted to reachability condition sets in states. Sec-
ondly, we check the satisfiability of the reachability condition set at each state,
using some Boolean SAT solver under Boolean interpretation for EUF functions
or predicates. If it is satisfiable, the state sequence is a feasible, non-spurious
counter-example. The computational cost could be large, though, because of
Boolean interpretation.

6. Experimental Results

We implemented our algorithm in the C++ language and performed some ex-
periments with Intel Core2 Duo T8300 2.40 GHz of 3 GB Memory under Windows
XP. We used Yices 16) as an EUF SAT solver.

Only a small number of common benchmarks in form of EUF state machines are
available 6),15), as far as we know. Those benchmarks have features our method
cannot handle presently, such as unbounded memories or list structures, because
they are intended for bounded model checking. We used, in this paper, designs of
a FIR filter circuit and a simple C program for Bisection Method, and applied our
algorithm. The counter-example generation procedure has not been implemented
yet.

The run-times we show in this section do not include construction of a DNF of
the transition relation from transition functions. In the following examples, we
gave the transition relations in DNF as inputs.

6.1 FIR Filter Circuit
We show the example of model checking to FIR filter (Finite Impulse Response

Filter) design description. N -taps FIR filter is a digital filter that computes the
output using signal values of the last N cycles. It does not depend on the past
output signals.

We consider 3-taps FIR filter. 3-taps FIR filter circuit calculates the following
output Y at every cycle, where X3 is a present input, X3−i (1 ≤ i ≤ 2) are inputs
of i cycles before, and Hi (0 ≤ i ≤ 2) is a constant.

Fig. 7 Block chart of 3-taps FIR filter.

Table 1 Experimental results for FIR filter.

maxh maximum states graph gener-
ation total (s)

model check-
ing total (s)

total times (s)

3 35 3.374 0.109 3.483

Y =
2∑

i=0

X3−iHi

Our FIR filter design is as shown in Fig. 7. We compared the output
OUT1 with that calculated by the equation Y =

∑2
i=0 X3−iHi, using r4,

r5 and r6 in the pipeline registers, and checked those outputs were equiva-
lent. We store the input sequence in the pipeline. We gave the property
(AG(AX(AX(AX(AX(AX(OUT1 = f0(f0(f1(r4, h0), (f1(r5, h1))), (f1(r6,

h2)))))))))), which checks the equivalence 5 cycles after the circuit starts work-
ing. r4, r5, and r6 are the term variables, and they correspond to the register
numbers in Fig. 7. We prepared an extra register to match the timing of output
OUT1 and the evaluation of f0(f0(f1(r4, h0), (f1(r5, h1))), (f1(r6, h2))).

We show the experimental results in Table 1. We changed the parameter value
maxh increasingly from 0 one by one, until the property held. The first column
shows the value of maxh, when the property held. The second column shows
that the maximum number of states in the generated state transition graphs
until the property held. The third column shows the total times for generating
state transition graphs, and the fourth column shows the total times for model

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

278 Approximate Model Checking Using a Subset of First-order Logic

checking until the property held. The fifth column shows the total time of the
third and fourth column.

6.2 Bisection Method
Bisection method is an algorithm for solving an equation numerically. The

number of execution of the while body depends on input value, and thus is
indeterminate.

We gave some properties as follows as examples. We show the corresponding
pseudo code of the bisect algorithm in Fig. 8. Labels (a)–(d) in Fig. 8 correspond
to the conditions of the properties in the below. The part enclosed with the
dotted line is a loop part. n0 is introduced as a program location counter, which
points the location of current execution. Here, n0 = 39 means that the execution
proceeded to the beginning of the loop, and n0 = 52 means that the execution
exits this procedure. The meaning of the property of (a) is that, if the three
conditions in property (a) holds, the program cannot reach the beginning of the
loop. The meaning of the property of (b)–(d) is that, if either of the conditions
in (b)–(d) holds at the beginning of the loop, the program exits.
(a) ((((f0(t0) = c0) ∨ (f0(t1) = c0)) ∨ (p1(f0(t0), f0(t1)) = true)) ⇒ (AG(n0

�= 39))))
(b) (AG(((n0 = 39) ∧ (p0(f2(f3(f1(t0,t1),c2),t0), t3) = true)) ⇒ (AF((n0 =

52) ∧ (b0 = true)))))
(c) (AG(((n0 = 39) ∧ (p0(f2(t1,f3(f1(t0,t1),c2)), t3) = true)) ⇒ (AF((n0 =

52) ∧ (b0 = true)))))
(d) (AG(((n0 = 39) ∧ (f0(f3(f1(t0,t1),c2)) = c0)) ⇒ (AF((n0 = 52) ∧ (b0 =

true)))))
We show the experimental results in Table 2. The first column shows the

checked properties. The other columns are the same as in Table 1. This experi-
ments required 3 Mbyte for running.

6.3 Consideration
In this section, we consider what kind of designs can be handled with this

method. Table 3 shows the detailed results on the runtimes for Bisection method
algorithm. “sat total” means total runtimes by the SAT solver, and “sat inclusion
check” means runtimes by the SAT solver for state inclusion check explained in
Section 4.2.2.

Fig. 8 Pseudo code of bisection algorithm.

Table 2 Experimental results for bisection method algorithm.

property maxh maximum states graph gener-
ation total (s)

model check-
ing total (s)

total times (s)

(a) 1 277 338.947 1.173 340.120
(b) 3 92 192.273 1.739 194.012
(c) 3 92 196.639 1.530 198.169
(d) 3 96 203.800 1.598 205.398

While the required memory was up to 3 Mbyte, approximately 70%–80% in
the runtime was used for satisfiability checking in state graph generation. Thus,
the runtimes are bottleneck for our algorithm. State inclusion check in state

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

279 Approximate Model Checking Using a Subset of First-order Logic

Table 3 Detailed runtime results for biesection method algorithm.

property graph genera-
tion total (s)

sat total (s) sat inclusion
check (s)

(a) 338.947 273.340 6.304
(b) 192.273 158.719 8.492
(c) 196.639 161.667 8.714
(d) 203.800 167.384 8.997

merging checks all state pairs, and thus, the number of comparisons is quadratic
to the number of states in the worst case. The runtimes by the SAT solver for
checking state inclusion are, however, less than 5%, because state merging calls
the SAT solver only when term state vectors of two states can match syntactically.
These imply that the dominant factor in the runtimes is the rest of “sat total”,
that is, reachability checking at each state, which is performed once at each
state generation. Based on this, supposing that runtime increases linearly to the
number of states, we could estimate that we can handle roughly up to 10,000
states in practical time.

If we think arithmetic core modules such as digital cosine transform in digi-
tal signal processing units, we can expect that the number of control states is
relatively small, e.g., up to 100 states, and the number of different term state
vectors for each control state is limited, e.g., up to 100 distinct vectors, because of
term-height reduction. Then, such modules would fall on the range the proposed
algorithm can cover.

Next, we consider maxh. Unfortunately, it looks difficult to determine an
appropriate maxh beforehand. A term assigned to a term state variable can be
regarded as a certain kind of history data storing the most recently performed
operations to the term state variable. If the stored data in terms are large
enough, we can check the property under the EUF-based abstraction for function
or predicate symbols.

In reality, there are some factors which make the behavior of the algorithm more
complicated. The term-height reduction procedure stores every replacement of
each term by a new variable, and uses the variable so that the same terms are
replaced with the same variables. This mechanism tends to shorten the necessary
term-height. Furthermore, the necessary term-height depends on the formulas in

the EUF-CTL temporal property.
In typical digital signal processing units, input data go through multiple op-

erations, and go out as output data. In this case, the number of operations to
be performed can be the necessary term-height, that is, maxh, which could be
estimated from the analysis of design. Because of the above factors, however,
maxh could be smaller than this rough estimation. Because of lack of a good
strategy, here we increase the maxh one by one from 0.

6.4 Comparison with Other Works
Previous works in the literature such as Ref. 4), 5), 9) handled the same prob-

lem, but they do not guarantee the termination of the procedure. Since the tools
such as UCLID 15) or EUREKA 11) are based on bounded model checking, they
cannot obtain the complete result that the proposed method can. To our best
knowledge, only our proposed algorithm can handle unbounded model checking
for the EUF state machines we used in the experiments.

7. Conclusion

In this paper, we define a temporal logic based on the logic EUF, that is,
EUF-CTL and a model checking problem using the logic for an EUF state ma-
chine. Since the original problem is undecidable, our algorithm guarantees its
termination by over-approximating the state space to be explored. We imple-
mented the algorithm and showed that our approach can handle some examples
for which the other model checking based techniques do not work well, because
of the computational complexity caused by complex arithmetic operations in the
designs.

The limitation of the EUF-based approach is not to consider the semantics
of the function or predicate symbols. We cannot refer to the semantics of the
function symbols. If “4-bit right-shift” operation in the property is implemented
as two consecutive “2-bit right-shift” operations in the design, then these are not
identified as equivalent.

Furthermore, EUF cannot handle the commutative law or the associative law
over arithmetic operations, that is, f(x, y) is always regarded as different from
f(y, x), even if f obeys the commutative law. We are considering combined use
of multiple logics for handling such cases, in which we interpret only a small

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

280 Approximate Model Checking Using a Subset of First-order Logic

number of function symbols with less abstract logic such as Boolean logic, to
obtain less conservative results.

An extension for handling different logics such as linear-time temporal logic
remains as a future topic. It is an open question if a standard tableau construc-
tion technique 1) works properly or not under the approximation scheme in this
paper. As another extension, we can consider a temporal expression related not
to formulas but to variables, such as t1 = (XXt2), which means that term t1 is
equivalent to term t2 of 2 cycles later.

Acknowledgments This study was supported in part by funds from the
Grant-in-Aid for Scientific Research (C) under Grant No. 19500043, from Japan
Society for the Promotion of Science (JSPS).

References

1) Clarke, E.M., Grumberg, O. and Peled, D.A.: Model Checking, The MIT Press
(1999).

2) Shimizu, H., Hamaguchi, K. and Kashiwabara, T.: Approximate Invariant Prop-
erty Checking Using Term-Height Reduction for a Subset of First-Order Logic, 6th
International Conference on Automated Technology for Verification and Analysis,
LNCS 5311, pp.318–331 (2008).

3) Burch, J.R. and Dill, D.L.: Automated verification of pipelined microprocessor
control, Computer-Aided Verification, LNCS 818, pp.68–80 (1994).

4) Hojati, R., Isles, A., Kirkpatrick, D. and Brayton, R.K.: Verification using unin-
terpreted functions and finite instantiations, Formal Methods in Computer-Aided
Design, LNCS 1166, pp.218–232 (1996).

5) Isles, A.J., Hojati, R. and Brayton, R.K.: Computing Reachable Control States of
Systems Modeled with Uninterpreted Functions and Infinite Memory, 10th Inter-
national Conference on Computer Aided Verification, pp.256–267 (1998).

6) SAL: http://sal.csl.sri.com/.
7) Cyrluk, D. and Narendran, P.: Ground Temporal Logic: A Logic for Hardware

Verification, Computer-Aided Verification, LNCS 818, pp.247–259 (1994).
8) Bohn, J., Damm, W., Grumberg, O., Hungar, H. and Laster, K.: First-Order-CTL

Model Checking, Foundations of Software Technology and Theoretical Computer
Science, LNCS 1530, pp.283–294 (1998).

9) Corella, F., Zhou, Z., Song, X., Langevin, M. and Cerny, E.: Multiway Decision
Graphs for Automated Hardware Verification, Formal Methods in System Design,
Vol.10, No.1, pp.7–46 (1997).

10) Xu, Y., Song, X., Cerny, E. and Mohamed, O.A.: Model Checking for a First-Order
Temporal Logic Using Multiway Decision Graphs, The Computer Journal, Vol.47,

No.1, pp.71–84 (2004).
11) Armando, A., Benerecetti, M., Carotenuto, D., Mantovani, J. and Spica, P.: The

Eureka Tool for Software Model Checking, 22nd IEEE/ACM ASE Conference
(2007).

12) McMillan, K.L.: Symbolic Model Checking, Kluwer Academic Publishers (1993).
13) Holzmann, G.J.: The model checker SPIN, IEEE Trans. Softw. Eng., Vol.23, No.5,

pp.279–295 (1997).
14) Clarke, E.M., Kroening, D. and Lerda, F.: A Tool for Checking ANSI-C Programs,

Proc. Tools and Algorithms for the Analysis and Construction of Systems, pp.168–
176 (2004).

15) Bryant, R.E., German, S. and Velev, M.N.: Modeling and Verifying Systems us-
ing a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions, Computer-Aided Verification, LNCS 2404, pp.78–92 (2002).

16) Yices: An SMT Solver, http://yices.csl.sri.com/

Appendix

A.1 Proof of Lemma 1
Suppose that we have an interpretation tree σ̃M for an EUF state machine M .

We consider an interpretation tree σ̃G for a state transition graph G constructed
from M . The interpretations for both of the roots are the same, because of (M-3)
and (G-3) are the same.

Suppose that all of the ancestors of a node σG in σ̃G match those of a node σM

in σ̃M , and that σG = σM . Also, we assume ηS(σG) = s, where s is a state in G.
We consider a child σ′

M of σM . From (M-4), σ′
M (bj) = σM (Fj) and σ′

M (tj) =
σM (Tj). Let us define σ∗

M as a combined interpretation of σ′
M for the next state

variables and σM for the other variables. Then, formula (1) is true under σ∗
M .

We see if we can generate, as a child of s, some state si. In the construction of
G, formula (1) is transformed to α � α1 ∨ α2 ∨ · · · ∨ αp, and thus some αi must
be true for σ∗

M . We check if state si can be generated for this αi as a child of
s. The formulas in reachable condition set Cs are all true under σG because of
(G-5). Recall that αi is decomposed as β1 ∧ β2 ∧ · · · ∧ βq, and βj ’s without next
state variables are added to the condition set Csi

of si. These βj ’s are true for
σ∗

M and thus σM . Therefore, Csi
is satisfiable, and si is generated as a state in

G. We next see if it is possible to have σ′
G for si which is equivalent to σ′

M .
Since we can generate si, σ′

G for si must satisfy (G-1)–(G-6). From (G-1),

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

281 Approximate Model Checking Using a Subset of First-order Logic

any interpretation given at a state is the same as that given at its next state
except for next state variables. And, since σG = σM , we can say σ′

G(∨c∈Csi
c)

= σG(∨c∈Csi
c) = σM (∨c∈Csi

c) = true. From (G-5), σ′
G(tj) = σ′

G(−→t [j]). Again
from (G-1), σ′

G(−→t [j]) = σG(−→t [j]), and this is equivalent to σM (−→t [j]), and also
to σ′

M (−→t [j]), because of (M-1). This is also the case for bj and −→
b [j]. By giving

the same interpretation to input variables for σ′
M and σ′

G, we can have σ′
M = σ′

G.
On the other hand, suppose that we have an interpretation tree σ̃G for state

transition graph G, and an interpretation tree σ̃M for an EUF machine M .
From (G-3) and (M-3), we can see σ0

G = σ0
M , where σ0

G and σ0
M are both the

initial node of the two interpretation tree.
Suppose that all of the ancestors of a node σM in σ̃M match those of a node

σG in σ̃G, σM = σG. We also assume that σG has a child σ′
G and that (s, s′) is

an edge of G, and ηS(σG) = s, ηS(σ′
G) = s′. We see if we can have node σ′

M in
σ̃M , which is equivalent to σ′

G.
From the construction of s′ from s, some αi is used. This αi is true under the

combined interpretation σ∗
G. Note that C does not contain any present or next

state variables. From (G-5) and (G-1), we can see σ′
G(∨c∈Cs′ c) = σG(∨c∈Cs′ c)

= σM (∨c∈Cs′ c). From (M-1), σM (∨c∈Csi
c) = σ′

M (∨c∈Csi
c). Also, we can see

σ′
G(tj) = σ′

G(−→t [j]) = σG(−→t [j]) = σM (−→t [j]). From (M-4), σ′
M (tj) = σM (−→t [j]).

Thus, we can have σ′
G(tj) = σ′

M (tj). Similarly, we can see σ′
G(bj) = σ′

M (bj).
Again, by giving the same interpretation to input variables for σ′

G and σ′
M , we

can have σ′
G = σ′

M .
A.2 Proof of Lemma 2
Suppose that we have an interpretation tree σ̃G for state transition graph G,

and an interpretation tree σ̃Gex for its extended state transition graph Gex.
For a root node σ0

G in σ̃G, suppose that σ0
G(z−→p) = true for some z

−→p . From
the way of constructing Gex and (G-5), we can find an interpretation tree with
root node σ0

Gex such that σ0
Gex(z−→p) = true.

Suppose that all of the ancestors of a node σG in σ̃G match those of σGex in
σ̃Gex , and σG = σGex . We assume that ηS(σG) = s and ηSex(σGex) = sex. If σG

has a child σ′
G at state s′, then, for some vector −→p , σ′

G(z−→p) must be true. From
the way of construction of Gex, there exists a state sex′ in Gex which includes
z
−→p in its condition set. For this sex′, σ′

Gex can be introduced so that σ′
Gex(z−→p)

is true, because of (G-5). Again, by giving the same interpretation to input
variables for σ′

G and σ′
Gex , we can have σ′

G = σ′
Gex .

On the other hand, If σGex has a child σ′
Gex at state sex′, then, from the way

of construction, for some vector −→p , σ′
Gex(z−→p) is true. We can always find σ′

G as
a child of σG such that σ′

G(z−→p) = true, because z
−→p is satisfiable. Otherwise,

sex′ cannot be generated as a state. Again, by giving the same interpretation to
input variables we can conclude σ′

G = σ′
M .

A.3 Proof of Lemma 3
Suppose that we have a non-approximate graph G and its approximate graph

Ga. We show an arbitrary interpretation tree σ̃G for G is a subtree of some
interpretation tree σ̃Ga

for Ga.
From the way of construction interpretation trees, the root node of σ̃G can be

the same as that of σ̃Ga
.

Suppose that we have node σG in σ̃G such that ηS(σG) = s, and its ancestors
match a subtree of some interpretation tree σ̃Ga

, and also ηS(σGa
) = sa, and

σG = σGa
.

We assume that s has an ancestor s′ with σ′
G, that is, ηS(σ′

G) = s′. Let us
have state s′a as a child of sa such that s′a is generated by using the same αi as
s′. If no state merging nor term-height reduction has been done in generation of
s′a, then, by giving σ′

Ga
the same interpretations to input variables as those by

σ′
G, we can find out σ′

Ga
such that σ′

Ga
= σ′

G.
Suppose that state merging has been done in generation of s′a. Firstly, we give,

to σ′
Ga

, the same interpretations to the renamed variables as those which were
supposed to be given at the node before state merging. Since condition set C ′′

sa

before state merging of s′a is true and (G-5), the condition set C ′
sa

for s′a is also
true under σ′

Ga
. Thus, we can obtain σ′

Ga
= σ′

G.
Suppose that s′a is given as a resulting state of term-height reduction, and

that term t has been replaced by variable c. Then, by giving σ′
Ga

the same
interpretations to c as that which was supposed to be given for t at a state before
term-height reduction, we can obtain σ′

Ga
= σ′

G.
A.4 Proof of Theorem 1
The proof is given by induction on structure of a given EUF-CTL formula.
Suppose that some equation p (EUF equation) is labeled at state s in an ap-

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

282 Approximate Model Checking Using a Subset of First-order Logic

proximate (extended or non-extended) state transition graph Ga. Then, for all
the interpretation trees, p is true at their root nodes, because p is included in the
condition set of s, and, from (G-5), p is true at the root node of any interpreta-
tion trees starting from s. Likewise, for negations of equations or (non-temporal)
EUF formulas, if they are labeled at s, then the formulas are true at the root
node of any interpretation trees starting from s.

Suppose that AFf is labeled at state s. Then, for any path from s in Ga, there
exists at least a state where f is labeled. This implies that, in any interpretation
tree starting from s, for any path in the tree, there is a node which makes
f is true. Thus, AFf is also true at a root node of any interpretation tree
starting from s. Likewise, we can easily show that, for other EUF-CTL formulas
including temporal operators labeled at state s, they also true at a root node of
any interpretation tree starting from s.

Then, Lemma 1, 2, and 3 guarantees that any interpretation tree for M is a
subtree of an interpretation tree for Gex

a . If some formula f is true for some
interpretation tree, then it is also true for its subtree, because f describes a
property for all the paths in the tree.

(Received December 1, 2009)
(Revised February 26, 2010)

(Accepted April 14, 2010)
(Released August 16, 2010)

(Recommended by Associate Editor: Shinji Kimura)

Kiyoharu Hamaguchi received his B.E., M.E. and Ph.D. de-
grees in information science from Kyoto University, Japan, in
1987, 1989 and 1993 respectively. In 1994, he joined the De-
partment of Information Science, Kyoto University. He is cur-
rently with Graduate School of Information Science and Tech-
nology, Osaka University as an Associate Professor. His current
interests include formal verification and computer aided design.

Kazuya Masuda received his bachelor degree at School of Engineering Sci-
ence, Osaka University, Japan in 2007. He is currently a student in the master
course of Graduate School of Information Science and Technology.

Toshinobu Kashiwabara received his B.E., M.E. and Dr.Eng.
degrees from Osaka University, Japan, in 1969, 1971 and 1974 re-
spectively. He joined the faculty of Osaka University in 1974, and
is currently a Professor at Graduate School of Information Science
and Technology. His research interests include circuit layout and
design of combinatorial algorithms. He is a member of IEEE.

IPSJ Transactions on System LSI Design Methodology Vol. 3 268–282 (Aug. 2010) c© 2010 Information Processing Society of Japan

